
Assignment 1 (Simple Programs)

Goal: Implement simple programs with and without control flow (ie, branch and loop) statements.

Problem 1. (Greet Three) Write a program called GreetThree.java that receives name1 (String), name2 (String), and
name3 (String) as command-line inputs, and writes the string “Hi name3, name2, and name1.” as standard output.

× ~/workspace/simple programs

1 $ javac -d out src/GreetThree.java

2 $ java GreetThree Alice Bob Carol

3 Hi Carol , Bob , and Alice.

4 $ java GreetThree Dan Eve Fred

5 Hi Fred , Eve , and Dan.

6 $ _

Problem 2. (Three Sort) Write a program called ThreeSort.java that receives x (int), y (int), and z (int) as command-
line inputs, and writes them as standard output in ascending order, separated by a space. Your solution must only use
Math.min(), Math.max(), and basic arithmetic operations to figure out the ordering.

× ~/workspace/simple programs

1 $ javac -d out src/ThreeSort.java

2 $ java ThreeSort 1 3 2

3 1 2 3

4 $ java ThreeSort 3 2 1

5 1 2 3

6 $ _

Problem 3. (Great Circle Distance) Write a program called GreatCircle.java that receives x1 (double), y1 (double), x2

(double), and y2 (double) as command-line inputs, representing the latitude and longitude in degrees of two points on Earth,
and writes as standard output the great-circle distance d (in km) between them, computed as

d = 6359.83 arccos(sin(x1) sin(x2) + cos(x1) cos(x2) cos(y1 − y2)).

× ~/workspace/simple programs

1 $ javac -d out src/GreatCircle.java

2 $ java GreatCircle 48.87 -2.33 37.8 -122.4

3 8701.387455462233

4 $ java GreatCircle 46.36 -71.06 39.90 116.41

5 10376.503884802196

6 $ _

Problem 4. (Uniform Random Numbers) Write a program called Stats.java that receives a (int) and b (int) as command-
line inputs, generates three random doubles (x1, x2, and x3), each from the interval [a, b), computes their mean µ = (x1 +
x2 + x3)/3, variance var = ((x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2)/3, and standard deviation σ =

√
var, and writes those values

as standard output, separated by a space.

× ~/workspace/simple programs

1 $ javac -d out src/Stats.java

2 $ java Stats 0 1

3 0.13146913917517933 0.011467803615287939 0.1070878313128431

4 $ java Stats 50 100

1/5



Assignment 1 (Simple Programs)

5 55.36812680970314 7.156153169158455 2.675098721385522

6 $ _

Problem 5. (Triangle Inequality) Write a program called Triangle.java that receives x (int), y (int), and z (int) as
command-line inputs, and writes true as standard output if each one of them is less than or equal to the sum of the other
two, and false otherwise.

× ~/workspace/simple programs

1 $ javac -d out src/Triangle.java

2 $ java Triangle 3 3 3

3 true

4 $ java Triangle 2 4 7

5 false

6 $ _

Problem 6. (Quadratic Equation) Write a program called Quadratic.java (a variant of the one we dicussed in class) that
receives a (double), b (double), and c (double) as command-line inputs, and writes as standard output the roots of the
quadratic equation ax2 + bx+ c = 0. Your program should report the message “Value of a must not be 0” if a = 0, and the
message “Value of discriminant must not be negative” if b2 − 4ac < 0.

× ~/workspace/simple programs

1 $ javac -d out src/Quadratic.java

2 $ java Quadratic 0 1 -3

3 Value of a must not be 0

4 $ java Quadratic 1 1 1

5 Value of discriminant must not be negative

6 $ java Quadratic 1 -5 6

7 3.0 2.0

8 $ _

Problem 7. (Six-sided Die) Write a program called Die.java that simulates the roll of a six-sided die, and writes as standard
output the pattern on the top face.

× ~/workspace/simple programs

1 $ javac -d out src/Die.java

2 $ java Die

3 * *

4 *

5 * *

6 $ java Die

7 *

8
9 *

10 $ _

Problem 8. (Playing Card) Write a program called Card.java that simulates the selection of a random card from a standard
deck of 52 playing cards, and writes it as standard output.

2/5



Assignment 1 (Simple Programs)

× ~/workspace/simple programs

1 $ javac -d out src/Card.java

2 $ java Card

3 3 of Clubs

4 $ java Card

5 Ace of Spades

6 $ _

Problem 9. (Greatest Common Divisor) Write a program called GCD.java that receives p (int) and q (int) as command-line
inputs, and writes as standard output the greatest common divisor (GCD) of p and q.

