Minimum Spanning Trees

QOutline

1 What are Minimum Spanning Trees?

2 Edge-Weighted Graph API

3 Minimum Spanning Tree API

4 Greedy Algorithm

5 Kruskal's Algorithm

What are Minimum Spanning Trees?

What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

A minimum spanning tree (MST) of an edge-weighted undirected graph is a spanning tree whose weight (the sum of
the weights of its edges) is no larger than the weight of any other spanning tree

What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

A minimum spanning tree (MST) of an edge-weighted undirected graph is a spanning tree whose weight (the sum of
the weights of its edges) is no larger than the weight of any other spanning tree

An edge-weighted graph and its MST

>_ ~/workspace/dsa/programs

$ more ../data/tinyEWG.txt
8
6 MST edge
35 (black)
37 \
28
16
32
38
17
19
26
36
29
34 non-MST edge
40 (gray)
52
58
93

PO WON R R ORNOR OB D K

BOONNWNNNWRO NN O
©C00O00O00O0O0O0O0O0O0O0O0O0

What are Minimum Spanning Trees?

What are Minimum Spanning Trees?

If the graph is connected and the edge weights are unique, then MST exists and is unique

What are Minimum Spanning Trees?

If the graph is connected and the edge weights are unique, then MST exists and is unique

Goal: given a connected undirected graph G with arbitrary (but distinct) edge weights, find the MST of G

What are Minimum Spanning Trees?

If the graph is connected and the edge weights are unique, then MST exists and is unique
Goal: given a connected undirected graph G with arbitrary (but distinct) edge weights, find the MST of G

Typical MST applications

Application Vertex Edge
circuit component wire
airline airport flight route

power distribution power plant transmission lines

image analysis feature proximity relationship

Edge-Weighted Graph API

Edge-Weighted Graph API

EdgeleightedGraph

EdgeWeightedGraph (int V) create an empty graph with V vertices
EdgeleightedGraph (In in) create a graph from input stream

int VO number of vertices

int EQ number of edges

void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

Edge-Weighted Graph API

EdgeleightedGraph

EdgeleightedGraph (int V) create an empty graph with V vertices
EdgeleightedGraph (In in) create a graph from input stream

int VO number of vertices

int EQ number of edges

void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

Edge(int v, int w, double weight) Create a weighted edge v-w

double weight() edge weight
int either() either endpoint

int other(int v) the endpoint that's not v

Edge-Weighted Graph API

Edge-Weighted Graph API

(# EdgeWeightedGraph.java

package dsa;

import stdlib.In;
import stdlib.StdOut;

public class EdgeWeightedGraph {
private LinkedBag<Edge>[] adj;
private int V;
private int E;

public EdgeWeightedGraph(int V) {
adj = (LinkedBag<Edge>[]) new LinkedBag([V];
for (imt v = 0; v < V; v++) {
adj[v] = new LinkedBag<Edge>()

this.V = V;
this.E = 0;
}

public EdgeWeightedGraph(In in) {
this(in.readInt ());
int E = in.readInt();
for (int i = 0; i < E; i++) {
int v = in.readInt();
int w = in.readInt();
double weight = in.readDouble();
addEdge (new Edge(v, w, weight));

¥

public int VO {
return V;

¥

public int E() {

Edge-Weighted Graph API

(# EdgeWeightedGraph.java

return E;

i

public void addEdge (Edge e) {
int v = e.either();
int w = e.other(v);
adj[v].add(e);
adj[wl.add(e);
E++;

¥

public Iterable<Edge> adj(int v) {
return adjl[v];

}

public int degree(int v) {
return adjl[v].size();

¥

public Iterable<Edge> edges() {
LinkedBag<Edge> edges = new LinkedBag<Edge>();
for (int v = 0; v < V; v++) {
int selfLoops = 0;
for (Edge e : adj(v)) {
if (e.other(v) > v) {
edges.add(e);
} else if (e.other(v) == v) {
if (selfLoops % 2 == 0) {
edges.add(e);

selfLoops++;
i
}

return edges;

Edge-Weighted Graph API

(# EdgeWeightedGraph.java

¥

public String toString() {
StringBuilder s = new StringBuilder ()
s.append(V + " " + E + "\n");
for (int v = 0; v < V; v++) {
s.append(v + ": ");
for (Edge e : adjlvl]) {
s.append(e + " ");

3
s.append("\n");

return s.toString().strip();

}

public static void main(Stringl[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
StdOut.println(G);

¥

class Edge implements Comparable<Edge> {
private int v;
private int w;
private double weight;

public Edge(int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

¥

public int either () {
return v;

Edge-Weighted Graph API

(# EdgeWeightedGraph.java

i3
public int other (int v) {
if (v == this.v) {
return w;
} else if (v == w) {
return this.v;
} else {

throw new IllegalArgumentException("Illegal endpoint);
¥
¥

public double weight () {
return weight;

public String toString() {
return String.format("%d-%d %.5f", v, w, weight);
b3

public int compareTo(Edge other) {
return Double.compare(this.weight, other.weight);

public static void main(String[] args) {
Edge e = new Edge(12, 34, 5.67);
StdOut.println(e);

