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What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

A minimum spanning tree (MST) of an edge-weighted undirected graph is a spanning tree whose weight (the sum of
the weights of its edges) is no larger than the weight of any other spanning tree

An edge-weighted graph and its MST
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What are Minimum Spanning Trees?

If the graph is connected and the edge weights are unique, then MST exists and is unique
Goal: given a connected undirected graph G with arbitrary (but distinct) edge weights, find the MST of G

Typical MST applications

Application Vertex Edge
circuit component wire
airline airport flight route

power distribution  power plant  transmission lines

image analysis feature proximity relationship
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Edge-Weighted Graph API

EdgeleightedGraph

EdgeWeightedGraph (int V) create an empty graph with V vertices
EdgeleightedGraph (In in) create a graph from input stream

int VO number of vertices

int EQ number of edges

void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v)  edges incident to v

Iterable<Edge> edges() all edges in this graph




Edge-Weighted Graph API

EdgeleightedGraph

EdgeleightedGraph (int V) create an empty graph with V vertices
EdgeleightedGraph (In in) create a graph from input stream

int VO number of vertices

int EQ number of edges

void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v)  edges incident to v

Iterable<Edge> edges() all edges in this graph

Edge(int v, int w, double weight)  Create a weighted edge v-w

double weight() edge weight
int either() either endpoint

int other(int v) the endpoint that's not v
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Edge-Weighted Graph API

(# EdgeWeightedGraph.java

package dsa;

import stdlib.In;
import stdlib.StdOut;

public class EdgeWeightedGraph {
private LinkedBag<Edge>[] adj;
private int V;
private int E;

public EdgeWeightedGraph(int V) {
adj = (LinkedBag<Edge>[]) new LinkedBag([V];
for (imt v = 0; v < V; v++) {
adj[v] = new LinkedBag<Edge>()

this.V = V;
this.E = 0;
}

public EdgeWeightedGraph(In in) {
this(in.readInt ());
int E = in.readInt();
for (int i = 0; i < E; i++) {
int v = in.readInt();
int w = in.readInt();
double weight = in.readDouble();
addEdge (new Edge(v, w, weight));

¥

public int VO {
return V;

¥

public int E() {




Edge-Weighted Graph API

(# EdgeWeightedGraph.java

return E;

i

public void addEdge (Edge e) {
int v = e.either();
int w = e.other(v);
adj[v].add(e);
adj[wl.add(e);
E++;

¥

public Iterable<Edge> adj(int v) {
return adjl[v];

}

public int degree(int v) {
return adjl[v].size();

¥

public Iterable<Edge> edges() {
LinkedBag<Edge> edges = new LinkedBag<Edge>();
for (int v = 0; v < V; v++) {
int selfLoops = 0;
for (Edge e : adj(v)) {
if (e.other(v) > v) {
edges.add(e);
} else if (e.other(v) == v) {
if (selfLoops % 2 == 0) {
edges.add(e);

selfLoops++;
i
}

return edges;




Edge-Weighted Graph API

(# EdgeWeightedGraph.java

¥

public String toString() {
StringBuilder s = new StringBuilder ()
s.append(V + " " + E + "\n");
for (int v = 0; v < V; v++) {
s.append(v + ": ");
for (Edge e : adjlvl]) {
s.append(e + " ");

3
s.append("\n");

return s.toString().strip();

}

public static void main(Stringl[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
StdOut.println(G);

¥

class Edge implements Comparable<Edge> {
private int v;
private int w;
private double weight;

public Edge(int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

¥

public int either () {
return v;




Edge-Weighted Graph API

(# EdgeWeightedGraph.java

i3
public int other (int v) {
if (v == this.v) {
return w;
} else if (v == w) {
return this.v;
} else {

throw new IllegalArgumentException("Illegal endpoint);
¥
¥

public double weight () {
return weight;

public String toString() {
return String.format("%d-%d %.5f", v, w, weight);
b3

public int compareTo(Edge other) {
return Double.compare(this.weight, other.weight);

public static void main(String[] args) {
Edge e = new Edge(12, 34, 5.67);
StdOut.println(e);
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Minimum Spanning Tree API

Kruskal (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() all of the MST edges
double weight() weight of MST

public class Kruskal {
public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph (in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
¥
StdOut.println(mst.weight ());




Minimum Spanning Tree API

Kruskal (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() all of the MST edges
double weight() weight of MST

public class Kruskal {
public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph (in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
¥
StdOut.println(mst.weight ());

}
}
>_ ~/workspace/dsa/programs

va dsa.Kruskal ../data/tinyEWG.txt
0.16
0.19
0.26
0.17
0
0
0

a

$
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5-7 .28
4-5 .35
6-2 .40
1.8
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A cut of a graph is a partition of its vertices
into two nonempty disjoint sets

crossing edges separating
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are drawn in red

minimum-weight crossing edge
must be in the MST
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Greedy Algorithm

A cut of a graph is a partition of its vertices crossing edges separating

. ] ray from white vertices
into two nonempty disjoint sets B yare drawn in red

A crossing edge of a cut is an edge that con-
nects a vertex in one set with a vertex in the
other

Cut property: given any cut, a crossing edge

.. . . minimum-weight crossing edge
of minimum weight is in the MST must be in the MST
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Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black
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Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black

The greedy algorithm computes the MST
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Greedy Algorithm
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Greedy MST algorithm
® Start with all edges colored gray

v

® Find cut with no black edges and color its
minimum-weight edge black

N

in MST

o

® Repeat until V — 1 edges are colored black
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The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently
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The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently

Add edges to tree T in ascending order of weight unless
doing so would create a cycle
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Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently

Add edges to tree T in ascending order of weight unless
doing so would create a cycle

Kruskal's algorithm computes MST in time proportional
to E log E in the worst case
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Kruskal’s Algorithm

(& Kruskal.java

package dsa;

import stdlib.In;
import stdlib.StdOut;

public class Kruskal {

private LinkedQueue<Edge> mst = new LinkedQueue<Edge>();
private double weight;

public Kruskal(EdgeWeightedGraph G) {
MinPQ<Edge> pq = new MinPQ<Edge>();
for (Edge e : G.edges()) {
pq.insert(e);

WeightedQuickUnionUF uf = new WeightedQuickUnionUF(G.V());
while (!pq.isEmpty() && mst.size() < G.VO - 1) {
Edge e = pq.delMin();
int v = e.either();
int w = e.other(v);
if (luf.connected(v, w)) {
uf .union(v, w);
mst.enqueue (e);
weight += e.weight ();

¥

public Iterable<Edge> edges() {
return mst;

}

public double weight () {
return weight;

}




Kruskal’s Algorithm

(& Kruskal.java

public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);

¥
StdOut.printf ("%.5f\n", mst.weight ());
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Kruskal’s Algorithm
Trace
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