
Hash Tables

Outline

1 Hashing

2 Separate-Chaining Symbol Table

Hashing

The basic idea is to save items in a key-indexed array, where the index is a function of the key

Hash function provides a method for computing an array index from a key

Issues

• Computing the hash function

• Equality test: method for checking whether two keys are equal

• Collision resolution: algorithm and data structure to handle two keys that hash to the same array index

Classic space-time tradeoff

• No space limitation: trivial hash function with key as index

• No time limitation: trivial collision resolution with sequential search

• Space and time limitations: hashing (the real world)

Hashing

The basic idea is to save items in a key-indexed array, where the index is a function of the key

Hash function provides a method for computing an array index from a key

Issues

• Computing the hash function

• Equality test: method for checking whether two keys are equal

• Collision resolution: algorithm and data structure to handle two keys that hash to the same array index

Classic space-time tradeoff

• No space limitation: trivial hash function with key as index

• No time limitation: trivial collision resolution with sequential search

• Space and time limitations: hashing (the real world)

Hashing

The basic idea is to save items in a key-indexed array, where the index is a function of the key

Hash function provides a method for computing an array index from a key

Issues

• Computing the hash function

• Equality test: method for checking whether two keys are equal

• Collision resolution: algorithm and data structure to handle two keys that hash to the same array index

Classic space-time tradeoff

• No space limitation: trivial hash function with key as index

• No time limitation: trivial collision resolution with sequential search

• Space and time limitations: hashing (the real world)

Hashing

The basic idea is to save items in a key-indexed array, where the index is a function of the key

Hash function provides a method for computing an array index from a key

Issues

• Computing the hash function

• Equality test: method for checking whether two keys are equal

• Collision resolution: algorithm and data structure to handle two keys that hash to the same array index

Classic space-time tradeoff

• No space limitation: trivial hash function with key as index

• No time limitation: trivial collision resolution with sequential search

• Space and time limitations: hashing (the real world)

Hashing

The basic idea is to save items in a key-indexed array, where the index is a function of the key

Hash function provides a method for computing an array index from a key

Issues

• Computing the hash function

• Equality test: method for checking whether two keys are equal

• Collision resolution: algorithm and data structure to handle two keys that hash to the same array index

Classic space-time tradeoff

• No space limitation: trivial hash function with key as index

• No time limitation: trivial collision resolution with sequential search

• Space and time limitations: hashing (the real world)

Hashing

Idealistic goal: scramble the keys uniformly to produce a table index that is

• Efficiently computable

• Equally likely for each key

Example 1: phone numbers

• Bad: first three digits

• Better: last three digits

Example 2: social security numbers

• Bad: first three digits

• Better: last four digits

Practical challenge: need different approach for each type of key

Hashing

Idealistic goal: scramble the keys uniformly to produce a table index that is

• Efficiently computable

• Equally likely for each key

Example 1: phone numbers

• Bad: first three digits

• Better: last three digits

Example 2: social security numbers

• Bad: first three digits

• Better: last four digits

Practical challenge: need different approach for each type of key

Hashing

Idealistic goal: scramble the keys uniformly to produce a table index that is

• Efficiently computable

• Equally likely for each key

Example 1: phone numbers

• Bad: first three digits

• Better: last three digits

Example 2: social security numbers

• Bad: first three digits

• Better: last four digits

Practical challenge: need different approach for each type of key

Hashing

Idealistic goal: scramble the keys uniformly to produce a table index that is

• Efficiently computable

• Equally likely for each key

Example 1: phone numbers

• Bad: first three digits

• Better: last three digits

Example 2: social security numbers

• Bad: first three digits

• Better: last four digits

Practical challenge: need different approach for each type of key

Hashing

Idealistic goal: scramble the keys uniformly to produce a table index that is

• Efficiently computable

• Equally likely for each key

Example 1: phone numbers

• Bad: first three digits

• Better: last three digits

Example 2: social security numbers

• Bad: first three digits

• Better: last four digits

Practical challenge: need different approach for each type of key

Hashing

Java’s hash code conventions

• All Java classes inherit a method hashCode(), which returns a 32-bit int

• Requirement: if x.equals(y), then x.hashCode() == y.hashCode()

• Highly desirable: if !x.equals(y), then x.hashCode() != y.hashCode()

• Default implementation: return memory address of x

• Legal (but poor) implementation: always return 17

• Customized implementations: Integer, Double, String, File, URL, Date, ...

• User-defined types: users are on their own

Hashing

Java’s hash code conventions

• All Java classes inherit a method hashCode(), which returns a 32-bit int

• Requirement: if x.equals(y), then x.hashCode() == y.hashCode()

• Highly desirable: if !x.equals(y), then x.hashCode() != y.hashCode()

• Default implementation: return memory address of x

• Legal (but poor) implementation: always return 17

• Customized implementations: Integer, Double, String, File, URL, Date, ...

