

Outline

1 What are Minimum Spanning Trees?

2 Edge-Weighted Graph API

3 Minimum Spanning Tree API

4 Greedy Algorithm

5 Kruskal's Algorithm

Vhat are Minimum Spanning Trees?	
A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices	

What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

A minimum spanning tree (MST) of an edge-weighted undirected graph is a spanning tree whose weight (the sum of the weights of its edges) is no larger than the weight of any other spanning tree

What are Minimum Spanning Trees?

A spanning tree of a graph is a connected subgraph with no cycles that includes all the vertices

A minimum spanning tree (MST) of an edge-weighted undirected graph is a spanning tree whose weight (the sum of the weights of its edges) is no larger than the weight of any other spanning tree

An edge-weighted graph and its MST

>_ ~/workspace/dsa/programs
<pre>\$ more/data/tinyEWG.txt</pre>
8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

What are Minimum Spanning Trees?	
If the graph is connected and the edge weights are unique, then MST exists and is unique	

What are Minimum Spanning Trees?		
If the graph is connected and the edge weights are unique, then MST exists and is unique		
Goal: given a connected undirected graph G with arbitrary (but distinct) edge weights, find the MST of G		

What are Minimum Spanning Trees?

If the graph is connected and the edge weights are unique, then MST exists and is unique

Goal: given a connected undirected graph G with arbitrary (but distinct) edge weights, find the MST of G

Typical MST applications

Application	Vertex	Edge
circuit	component	wire
airline	airport	flight route
power distribution	power plant	transmission lines
image analysis	feature	proximity relationship

I EdgeWeightedGraph	
EdgeWeightedGraph(int V)	create an empty graph with V vertices
EdgeWeightedGraph(In in)	create a graph from input stream
int V()	number of vertices
int E()	number of edges
void addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge> adj(int v)</edge>	edges incident to v
Iterable <edge> edges()</edge>	all edges in this graph

■ EdgeWeightedGraph	
EdgeWeightedGraph(int V)	create an empty graph with V vertices
EdgeWeightedGraph(In in)	create a graph from input stream
int V()	number of vertices
int E()	number of edges
void addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge> adj(int v)</edge>	edges incident to v
Iterable <edge> edges()</edge>	all edges in this graph

II Edge	
Edge(int v, int w, double weight)	create a weighted edge <i>v-w</i>
double weight()	edge weight
int either()	either endpoint
int other(int v)	the endpoint that's not v


```
☑ EdgeWeightedGraph.java
package dsa:
import stdlib.In;
import stdlib.StdOut:
public class EdgeWeightedGraph {
    private LinkedBag < Edge > [] adj;
    private int V:
    private int E:
    public EdgeWeightedGraph(int V) {
        adj = (LinkedBag < Edge > []) new LinkedBag [V];
        for (int v = 0: v < V: v++) {
             adj[v] = new LinkedBag < Edge > ();
        this.V = V;
        this.E = 0:
    public EdgeWeightedGraph(In in) {
        this(in.readInt()):
        int E = in.readInt();
        for (int i = 0; i < E; i++) {
             int v = in.readInt():
             int w = in.readInt():
             double weight = in.readDouble():
             addEdge(new Edge(v, w, weight));
    public int V() {
        return V:
    public int E() {
```

```
☑ EdgeWeightedGraph.java

        return E:
    public void addEdge(Edge e) {
        int v = e.either();
        int w = e.other(v):
        adi[v].add(e);
        adj[w].add(e);
        E++:
    public Iterable < Edge > adj(int v) {
        return adj[v];
    public int degree(int v) {
        return adj[v].size();
    public Iterable < Edge > edges() {
        LinkedBag < Edge > edges = new LinkedBag < Edge > ();
        for (int v = 0: v < V: v++) {
            int selfLoops = 0;
            for (Edge e : adi(v)) {
                 if (e.other(v) > v) {
                     edges.add(e):
                 } else if (e.other(v) == v) {
                     if (selfLoops % 2 == 0) {
                         edges.add(e):
                     selfLoops++;
        return edges:
```

```
☑ EdgeWeightedGraph.java

    public String toString() {
        StringBuilder s = new StringBuilder():
        s.append(V + " " + E + "\n");
        for (int v = 0: v < V: v++) {
            s.append(v + ": ");
            for (Edge e : adi[v]) {
                s.append(e + " "):
            s.append("\n"):
        return s.toString().strip();
    public static void main(String[] args) {
        In in = new In(args[0]):
        EdgeWeightedGraph G = new EdgeWeightedGraph(in):
        StdOut.println(G):
class Edge implements Comparable < Edge > {
    private int v:
    private int w:
    private double weight:
    public Edge(int v. int w. double weight) {
        this.v = v:
        this.w = w:
        this.weight = weight;
    public int either() {
        return v:
```

```
☑ EdgeWeightedGraph.java

    public int other(int v) {
        if (v == this.v) {
            return w;
        } else if (v == w) {
            return this.v;
        } else {
            throw new IllegalArgumentException("Illegal endpoint");
    public double weight() {
        return weight;
    public String toString() {
        return String.format("%d-%d %.5f", v, w, weight);
    public int compareTo(Edge other) {
        return Double.compare(this.weight, other.weight):
    public static void main(String[] args) {
        Edge e = new Edge(12, 34, 5.67);
        StdOut.println(e);
```


