
Exercise 3 (Comparable Data Types)

Problem 1. (Comparable Six-sided Die) Implement a comparable data type called Die that represents a six-sided die and
supports the following API:

² Die

Die() constructs a die
void roll() rolls this die
int value() returns the face value of this die
boolean equals(Die other) returns true if this die is the same as other, and false otherwise
int compareTo(Die other) returns a comparison of this die with other, by their face values
String toString() returns a string representation of this die

& ~/workspace/exercise3

$ java Die 5 3 4
Dice a, b, and c:
* *

*
* *
*

*
*

* *

* *
a.equals(b) = false
b.equals(c) = false
a.compareTo(b) = 2
b.compareTo(c) = -1

Problem 2. (Comparable Geo Location) Implement an immutable data type called Location that represents a location on
Earth and supports the following API:

² Location

Location(String name, double lat, double lon) constructs a new location given its name, latitude, and longitude
double distanceTo(Location other) returns the great-circle distance† between this location and other

boolean equals(Object other) returns true if this location is the same as other, and false otherwise
String toString() returns a string representation of this location
int compareTo(Location other) returns a comparison of this location with other based on their respective dis-

tances to the origin, Parthenon (Greece) @ 37.971525, 23.726726

† See Problem 1 of Exercise 1 for formula.

& ~/workspace/exercise3

$ java Location 2 XYZ 27.1750 78.0419
Seven wonders , in the order of their distance to Parthenon (Greece):

The Colosseum (Italy) (41.8902 , 12.4923)
Petra (Jordan) (30.3286 , 35.4419)
Taj Mahal (India) (27.175 , 78.0419)
Christ the Redeemer (Brazil) (22.9519 , -43.2106)
The Great Wall of China (China) (40.6769 , 117.2319)
Chichen Itza (Mexico) (20.6829 , -88.5686)
Machu Picchu (Peru) (-13.1633 , -72.5456)

wonders [2] == XYZ (27.175 , 78.0419)? true

Problem 3. (Comparable 3D Point) Implement an immutable data type called Point3D that represents a point in 3D and
supports the following API:

1 / 2

Exercise 3 (Comparable Data Types)

² Point3D

Point3D(double x, double y, double z) constructs a point in 3D given its x, y, and z coordinates
double distance(Point3D other) returns the Euclidean distance† between this point and other

String toString() returns a string representation of this point
int compareTo(Point3D other) returns a comparison of this point with other based on their respective distances to the

origin (0, 0, 0)
static Comparator<Point3D> xOrder() returns a comparator to compare two points by their x-coordinate
static Comparator<Point3D> yOrder() returns a comparator to compare two points by their x-coordinate
static Comparator<Point3D> zOrder() returns a comparator to compare two points by their x-coordinate

† The Euclidean distance between the points (x1, y1, z1) and (x2, y2, z2) is given by
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

& ~/workspace/exercise3

$ java Point3D
How many points? 3
Enter 9 doubles , separated by whitespace: -3 1 6 0 5 8 -5 -7 -3
Here are the points in the order entered:

(-3.0, 1.0, 6.0)
(0.0, 5.0, 8.0)
(-5.0, -7.0, -3.0)

Sorted by their natural ordering (compareTo)
(-3.0, 1.0, 6.0)
(-5.0, -7.0, -3.0)
(0.0, 5.0, 8.0)

Sorted by their x coordinate (xOrder)
(-5.0, -7.0, -3.0)
(-3.0, 1.0, 6.0)
(0.0, 5.0, 8.0)

Sorted by their y coordinate (yOrder)
(-5.0, -7.0, -3.0)
(-3.0, 1.0, 6.0)
(0.0, 5.0, 8.0)

Sorted by their z coordinate (zOrder)
(-5.0, -7.0, -3.0)
(-3.0, 1.0, 6.0)
(0.0, 5.0, 8.0)

Files to Submit

1. Die.java

2. Location.java

3. Point3D.java

Before you submit your files, make sure:

� You do not use concepts outside of what has been taught in class.

� Your code is adequately commented, follows good programming principles, and meets any specific requirements
such as corner cases and running times.

2 / 2

