
Undirected Graphs



Outline

1 What are Graphs?

2 Undirected Graphs

3 Depth-First Search (DFS)

4 Breadth-First Search (BFS)

5 Symbol Graphs



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

A graph is a set of V vertices connected pairwise by E edges

0

1
2

3
4

5

6
7 8

9 10

11 12

7

8

12

11

109

2 0

5

3

4

1

6

We use the names 0 through V − 1 for the vertices in a V -vertex graph

We use the notation v -w to refer to an edge that connects vertices v and w

A self-loop is an edge that connects a vertex to itself

Parallel edges are edges that connect the same pair of vertices



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

The degree of a vertex is the number of vertices con-
nected to it

A path is a sequence of vertices connected by edges

A cycle is a path with at least one edge whose first and
last vertices are the same

The length of a path or a cycle is its number of edges

A graph is connected if there is a path from every vertex
to every other vertex in the graph

A graph that is not connected consists of a set of con-
nected components, which are maximal connected sub-
graphs

path of length 4

vertex
edge

vertex of
degree 3

connected
components



What are Graphs?

An acyclic graph is a graph with no cycles

A tree is an acyclic connected graph

A bipartite graph is a graph whose vertices can be divided
into two sets such that all edges connect a vertex in one
set with a vertex in the other set

a tree
17 edges

18 vertices

acyclic

connected

0

1
2

3
4

5

6 7 8

9 10

11 12

a bipartite graph



What are Graphs?

An acyclic graph is a graph with no cycles

A tree is an acyclic connected graph

A bipartite graph is a graph whose vertices can be divided
into two sets such that all edges connect a vertex in one
set with a vertex in the other set

a tree
17 edges

18 vertices

acyclic

connected

0

1
2

3
4

5

6 7 8

9 10

11 12

a bipartite graph



What are Graphs?

An acyclic graph is a graph with no cycles

A tree is an acyclic connected graph

A bipartite graph is a graph whose vertices can be divided
into two sets such that all edges connect a vertex in one
set with a vertex in the other set

a tree
17 edges

18 vertices

acyclic

connected

0

1
2

3
4

5

6 7 8

9 10

11 12

a bipartite graph



What are Graphs?

An acyclic graph is a graph with no cycles

A tree is an acyclic connected graph

A bipartite graph is a graph whose vertices can be divided
into two sets such that all edges connect a vertex in one
set with a vertex in the other set

a tree
17 edges

18 vertices

acyclic

connected

0

1
2

3
4

5

6 7 8

9 10

11 12

a bipartite graph



What are Graphs?

Graph applications

Graph Vertex Edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond



What are Graphs?

Graph applications

Graph Vertex Edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond



What are Graphs?

Example: Internet graph



What are Graphs?

Example: Internet graph



What are Graphs?

Example: facebook graph



What are Graphs?

Example: facebook graph



What are Graphs?

Example: c.elegans connectome graph



What are Graphs?

Example: c.elegans connectome graph



What are Graphs?

Example: coauthorship graph



What are Graphs?

Example: coauthorship graph



What are Graphs?

Some graph-processing problems

Problem Description

s-t path is there a path between s and t?

shortest s-t path what is the shortest path between s and t?



What are Graphs?

Some graph-processing problems

Problem Description

s-t path is there a path between s and t?

shortest s-t path what is the shortest path between s and t?



Undirected Graphs

² Graph

Graph(int V) create a V -vertex graph with no edges

Graph(In in) read a graph from input stream in

int V() number of vertices

int E() number of edges

void addEdge(int v, int w) add edge v -w to this graph

Iterable<Integer> adj(int v) vertices adjacent to v

int degree(int v) degree of v

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyG.txt

13 13

0 5 4 3 0 1 9 12 6 4 5 4 0 2

11 12 9 10 0 6 7 8 9 11 5 3

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

public static int degree(Graph G, int v) {

int degree = 0;

for (int w : G.adj(v)) {

degree ++;

}

return degree;

}



Undirected Graphs

² Graph

Graph(int V) create a V -vertex graph with no edges

Graph(In in) read a graph from input stream in

int V() number of vertices

int E() number of edges

void addEdge(int v, int w) add edge v -w to this graph

Iterable<Integer> adj(int v) vertices adjacent to v

int degree(int v) degree of v

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyG.txt

13 13

0 5 4 3 0 1 9 12 6 4 5 4 0 2

11 12 9 10 0 6 7 8 9 11 5 3

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

public static int degree(Graph G, int v) {

int degree = 0;

for (int w : G.adj(v)) {

degree ++;

}

return degree;

}



Undirected Graphs

² Graph

Graph(int V) create a V -vertex graph with no edges

Graph(In in) read a graph from input stream in

int V() number of vertices

int E() number of edges

void addEdge(int v, int w) add edge v -w to this graph

Iterable<Integer> adj(int v) vertices adjacent to v

int degree(int v) degree of v

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyG.txt

13 13

0 5 4 3 0 1 9 12 6 4 5 4 0 2

11 12 9 10 0 6 7 8 9 11 5 3

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

public static int degree(Graph G, int v) {

int degree = 0;

for (int w : G.adj(v)) {

degree ++;

}

return degree;

}



Undirected Graphs

² Graph

Graph(int V) create a V -vertex graph with no edges

Graph(In in) read a graph from input stream in

int V() number of vertices

int E() number of edges

void addEdge(int v, int w) add edge v -w to this graph

Iterable<Integer> adj(int v) vertices adjacent to v

int degree(int v) degree of v

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyG.txt

13 13

0 5 4 3 0 1 9 12 6 4 5 4 0 2

11 12 9 10 0 6 7 8 9 11 5 3

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

public static int degree(Graph G, int v) {

int degree = 0;

for (int w : G.adj(v)) {

degree ++;

