Data Structures and Algorithms in Java
Sorting: Merge Sort



QOutline

@ Merging

@ Sorting



Merging



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array

To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example




Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example




Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example



Merging

Merge sort is based on an operation called merging: combining two ordered arrays to make one larger ordered array
To sort an array, merge sort divides it into two halves, sorts the two halves recursively, and then merges the results

Example




Merging



Merging

all, aux(]




Merging

all, aux(]




Merging

all, aux(]




Merging

all, aux[]



Merging

all, aux(]



Merging

all, aux[]




Merging

all, aux(]



Merging

all, aux[]




Merging

all, aux(]




Merging

all, aux[]




Merging

all, aux(]




Merging

all, aux[]




Merging

all, aux(]



Merging

all, aux[]




Merging

all, aux(]



Merging

all, aux[]




Merging

all, aux(]




Merging

all, aux[]



Merging

all, aux(]




Merging

all, aux(]



Merging

all, aux(]



Merging

all, aux(]



Merging

all, aux(]

8 9
- Il
R T



Merging

all, aux(]




Merging



Merging

</> Merge
public class Merge {
private static void merge(Comparable(] a,
for (int k = lo; k <= hi; k++) {
aux [k] = alk];
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {
if (i > mid) {
alk]l = aux[j++];
} else if (j > hi) {
alk] = aux[i++];
} else if (less(aux[j], aux[il)) {
alk] = aux[j++];
} else {
alk] = aux[i++];
¥
¥
}
private static void merge(Object[] a, Object[] aux,
for (int k = lo; k <= hi; k++)
aux [k] = al[k];
¥
int i = lo, j = mid + 1
for (int k = lo; k <= hi; k++) {
if (i > mid) {
alk] = aux[j++];
} else if (j > hi) {
alk] = aux[i++];
} else if (less(aux[jl, aux[il, ¢)) {
alk]l = aux[j++];
} else {
alk] = aux[i++];
¥
}
¥
}

Comparable [] aux,

int 1lo,

int lo,

int mid,

int mid,

int hi,

int hi) {

Comparator c¢) {




Sorting



Sorting

1o

hi




Sorting

1lo

hi



Sorting



Sorting



Sorting



Sorting



Sorting



Sorting



Sorting



Sorting



Sorting

1lo

hi



Sorting

lo

hi



Sorting

lo

hi



Sorting

lo

hi



Sorting

lo

hi



Sorting

1lo

hi



Sorting

1lo

hi



Sorting



Sorting



Sorting

1lo

hi

15



Sorting

1lo

hi

11



Sorting

lo

hi



Sorting

lo

hi



Sorting

lo

10

hi

11



Sorting

lo

10

hi

11



Sorting

1lo

hi

11



Sorting

1lo

hi

11



Sorting

1lo

12

hi

15



Sorting

lo

12

hi

13



Sorting

lo

12

hi

13



Sorting

lo

14

hi

15



Sorting

lo

14

hi

15



Sorting

1lo

12

hi

15



Sorting

1lo

12

hi

15



Sorting

1lo

hi

15



Sorting

1lo

hi

15



Sorting



Sorting



Sorting

1o

hi

15




Sorting



Sorting

<> Merg

public class Merge {
public static void sort(Comparable[] a) {
Comparable[] aux = new Comparable[a.lengthl;
sort(a, aux, O, a.length - 1);
¥

public static void sort(Object[] a, Comparator c) {
Object[] aux = new Object[a.lengthl;

sort(a, aux, 0, a.length - 1, c);
¥
private static void sort(Comparable[] a, Comparablel[] aux,
if (hi <= 1lo) {
return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge (a, aux, lo, mid, hi);
¥
private static void sort(Object[] a, Object[] aux, int lo,
if (hi <= 1lo) {
return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid, c);
sort(a, aux, mid + 1, hi, c);
merge (a, aux, lo, mid, hi, c);

int 1lo,

int hi,

int hi) {

Comparator c) {




Sorting

<> Merg

public class Merge {
public static void sort(Comparable[] a) {
Comparable[] aux = new Comparable[a.lengthl;
sort(a, aux, O, a.length - 1);

¥

public static void sort(Object[] a, Comparator c) {
Object[] aux = new Object[a.lengthl;

sort(a, aux, 0, a.length - 1, c);
¥
private static void sort(Comparable[] a, Comparablel[] aux,
if (hi <= 1lo) {
return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge (a, aux, lo, mid, hi);
¥
private static void sort(Object[] a, Object[] aux, int lo,
if (hi <= 1lo) {
return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid, c);
sort(a, aux, mid + 1, hi, c);
merge (a, aux, lo, mid, hi, c);

int 1lo,

int hi,

int hi) {

Comparator c) {

T(n) =nlognand S(n)=n




	Outline
	Merging
	Sorting

