
Data Structures and Algorithms in Java
Searching: Symbol Tables



Outline

1 What is a Symbol Table?

2 API



What is a Symbol Table?

A symbol table is a data structure for key-value pairs that supports two operations: insert (put) a new pair into the
table and search (get) the value associated with a given key

Applications

Application Purpose Key Value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

web search find relevant web pages keyword list of page names

compiler find type and value variable name type and value



What is a Symbol Table?

A symbol table is a data structure for key-value pairs that supports two operations: insert (put) a new pair into the
table and search (get) the value associated with a given key

Applications

Application Purpose Key Value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

web search find relevant web pages keyword list of page names

compiler find type and value variable name type and value



What is a Symbol Table?

A symbol table is a data structure for key-value pairs that supports two operations: insert (put) a new pair into the
table and search (get) the value associated with a given key

Applications

Application Purpose Key Value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

web search find relevant web pages keyword list of page names

compiler find type and value variable name type and value



What is a Symbol Table?

Conventions:

- No duplicate keys are allowed; when a client puts a key-value pair into a table already containing that key (and an
associated value), the new value replaces the old one

- Keys/values must not be null

- Deleting a key involves removing the key (and the associated value) from the table immediately



What is a Symbol Table?

Conventions:

- No duplicate keys are allowed; when a client puts a key-value pair into a table already containing that key (and an
associated value), the new value replaces the old one

- Keys/values must not be null

- Deleting a key involves removing the key (and the associated value) from the table immediately



What is a Symbol Table?

Conventions:

- No duplicate keys are allowed; when a client puts a key-value pair into a table already containing that key (and an
associated value), the new value replaces the old one

- Keys/values must not be null

- Deleting a key involves removing the key (and the associated value) from the table immediately



What is a Symbol Table?

Conventions:

- No duplicate keys are allowed; when a client puts a key-value pair into a table already containing that key (and an
associated value), the new value replaces the old one

- Keys/values must not be null

- Deleting a key involves removing the key (and the associated value) from the table immediately



What is a Symbol Table?

Conventions:

- No duplicate keys are allowed; when a client puts a key-value pair into a table already containing that key (and an
associated value), the new value replaces the old one

- Keys/values must not be null

- Deleting a key involves removing the key (and the associated value) from the table immediately



API

² BasicST<Key, Value>

boolean isEmpty() returns true if this symbol table is empty, and false otherwise

int size() returns the number of key-value pairs in this symbol table

void put(Key key, Value value) inserts the key and value pair into this symbol table

Value get(Key key) returns the value associated with key in this symbol table, or null

boolean contains(Key key) returns true if this symbol table contains key, and false otherwise

void delete(Key key) deletes key and the associated value from this symbol table

Iterable<Key> keys() returns all the keys in this symbol table



API

² BasicST<Key, Value>

boolean isEmpty() returns true if this symbol table is empty, and false otherwise

int size() returns the number of key-value pairs in this symbol table

void put(Key key, Value value) inserts the key and value pair into this symbol table

Value get(Key key) returns the value associated with key in this symbol table, or null

boolean contains(Key key) returns true if this symbol table contains key, and false otherwise

void delete(Key key) deletes key and the associated value from this symbol table

Iterable<Key> keys() returns all the keys in this symbol table



API

² OrderedST<Key extends Comparable<Key>, Value>

boolean isEmpty() returns true if this symbol table is empty, and false otherwise

int size() returns the number of key-value pairs in this symbol table

void put(Key key, Value value) inserts the key and value pair into this symbol table

Value get(Key key) returns the value associated with key in this symbol table, or null

boolean contains(Key key) returns true if this symbol table contains key, and false otherwise

void delete(Key key) deletes key and the associated value from this symbol table

Iterable<Key> keys() returns all the keys in this symbol table in sorted order

Key min() returns the smallest key in this symbol table

Key max() returns the largest key in this symbol table

void deleteMin() deletes the smallest key and the associated value from this symbol table

void deleteMax() deletes the largest key and the associated value from this symbol table

Key floor(Key key) returns the largest key in this symbol table that is smaller than or equal to key

Key ceiling(Key key) returns the smallest key in this symbol table that is greater than or equal to key

int rank(Key key) returns the number of keys in this symbol table that are strictly smaller than key