× ~/workspace/simple programs

1 $ javac -d out src/GCD.java

2 $ java GCD 408 1440

3 24

4 $ java GCD 21 22

5 1

6 $ _

Problem 10. (Factorial Function) Write a program called Factorial.java that receives n (int) as command-line input,
and writes as standard output the value of n!, which is defined as n! = 1× 2× . . . (n− 1)× n. Note that 0! = 1.

× ~/workspace/simple programs

1 $ javac -d out src/Factorial.java

2 $ java Factorial 0

3 1

4 $ java Factorial 5

5 120

6 $ _

Problem 11. (Fibonacci Function) Write a program called Fibonacci.java that receives n (int) as command-line input,
and writes as standard output the nth number from the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, . . . ).

× ~/workspace/simple programs

1 $ javac -d out src/Fibonacci.java

2 $ java Fibonacci 10

3 55

4 $ java Fibonacci 15

5 610

6 $ _

Problem 12. (Primality Test) Write a program called PrimalityTest.java that receives n (int) as command-line input,
and writes as standard output if n is a prime number or not.

× ~/workspace/simple programs

1 $ javac -d out src/PrimalityTest.java

2 $ java PrimalityTest 31

3 true

3/5



Assignment 1 (Simple Programs)

4 $ java PrimalityTest 42

5 false

6 $ _

Problem 13. (Counting Primes) Write a program called PrimeCounter.java that receives n (int) as command-line input,
and writes as standard output the number of primes less than or equal to n.

× ~/workspace/simple programs

1 $ javac -d out src/PrimeCounter.java

2 $ java PrimeCounter 10

3 4

4 $ java PrimeCounter 100

5 25

6 $ java PrimeCounter 1000

7 168

8 $ _

Problem 14. (Perfect Numbers) A perfect number is a positive integer whose proper divisors add up to the number. For
example, 6 is a perfect number since its proper divisors 1, 2, and 3 add up to 6. Write a program called PerfectNumbers.java

that receives n (int) as command-line input, and writes as standard output the perfect numbers that are less than or equal
to n.

× ~/workspace/simple programs

1 $ javac -d out src/PerfectNumbers.java

2 $ java PerfectNumbers 10

3 6

4 $ java PerfectNumbers 1000

5 6

6 28

7 496

8 $ _

Problem 15. (Ramanujan Numbers) Srinivasa Ramanujan was an Indian mathematician who became famous for his intuition
for numbers. When the English mathematician G. H. Hardy came to visit him one day, Hardy remarked that the number of his
taxi was 1729, a rather dull number. Ramanujan replied, “No, Hardy! It is a very interesting number. It is the smallest number
expressible as the sum of two cubes in two different ways.” Verify this claim by writing a program RamanujanNumbers.java

that receives n (int) as command-line input, and writes as standard output all integers less than or equal to n that can be
expressed as the sum of two cubes in two different ways. In other words, find distinct positive integers a, b, c, and d such
that a3 + b3 = c3 + d3 ≤ n.

× ~/workspace/simple programs

1 $ javac -d out src/RamanujanNumbers.java

2 $ java RamanujanNumbers 10000

3 1729 = 1^3 + 12^3 = 9^3 + 10^3

4 4104 = 2^3 + 16^3 = 9^3 + 15^3

5 $ java RamanujanNumbers 40000

6 1729 = 1^3 + 12^3 = 9^3 + 10^3

7 4104 = 2^3 + 16^3 = 9^3 + 15^3

8 13832 = 2^3 + 24^3 = 18^3 + 20^3

9 39312 = 2^3 + 34^3 = 15^3 + 33^3

4/5



Assignment 1 (Simple Programs)

10 32832 = 4^3 + 32^3 = 18^3 + 30^3

11 20683 = 10^3 + 27^3 = 19^3 + 24^3

12 $ _

Files to Submit:

1. GreetThree.java

2. ThreeSort.java

3. GreatCircle.java

4. Stats.java

5. Triangle.java

6. Quadratic.java

7. Die.java

8. Card.java

9. GCD.java

10. Factorial.java

11. Fibonacci.java

12. PrimalityTest.java

13. PrimeCounter.java

14. PerfectNumbers.java

15. RamanujanNumbers.java

16. notes.txt

Before you submit your files, make sure:

- You do not use concepts from sections beyond Control Flow.

- Your code is clean, well-organized, uses meaningful variable names, includes useful comments, and is efficient.

- You edit the sections (#1mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
In section #1, for each problem, state its goal in your own words and describe your approach to solve the problem
along with any issues you encountered and if/how you managed to solve those issues.

5/5


