
Exercise 6 (Graphs)

Problem 1. (Graph Properties) Consider an undirected graph G with V vertices and E edges.

� The degree distribution of G is a function mapping each degree value in G to the number of vertices with that value.

� The average degree of G is 2E
V .

� The average path length of G is the average length of all the paths in G.

� The local clustering coefficient Ci for a vertex vi is the number of edges that actually exist between the vertices in its

neighbourhood divided by the number of edges that could possibly exist between them, which is V (V−1)
2 . The global

clustering coefficient of G is 1
V

∑V
i Ci.

Implement a data type called GraphProperties with the following API to compute the aforementioned graph properties:

² GraphProperties

GraphProperties(Graph G) computes graph properties for the undirected graph G

RedBlackBinarySearchTreeST<Integer, Integer> degreeDistribution() returns the degree distribution of the graph
double averageDegree() returns the average degree of the graph
double averagePathLength() returns the average path length of the graph
double clusteringCoefficient() returns the global clustering coefficient of the graph

& ~/workspace/exercise6

$ java GraphProperties data/tinyG.txt
Degree distribution:

1: 3
2: 4
3: 5
4: 1

Average degree = 2.308
Average path length = 3.090
Clustering coefficient = 0.256

L GraphProperties.java

import dsa.BFSPaths;
import dsa.Graph;
import dsa.RedBlackBinarySearchTreeST;
import stdlib.In;
import stdlib.StdOut;

public class GraphProperties {
private RedBlackBinarySearchTreeST <Integer , Integer > st; // degree -> frequency
private double avgDegree; // average degree of the graph
private double avgPathLength; // average path length of the graph
private double clusteringCoefficient; // clustering coefficient of the graph

// Computes graph properties for the undirected graph G.
public GraphProperties(Graph G) {

...
}

// Returns the degree distribution of the graph (a symbol table mapping each degree value to
// the number of vertices with that value).
public RedBlackBinarySearchTreeST <Integer , Integer > degreeDistribution () {

...
}

// Returns the average degree of the graph.
public double averageDegree () {

...
}

// Returns the average path length of the graph.
public double averagePathLength () {

...
}

// Returns the global clustering coefficient of the graph.
public double clusteringCoefficient () {

...
}

1 / 3



Exercise 6 (Graphs)

// Returns true if G has an edge between vertices v and w, and false otherwise.
private static boolean hasEdge(Graph G, int v, int w) {

for (int u : G.adj(v)) {
if (u == w) {

return true;
}

}
return false;

}

// Unit tests the data type. [DO NOT EDIT]
public static void main(String [] args) {

In in = new In(args [0]);
Graph G = new Graph(in);
GraphProperties gp = new GraphProperties(G);
RedBlackBinarySearchTreeST <Integer , Integer > st = gp.degreeDistribution ();
StdOut.println("Degree distribution:");
for (int degree : st.keys ()) {

StdOut.println(" " + degree + ": " + st.get(degree ));
}
StdOut.printf("Average degree = %7.3f\n", gp.averageDegree ());
StdOut.printf("Average path length = %7.3f\n", gp.averagePathLength ());
StdOut.printf("Clustering coefficient = %7.3f\n", gp.clusteringCoefficient ());

}
}

Problem 2. (DiGraph Properties) Consider a digraph G with V vertices.

� G is a directed acyclic graph (DAG) if it does not contain any directed cycles.

� G is a map if every vertex has an outdegree of 1.

� A vertex v is a source if its indegree is 0.

� A vertex v is a sink if its outdegree is 0.

Implement a data type called DiGraphProperties with the following API to compute the aforementioned digraph properties:

² DiGraphProperties

DiGraphProperties(DiGraph G) computes graph properties for the digraph G

boolean isDAG() returns true if the digraph is a DAG, and false otherwise
boolean isMap() returns true if the digraph is a map, and false otherwise
Iterable<Integer> sources() returns all the sources in the digraph
Iterable<Integer> sinks() returns all the sinks in the digraph

& ~/workspace/exercise6

$ java DiGraphProperties data/tinyDG.txt
Sources: 7
Sinks: 1
Is DAG? false
Is Map? false

L DiGraphProperties.java

import dsa.DiCycle;
import dsa.DiGraph;
import dsa.LinkedBag;
import stdlib.In;
import stdlib.StdOut;

public class DiGraphProperties {
private boolean isDAG; // is the digraph a DAG?
private boolean isMap; // is the digraph a map?
private LinkedBag <Integer > sources; // the sources in the digraph
private LinkedBag <Integer > sinks; // the sinks in the digraph

// Computes graph properties for the digraph G.
public DiGraphProperties(DiGraph G) {

2 / 3



Exercise 6 (Graphs)

...
}

// Returns true if the digraph is a directed acyclic graph (DAG), and false otherwise.
public boolean isDAG () {

...
}

// Returns true if the digraph is a map , and false otherwise.
public boolean isMap () {

...
}

// Returns all the sources (ie, vertices without any incoming edges) in the digraph.
public Iterable <Integer > sources () {

...
}

// Returns all the sinks (ie, vertices without any outgoing edges) in the digraph.
public Iterable <Integer > sinks() {

...
}

// Unit tests the data type. [DO NOT EDIT]
public static void main(String [] args) {

In in = new In(args [0]);
DiGraph G = new DiGraph(in);
DiGraphProperties gp = new DiGraphProperties(G);
StdOut.print("Sources: ");
for (int v : gp.sources ()) {

StdOut.print(v + " ");
}
StdOut.println ();
StdOut.print("Sinks: ");
for (int v : gp.sinks ()) {

StdOut.print(v + " ");
}
StdOut.println ();
StdOut.println("Is DAG? " + gp.isDAG ());
StdOut.println("Is Map? " + gp.isMap ());

}
}

Files to Submit

1. GraphProperties.java

2. DiGraphProperties.java

Before you submit your files, make sure:

� You do not use concepts outside of what has been taught in class.

� Your code is adequately commented, follows good programming principles, and meets any specific requirements
such as corner cases and running times.

3 / 3