• User-defined types: users are on their own

Hashing

Java library implementations

public final class Boolean {

private final boolean value;

public int hashCode () { return value ? 1231 : 1237; }

}

public final class Integer {

private final int value;

public int hashCode () { return value; }

}

public final class Double {

private final double value;

public int hashCode () {

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class String {

private int hash = 0;

private final char[] s;

public int hashCode () {

if (hash != 0) { return hash; }

for (int i = 0; i < length (); i++) { hash = s[i] + (31 * hash); }

return hash;

}

}

Hashing

Java library implementations

public final class Boolean {

private final boolean value;

public int hashCode () { return value ? 1231 : 1237; }

}

public final class Integer {

private final int value;

public int hashCode () { return value; }

}

public final class Double {

private final double value;

public int hashCode () {

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class String {

private int hash = 0;

private final char[] s;

public int hashCode () {

if (hash != 0) { return hash; }

for (int i = 0; i < length (); i++) { hash = s[i] + (31 * hash); }

return hash;

}

}

Hashing

Java library implementations

public final class Boolean {

private final boolean value;

public int hashCode () { return value ? 1231 : 1237; }

}

public final class Integer {

private final int value;

public int hashCode () { return value; }

}

public final class Double {

private final double value;

public int hashCode () {

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class String {

private int hash = 0;

private final char[] s;

public int hashCode () {

if (hash != 0) { return hash; }

for (int i = 0; i < length (); i++) { hash = s[i] + (31 * hash); }

return hash;

}

}

Hashing

Java library implementations

public final class Boolean {

private final boolean value;

public int hashCode () { return value ? 1231 : 1237; }

}

public final class Integer {

private final int value;

public int hashCode () { return value; }

}

public final class Double {

private final double value;

public int hashCode () {

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class String {

private int hash = 0;

private final char[] s;

public int hashCode () {

if (hash != 0) { return hash; }

for (int i = 0; i < length (); i++) { hash = s[i] + (31 * hash); }

return hash;

}

}

Hashing

Java library implementations

public final class Boolean {

private final boolean value;

public int hashCode () { return value ? 1231 : 1237; }

}

public final class Integer {

private final int value;

public int hashCode () { return value; }

}

public final class Double {

private final double value;

public int hashCode () {

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class String {

private int hash = 0;

private final char[] s;

public int hashCode () {

if (hash != 0) { return hash; }

for (int i = 0; i < length (); i++) { hash = s[i] + (31 * hash); }

return hash;

}

}

Hashing

Implementing hash code for user-defined types

public final class Transaction implements Comparable <Transaction > {

private final String who;

private final Date when;

private final double amount;

public int hashCode () {

int hash = 17;

hash = 31 * hash + who.hashCode ();

hash = 31 * hash + when.hashCode ();

hash = 31 * hash + ((Double) amount). hashCode ();

return hash;

}

}

Hash code design

• Combine each significant field using the 31x + y rule

• If field is a primitive type, use wrapper type hashCode()

• If field is null, return 0

• If field is a reference type, use hashCode()

• If field is an array, apply to each entry

Hashing

Implementing hash code for user-defined types

public final class Transaction implements Comparable <Transaction > {

private final String who;

private final Date when;

private final double amount;

public int hashCode () {

int hash = 17;

hash = 31 * hash + who.hashCode ();

hash = 31 * hash + when.hashCode ();

hash = 31 * hash + ((Double) amount). hashCode ();

return hash;

}

}

Hash code design

• Combine each significant field using the 31x + y rule

• If field is a primitive type, use wrapper type hashCode()

• If field is null, return 0

• If field is a reference type, use hashCode()

• If field is an array, apply to each entry

Hashing

Implementing hash code for user-defined types

public final class Transaction implements Comparable <Transaction > {

private final String who;

private final Date when;

private final double amount;

public int hashCode () {

int hash = 17;

hash = 31 * hash + who.hashCode ();

hash = 31 * hash + when.hashCode ();

hash = 31 * hash + ((Double) amount). hashCode ();

return hash;

}

}

Hash code design

• Combine each significant field using the 31x + y rule

• If field is a primitive type, use wrapper type hashCode()

• If field is null, return 0

• If field is a reference type, use hashCode()

• If field is an array, apply to each entry

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Hashing
Modular hashing
• Hash code: an int between −231 and 231 − 1
• Hash function: an int between 0 and m − 1 (for use as array index)

Implementation

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

Uniform hashing assumption: each key is equally likely to hash to an integer between 0 and m − 1

Example (hash value frequencies for words in Tale of Two Cities; 10,679 keys; m = 97)

Collision: two distinct keys hash to the same index
• Can’t avoid collisions unless you have a ridiculous amount of memory
• Collisions are evenly distributed
• Challenge: deal with collisions efficiently

Separate-Chaining Symbol Table

Use an array of m < n linked lists

• Hash: map key to integer i ∈ [0,m − 1]

• Insert: put at front of ith chain (if not already there)

• Search: need to search only the ith chain

first

first

first

key hash value

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

st

0

1

2

3

4

X 7 S 0

L 11 P 10

M 9 H 5 C 4 R 3

first

first

A 8 E 12

null

independent

objects
SequentialSearchST

The ratio n/m is called the load factor and is denoted by α, and is interpreted as the average number of keys per list

