Data Structures and Algorithms in Java
Sorting: Merge Sort
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</> Merge
public class Merge {
private static void merge(Comparable(] a,
for (int k = lo; k <= hi; k++) {
aux [k] = alk];
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {
if (i > mid) {
alk]l = aux[j++];
} else if (j > hi) {
alk] = aux[i++];
} else if (less(aux[j], aux[il)) {
alk] = aux[j++];
} else {
alk] = aux[i++];
¥
¥
}
private static void merge(Object[] a, Object[] aux,
for (int k = lo; k <= hi; k++)
aux [k] = al[k];
¥
int i = lo, j = mid + 1
for (int k = lo; k <= hi; k++) {
if (i > mid) {
alk] = aux[j++];
} else if (j > hi) {
alk] = aux[i++];
} else if (less(aux[jl, aux[il, ¢)) {
alk]l = aux[j++];
} else {
alk] = aux[i++];
¥
}
¥
}

Comparable [] aux,

int 1lo,

int lo,

int mid,

int mid,

int hi,

int hi) {

Comparator c¢) {
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public class Merge {
public static void sort(Comparable[] a) {
Comparable[] aux = new Comparable[a.lengthl;
sort(a, aux, O, a.length - 1);
¥

public static void sort(Object[] a, Comparator c) {
Object[] aux = new Object[a.lengthl;

sort(a, aux, 0, a.length - 1, c);
¥
private static void sort(Comparable[] a, Comparablel[] aux,
if (hi <= 1lo) {
return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge (a, aux, lo, mid, hi);
¥
private static void sort(Object[] a, Object[] aux, int lo,
if (hi <= 1lo) {
return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid, c);
sort(a, aux, mid + 1, hi, c);
merge (a, aux, lo, mid, hi, c);

int 1lo,

int hi,

int hi) {

Comparator c) {
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¥
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private static void sort(Object[] a, Object[] aux, int lo,
if (hi <= 1lo) {
return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid, c);
sort(a, aux, mid + 1, hi, c);
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int 1lo,

int hi,

int hi) {

Comparator c) {

T(n) =nlognand S(n)=n
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