Minimum Spanning Tree API

Minimum Spanning Tree API

Kruskal (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() all of the MST edges
double weight() weight of MST

Minimum Spanning Tree API

Kruskal (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() all of the MST edges
double weight() weight of MST

public class Kruskal {
public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph (in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
¥
StdOut.println(mst.weight ());

Minimum Spanning Tree API

Kruskal (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() all of the MST edges
double weight() weight of MST

public class Kruskal {
public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph (in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
¥
StdOut.println(mst.weight ());

}
}
>_ ~/workspace/dsa/programs

va dsa.Kruskal ../data/tinyEWG.txt
0.16
0.19
0.26
0.17
0
0
0

a

$
0-7
1-7
0-2
2-3
5-7 .28
4-5 .35
6-2 .40
1.8

1

Greedy Algorithm

Greedy Algorithm

A cut of a graph is a partition of its vertices
into two nonempty disjoint sets

crossing edges separating
gray from white vertices
are drawn in red

minimum-weight crossing edge
must be in the MST

Greedy Algorithm

A cut of a graph is a partition of its vertices crossing edges separating

.] ray from white vertices
into two nonempty disjoint sets B yare drawn in red

A crossing edge of a cut is an edge that con-
nects a vertex in one set with a vertex in the
other

minimum-weight crossing edge
must be in the MST

Greedy Algorithm

A cut of a graph is a partition of its vertices crossing edges separating

.] ray from white vertices
into two nonempty disjoint sets B yare drawn in red

A crossing edge of a cut is an edge that con-
nects a vertex in one set with a vertex in the
other

Cut property: given any cut, a crossing edge

.. . . minimum-weight crossing edge
of minimum weight is in the MST must be in the MST

Greedy Algorithm

Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black

(o]
ol

o
% o

[}
e}
o

i

in MST

o

minimum
‘edge in cut

.

5585

Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black

The greedy algorithm computes the MST

(o]
ol

o
% o

[}
e}
o

i

in MST

o

minimum
‘edge in cut

.

5585

Greedy Algorithm

o
[0
o

o]
o]

[}
e}
o

Greedy MST algorithm
® Start with all edges colored gray

v

® Find cut with no black edges and color its
minimum-weight edge black

N

in MST

o

® Repeat until V — 1 edges are colored black

minimum
‘edge in cut

.

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently

5585

Greedy Algorithm

(o]

ol
o ©
% o

[}
o

Greedy MST algorithm
® Start with all edges colored gray

v

® Find cut with no black edges and color its
minimum-weight edge black

N

in MST

o

® Repeat until V — 1 edges are colored black

minimum
‘edge in cut

.

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently

Add edges to tree T in ascending order of weight unless
doing so would create a cycle

5585

Greedy Algorithm

Greedy MST algorithm
® Start with all edges colored gray

® Find cut with no black edges and color its
minimum-weight edge black

® Repeat until V — 1 edges are colored black

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts
and minimum-weight edges efficiently

Add edges to tree T in ascending order of weight unless
doing so would create a cycle

Kruskal's algorithm computes MST in time proportional
to E log E in the worst case

(o]

ol
o ©
% o

[}
o

v

in MST

/
N

5585

minimum
‘edge in cut

Kruskal’s Algorithm

Kruskal’s Algorithm

(& Kruskal.java

package dsa;

import stdlib.In;
import stdlib.StdOut;

public class Kruskal {

private LinkedQueue<Edge> mst = new LinkedQueue<Edge>();
private double weight;

public Kruskal(EdgeWeightedGraph G) {
MinPQ<Edge> pq = new MinPQ<Edge>();
for (Edge e : G.edges()) {
pq.insert(e);

WeightedQuickUnionUF uf = new WeightedQuickUnionUF(G.V());
while (!pq.isEmpty() && mst.size() < G.VO - 1) {
Edge e = pq.delMin();
int v = e.either();
int w = e.other(v);
if (luf.connected(v, w)) {
uf .union(v, w);
mst.enqueue (e);
weight += e.weight ();

¥

public Iterable<Edge> edges() {
return mst;

}

public double weight () {
return weight;

}

Kruskal’s Algorithm

(& Kruskal.java

public static void main(Stringl[] args) {
In in = new In(args([0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
Kruskal mst = new Kruskal(G);
for (Edge e : mst.edges()) {
StdOut.println(e);

¥
StdOut.printf ("%.5f\n", mst.weight ());

Kruskal’s Algorithm

Kruskal’s Algorithm
Trace

o o)
(6]
ol o]
9]
®
® o Q@ _ next MST edge is red
0]
© ®
o
graph edges
sorted
MSTedge by weight
(black) ¢
o] N ot
O] 2:3 0.17
17 0.19
& 02 0.26
57 0.2
©
®
45 0.3
62 0.40
©)
M obsolete
edge/
(gray)
© ®

gray vertices are a cut
defined by the vertices
connected to one of

the red edge’s vertices

©®

	Outline
	What are Minimum Spanning Trees?
	Edge-Weighted Graph API
	Minimum Spanning Tree API
	Greedy Algorithm
	Kruskal's Algorithm