Separate-Chaining Symbol Table

Use an array of m < n linked lists

• Hash: map key to integer i ∈ [0,m − 1]

• Insert: put at front of ith chain (if not already there)

• Search: need to search only the ith chain

first

first

first

key hash value

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

st

0

1

2

3

4

X 7 S 0

L 11 P 10

M 9 H 5 C 4 R 3

first

first

A 8 E 12

null

independent

objects
SequentialSearchST

The ratio n/m is called the load factor and is denoted by α, and is interpreted as the average number of keys per list

Separate-Chaining Symbol Table

Use an array of m < n linked lists

• Hash: map key to integer i ∈ [0,m − 1]

• Insert: put at front of ith chain (if not already there)

• Search: need to search only the ith chain

first

first

first

key hash value

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

st

0

1

2

3

4

X 7 S 0

L 11 P 10

M 9 H 5 C 4 R 3

first

first

A 8 E 12

null

independent

objects
SequentialSearchST

The ratio n/m is called the load factor and is denoted by α, and is interpreted as the average number of keys per list

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

Under uniform hashing assumption, probability that the number of keys in a list is within a constant factor of α is
extremely close to 1

Consequence: number of probes for search/insert is proportional to α

• m too large =⇒ too many empty chains

• m too small =⇒ chains too long

Goal: α = constant

• Double the size of array when α ≥ 10

• Halve the size of array when α ≤ 2

• Need to rehash all keys when resizing

Deleting a key (and its associated value) is easy — need only consider chain containing key

The cost of search, insert, and delete, under the uniform hashing assumption, is constant (between 3 and 5)

Separate-Chaining Symbol Table

L SeparateChainingHashST.java

package dsa;

import stdlib.StdIn;

import stdlib.StdOut;

public class SeparateChainingHashST <Key , Value > implements BasicST <Key , Value > {

private LinearSearchST <Key , Value >[] st;

private int m;

private int n;

public SeparateChainingHashST () {

this (4);

}

public SeparateChainingHashST(int m) {

this.m = m;

st = (LinearSearchST <Key , Value >[]) new LinearSearchST[m];

for (int i = 0; i < m; i++) {

st[i] = new LinearSearchST <Key , Value >();

}

}

public boolean isEmpty () {

return size() == 0;

}

public int size() {

return n;

}

public void put(Key key , Value value) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

if (value == null) {

Separate-Chaining Symbol Table

L SeparateChainingHashST.java

package dsa;

import stdlib.StdIn;

import stdlib.StdOut;

public class SeparateChainingHashST <Key , Value > implements BasicST <Key , Value > {

private LinearSearchST <Key , Value >[] st;

private int m;

private int n;

public SeparateChainingHashST () {

this (4);

}

public SeparateChainingHashST(int m) {

this.m = m;

st = (LinearSearchST <Key , Value >[]) new LinearSearchST[m];

for (int i = 0; i < m; i++) {

st[i] = new LinearSearchST <Key , Value >();

}

}

public boolean isEmpty () {

return size() == 0;

}

public int size() {

return n;

}

public void put(Key key , Value value) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

if (value == null) {

Separate-Chaining Symbol Table

L SeparateChainingHashST.java

throw new IllegalArgumentException("value is null");

}

if (n >= 10 * m) {

resize (2 * m);

}

int i = hash(key);

if (!st[i]. contains(key)) {

n++;

}

st[i].put(key , value);

}

public Value get(Key key) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

int i = hash(key);

return st[i].get(key);

}

public boolean contains(Key key) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

return get(key) != null;

}

public void delete(Key key) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

int i = hash(key);

if (st[i]. contains(key)) {

n--;

}

Separate-Chaining Symbol Table

L SeparateChainingHashST.java

st[i]. delete(key);

if (m > 4 && n <= 2 * m) {

resize(m / 2);

}

}

public Iterable <Key > keys() {

LinkedQueue <Key > queue = new LinkedQueue <Key >();

for (LinearSearchST <Key , Value > chain : st) {

for (Key key : chain.keys ()) {

queue.enqueue(key);

}

}

return queue;

}

private int hash(Key key) {

return (key.hashCode () & 0x7fffffff) % m;

}

private void resize(int chains) {

SeparateChainingHashST <Key , Value > temp = new SeparateChainingHashST <Key , Value >(chains);

for (LinearSearchST <Key , Value > chain : st) {

for (Key key : chain.keys ()) {

temp.put(key , chain.get(key));

}

}

this.m = temp.m;

this.n = temp.n;

this.st = temp.st;

}

public static void main(String [] args) {

SeparateChainingHashST <String , Integer > st = new SeparateChainingHashST <String , Integer >();

for (int i = 0; !StdIn.isEmpty (); i++) {

Separate-Chaining Symbol Table

L SeparateChainingHashST.java

String key = StdIn.readString ();

st.put(key , i);

}

for (String s : st.keys ()) {

StdOut.println(s + " " + st.get(s));

}

}

}

	Outline
	Hashing
	Separate-Chaining Symbol Table

