
Data Structures and Algorithms in Java
Assignment 2 (Global Sequence Alignment) Discussion



Introduction

Goal: find an optimal alignment for two DNA sequences x and y

We are permitted to insert gaps in either sequence to make them have the same length

We pay a penalty for each gap that we insert and also for each pair of characters that mismatch

Operation Cost

Insert a gap 2

Align two characters that do not match 1

Align two characters that do match 0



Introduction

Edit distance is the cost of the best possible alignment between the two genetic sequences over all possible alignments

Two possible alignments of the sequences x = "AACAGTTACC" and y = "TAAGGTCA"

x y cost x y cost

-------------- --------------

A T 1 A T 1

A A 0 A A 0

C A 1 C - 2

A G 1 A A 0

G G 0 G G 0

T T 0 T G 1

T C 1 T T 0

A A 0 A - 2

C - 2 C C 0

C - 2 C A 1

--- ---

8 7

Edit distance for the two sequences is 7



Notation

m and n denote the lengths of x and y, respectively

x[i] denotes the ith character of the sequence x

x[i..m] denotes the suffix of x consisting of the characters x[i], x[i + 1], ..., x[m - 1]

opt is the (m + 1) x (n + 1) edit-distance matrix

opt[i][j] denotes the edit distance of x[i..m] and y[j..n]

Example: if x = "AACAGTTACC" and y = "TAAGGTCA", then

- m = 10 and n = 8

- x[2] is ’C’

- x[5..m] is "CAGTTACC" and y[8..n] is ""

- opt is a 11 x 9 matrix

- opt[0][0] is the edit distance of x and y



Recursive Solution

Case 1 (x[i] is matched with y[j]): opt[i][j] = opt[i + 1][j + 1] + 0 or 1 depending on whether x[i] equals
y[j]

Case 2 (x[i] is matched with a gap): opt[i][j] = opt[i + 1][j] + 2

Case 3 (y[j] is matched with a gap): opt[i][j] = opt[i][j + 1] + 2

We compute opt[i][j] by taking the minimum of the three quantities

opt[i][j] = min(opt[i + 1][j + 1] + 0 or 1, opt[i + 1][j] + 2, opt[i][j + 1] + 2)

Direct computation of this recursive scheme is spectacularly inefficient

We use dynamic programming

Key idea: break up a large problem into smaller subproblems, store the answers to those smaller subproblems, and use
the stored answers to solve the original problem



Problem 1 (Compute Edit Distance)

Write a program called EditDistance.java that receives strings x and y as standard input; computes the edit-distance
matrix opt; and outputs x, y, the dimensions of opt, and opt

× ~/workspace/global sequence alignment

1 $ javac -d out src/EditDistance.java

2 $ java EditDistance < data/example10.txt

3 AACAGTTACC

4 TAAGGTCA

5 11 9

6 7 8 10 12 13 15 16 18 20

7 6 6 8 10 11 13 14 16 18

8 6 5 6 8 9 11 12 14 16

9 7 5 4 6 7 9 11 12 14

10 9 7 5 4 5 7 9 10 12

11 8 8 6 4 4 5 7 8 10

12 9 8 7 5 3 3 5 6 8

13 11 9 7 6 4 2 3 4 6

14 13 11 9 7 5 3 1 3 4

15 14 12 10 8 6 4 2 1 2

16 16 14 12 10 8 6 4 2 0



Problem 1 (Compute Edit Distance)

Read sequences x (String) and y (String) from standard input

Set m (int) and n (int) to the lenghts of x and y, respectively (use GSA.length())

Create an (m + 1) x (n + 1) array opt of ints

Initialize the rightmost column of opt to 2(m - i), where 0 <= i <= m

Initialize the bottommost row of opt to 2(n - j), where 0 <= j <= n



Problem 1 (Compute Edit Distance)

Fill in the rest of opt, starting at opt[m - 1][n - 1] and ending at opt[0][0], as follows (use GSA.charAt() and
GSA.min() where needed)

- If x[i] = y[j] then opt[i][j] = min(opt[i + 1][j + 1], opt[i + 1][j] + 2, opt[i][j + 1] + 2)

- Otherwise, opt[i][j] = min(opt[i + 1][j + 1] + 1, opt[i + 1][j] + 2, opt[i][j + 1] + 2)

Write the following output, each starting on a new line

- x

- y

- m and n separated by a space

- opt using the format string "%3d " for elements not in the last column, and "%3d\n" for the last-column elements



Problem 2 (Recover Alignment)

Write a program Alignment.java that receives as standard input the output produced by EditDistance.java; recovers
an optimal alignment between x and y; and writes the edit distance and the alignment

× ~/workspace/global sequence alignment

1 $ javac -d out src/Alignment.java

2 $ java EditDistance < data/example10.txt | java Alignment

3 7

4 A T 1

5 A A 0

6 C - 2

7 A A 0

8 G G 0

9 T G 1

10 T T 0

11 A - 2

12 C C 0

13 C A 1



Problem 2 (Recover Alignment)

Read sequences x (String) and y (String) from standard input

Set m (int) and n (int) to the lenghts of x and y, respectively

Read the edit-distance matrix opt from standard input (use StdArrayIO.readInt2D())

Write the edit distance between x and y, ie, the value of opt[0][0]



Problem 2 (Recover Alignment)

Set ints i and j both to 0

Recover and output the optimal alginment, starting at opt[0][0] and ending at opt[m - 1][n - 1], as follows

- If opt[i][j] = opt[i + 1][j] + 2, then align x[i] with a gap and penalty of 2, and increment i

- Otherwise, if opt[i][j] = opt[i][j + 1] + 2, then align y[j] with a gap and penalty of 2, and increment j

- Otherwise, align x[i] with y[j] with a penalty of 0 or 1 depending on whether x[i] equals y[j], and increment
both i and j

If y is exhausted before x (ie, i < m), align the remaining x with gaps and penalty of 2

If x is exhausted before y (ie, j < n), align the remaining y with gaps and penalty of 2


	Introduction
	Notation
	Recursive Solution
	Problem 1 (Compute Edit Distance)
	Problem 2 (Recover Alignment)