Key select(int k) returns the key in this symbol table with the rank k

int size(Key lo, Key hi) returns the number of keys in this symbol table that are in the interval [lo, hi]

Iterable<Key> keys(Key lo, Key hi) returns the keys in this symbol table that are in the interval [lo, hi] in sorted order



API

² OrderedST<Key extends Comparable<Key>, Value>

boolean isEmpty() returns true if this symbol table is empty, and false otherwise

int size() returns the number of key-value pairs in this symbol table

void put(Key key, Value value) inserts the key and value pair into this symbol table

Value get(Key key) returns the value associated with key in this symbol table, or null

boolean contains(Key key) returns true if this symbol table contains key, and false otherwise

void delete(Key key) deletes key and the associated value from this symbol table

Iterable<Key> keys() returns all the keys in this symbol table in sorted order

Key min() returns the smallest key in this symbol table

Key max() returns the largest key in this symbol table

void deleteMin() deletes the smallest key and the associated value from this symbol table

void deleteMax() deletes the largest key and the associated value from this symbol table

Key floor(Key key) returns the largest key in this symbol table that is smaller than or equal to key

Key ceiling(Key key) returns the smallest key in this symbol table that is greater than or equal to key

int rank(Key key) returns the number of keys in this symbol table that are strictly smaller than key

Key select(int k) returns the key in this symbol table with the rank k

int size(Key lo, Key hi) returns the number of keys in this symbol table that are in the interval [lo, hi]

Iterable<Key> keys(Key lo, Key hi) returns the keys in this symbol table that are in the interval [lo, hi] in sorted order



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

Program: FrequencyCounter.java

- Command-line input: minLen (int)

- Standard input: sequence of words

- Standard output: for the words that are at least as long as minLen, the total word count, the number of distinct
words, and the most frequent word

& ~/workspace/dsa/programs

$ java FrequencyCounter 8 < ../ data/tale.txt

Word count: 14346

Distinct word count: 5126

Most frequent word: business (122 repetitions)

$



API

/ FrequencyCounter.java

import dsa.SeparateChainingHashST;

import stdlib.StdIn;

import stdlib.StdOut;

public class FrequencyCounter {

public static void main(String [] args) {

SeparateChainingHashST <String , Integer > st = new SeparateChainingHashST <>();

int minLen = Integer.parseInt(args [0]);

int distinct = 0, words = 0;

while (!StdIn.isEmpty ()) {

String key = StdIn.readString ();

if (key.length () < minLen) {

continue;

}

words ++;

if (st.contains(key)) {

st.put(key , st.get(key) + 1);

} else {

st.put(key , 1);

distinct ++;

}

}

int maxFreq = 0;

String maxFreqWord = "";

for (String word : st.keys ()) {

if (st.get(word) > maxFreq) {

maxFreq = st.get(word);

maxFreqWord = word;

}

}

StdOut.println("Word count: " + words);

StdOut.println("Distinct word count: " + distinct );

StdOut.printf("Most frequent word: %s (%d repetitions )\n", maxFreqWord , maxFreq );

}

}



API

/ FrequencyCounter.java

import dsa.SeparateChainingHashST;

import stdlib.StdIn;

import stdlib.StdOut;

public class FrequencyCounter {

public static void main(String [] args) {

SeparateChainingHashST <String , Integer > st = new SeparateChainingHashST <>();

int minLen = Integer.parseInt(args [0]);

int distinct = 0, words = 0;

while (!StdIn.isEmpty ()) {

String key = StdIn.readString ();

if (key.length () < minLen) {

continue;

}

words ++;

if (st.contains(key)) {

st.put(key , st.get(key) + 1);

} else {

st.put(key , 1);

distinct ++;

}

}

int maxFreq = 0;

String maxFreqWord = "";

for (String word : st.keys ()) {

if (st.get(word) > maxFreq) {

maxFreq = st.get(word);

maxFreqWord = word;

}

}

StdOut.println("Word count: " + words);

StdOut.println("Distinct word count: " + distinct );

StdOut.printf("Most frequent word: %s (%d repetitions )\n", maxFreqWord , maxFreq );

}

}


	Outline
	What is a Symbol Table?
	API