Minimum Spanning Tree API

≣ Kruskal	
Kruskal(EdgeWeightedGraph G)	constructor
Iterable <edge> edges()</edge>	all of the MST edges
double weight()	weight of MST

Minimum Spanning Tree API

```
public class Kruskal {
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeightedGraph G = new EdgeWeightedGraph(in);
        Kruskal mst = new Kruskal(G);
        for (Edge e : mst.edges()) {
            StdOut.println(e);
        }
        StdOut.println(mst.weight());
    }
}
```

Minimum Spanning Tree API

```
public class Kruskal {
    public static void main(String[] args) {
        In in = new In(args[0]);
        EdgeWeighteddraph G = new EdgeWeightedGraph(in);
        Kruskal mat = new Kruskal[G);
        for (Edge e : mst.edges()) {
            StdOut.println(e);
        }
        StdOut.println(mst.weight());
    }
}
```

```
>_ "/workspace/dsa/programs

$ java dsa.Kruskal ../data/tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```


A cut of a graph is a partition of its vertices into two nonempty disjoint sets

A cut of a graph is a partition of its vertices into two nonempty disjoint sets

A crossing edge of a cut is an edge that connects a vertex in one set with a vertex in the other

A cut of a graph is a partition of its vertices into two nonempty disjoint sets

A crossing edge of a cut is an edge that connects a vertex in one set with a vertex in the other

Cut property: given any cut, a crossing edge of minimum weight is in the MST

Greedy MST algorithm

- Start with all edges colored gray
- Find cut with no black edges and color its minimum-weight edge black
- ullet Repeat until V-1 edges are colored black

Greedy MST algorithm

- Start with all edges colored gray
- Find cut with no black edges and color its minimum-weight edge black
- ullet Repeat until V-1 edges are colored black

The greedy algorithm computes the MST

Greedy MST algorithm

- Start with all edges colored gray
- Find cut with no black edges and color its minimum-weight edge black
- ullet Repeat until V-1 edges are colored black

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts and minimum-weight edges efficiently

Greedy MST algorithm

- Start with all edges colored gray
- Find cut with no black edges and color its minimum-weight edge black
- ullet Repeat until V-1 edges are colored black

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts and minimum-weight edges efficiently

Add edges to tree $\ensuremath{\mathcal{T}}$ in ascending order of weight unless doing so would create a cycle

Greedy MST algorithm

- Start with all edges colored gray
- Find cut with no black edges and color its minimum-weight edge black
- ullet Repeat until V-1 edges are colored black

The greedy algorithm computes the MST

Kruskal's algorithm that we consider next chooses cuts and minimum-weight edges efficiently

Add edges to tree $\ensuremath{\mathcal{T}}$ in ascending order of weight unless doing so would create a cycle

Kruskal's algorithm computes MST in time proportional to $E\log E$ in the worst case

Kruskal's Algorithm

```
☑ Kruskal.java
package dsa:
import stdlib.In;
import stdlib.StdOut:
public class Kruskal {
    private LinkedQueue < Edge > mst = new LinkedQueue < Edge > ();
    private double weight:
    public Kruskal(EdgeWeightedGraph G) {
        MinPQ < Edge > pg = new MinPQ < Edge > ():
        for (Edge e : G.edges()) {
             pg.insert(e):
        WeightedQuickUnionUF uf = new WeightedQuickUnionUF(G.V()):
        while (!pq.isEmpty() && mst.size() < G.V() - 1) {
             Edge e = pg.delMin():
             int v = e.either():
             int w = e.other(v):
             if (!uf.connected(v, w)) {
                 uf.union(v, w);
                 mst.enqueue(e);
                 weight += e.weight():
    public Iterable < Edge > edges() {
        return mst:
    public double weight() {
        return weight:
```

Kruskal's Algorithm

```
public static void main(String[] args) {
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    Kruskal mst = new Kruskal(G);
    for (Edge e : mst.edges()) {
        StdOut.println(e);
    }
    StdOut.printf("%.5f\n", mst.weight());
}
```


Kruskal's Algorithm

Trace