}

return degree;

}



Undirected Graphs

Graph representations

• Edge list: maintain a list of the edges (linked list or array)

• Adjacency matrix: maintain a V -by-V matrix M, such that M[v ][w ] is 1 if there is an edge from v to w , and 0
otherwise

• Adjacency list: maintain a vertex-indexed array of lists

Performance characteristics

Representation Space Add edge Is v -w an edge? Enumerate adj(v)

edge list E 1 E E

adjacency matrix V 2 1 1 V

adjacency list E + V 1 degree(v) degree(v)



Undirected Graphs

Graph representations

• Edge list: maintain a list of the edges (linked list or array)

• Adjacency matrix: maintain a V -by-V matrix M, such that M[v ][w ] is 1 if there is an edge from v to w , and 0
otherwise

• Adjacency list: maintain a vertex-indexed array of lists

Performance characteristics

Representation Space Add edge Is v -w an edge? Enumerate adj(v)

edge list E 1 E E

adjacency matrix V 2 1 1 V

adjacency list E + V 1 degree(v) degree(v)



Undirected Graphs

Graph representations

• Edge list: maintain a list of the edges (linked list or array)

• Adjacency matrix: maintain a V -by-V matrix M, such that M[v ][w ] is 1 if there is an edge from v to w , and 0
otherwise

• Adjacency list: maintain a vertex-indexed array of lists

Performance characteristics

Representation Space Add edge Is v -w an edge? Enumerate adj(v)

edge list E 1 E E

adjacency matrix V 2 1 1 V

adjacency list E + V 1 degree(v) degree(v)



Undirected Graphs

L Graph.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class Graph {

private LinkedBag <Integer >[] adj;

private int V;

private int E;

public Graph(int V) {

adj = (LinkedBag <Integer >[]) new LinkedBag[V];

for (int v = 0; v < V; v++) {

adj[v] = new LinkedBag <Integer >();

}

this.V = V;

this.E = 0;

}

public Graph(In in) {

this(in.readInt ());

int E = in.readInt ();

for (int i = 0; i < E; i++) {

int v = in.readInt ();

int w = in.readInt ();

addEdge(v, w);

}

}

public int V() {

return V;

}

public int E() {

return E;



Undirected Graphs

L Graph.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class Graph {

private LinkedBag <Integer >[] adj;

private int V;

private int E;

public Graph(int V) {

adj = (LinkedBag <Integer >[]) new LinkedBag[V];

for (int v = 0; v < V; v++) {

adj[v] = new LinkedBag <Integer >();

}

this.V = V;

this.E = 0;

}

public Graph(In in) {

this(in.readInt ());

int E = in.readInt ();

for (int i = 0; i < E; i++) {

int v = in.readInt ();

int w = in.readInt ();

addEdge(v, w);

}

}

public int V() {

return V;

}

public int E() {

return E;



Undirected Graphs

L Graph.java

}

public void addEdge(int v, int w) {

adj[v].add(w);

adj[w].add(v);

E++;

}

public Iterable <Integer > adj(int v) {

return adj[v];

}

public int degree(int v) {

return adj[v].size ();

}

public String toString () {

StringBuilder sb = new StringBuilder ();

sb.append(V + " vertices , " + E + " edges\n");

for (int v = 0; v < V; v++) {

sb.append(v + ": ");

for (int w : adj[v]) {

sb.append(w + " ");

}

sb.append("\n");

}

return sb.toString (). strip ();

}

public static void main(String [] args) {

String filename = args [0];

In in = new In(filename );

Graph G = new Graph(in);

StdOut.println(G);

}



Undirected Graphs

L Graph.java

}



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Goal: systematically traverse a graph

Idea: mimic maze exploration

Typical applications

• Find all vertices connected to a given source vertex

• Find a path between two vertices

To visit a vertex v

• Mark vertex v as visited

• Recursively visit all unmarked vertices adjacent to v

Data structures

• Boolean array marked[] to mark visited vertices

• Integer array edgeTo[] to keep track of paths; edgeTo[w] = v

means that edge v -w taken to visit w for first time



Depth-First Search (DFS)

Design pattern for graph processing: decouple graph data type from graph processing

• Create a Graph object

• Pass the Graph object to a graph-processing routine

• Query the graph-processing routine for information

² Paths

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v , or null

Typical graph-processing code

DFSPaths paths = new DFSPaths(G, s);

for (int v = 0; v < G.V(); v++) {

if (paths.hasPathTo(v)) {

StdOut.println(v);

}

}



Depth-First Search (DFS)

Design pattern for graph processing: decouple graph data type from graph processing

• Create a Graph object

• Pass the Graph object to a graph-processing routine

• Query the graph-processing routine for information

² Paths

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v , or null

Typical graph-processing code

DFSPaths paths = new DFSPaths(G, s);

for (int v = 0; v < G.V(); v++) {

if (paths.hasPathTo(v)) {

StdOut.println(v);

}

}



Depth-First Search (DFS)

Design pattern for graph processing: decouple graph data type from graph processing

• Create a Graph object

• Pass the Graph object to a graph-processing routine

• Query the graph-processing routine for information

² Paths

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v , or null

Typical graph-processing code

DFSPaths paths = new DFSPaths(G, s);

for (int v = 0; v < G.V(); v++) {

if (paths.hasPathTo(v)) {

StdOut.println(v);

}

}



Depth-First Search (DFS)

L DFSPaths.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DFSPaths {

private int s;

private boolean [] marked;

private int[] edgeTo;

public DFSPaths(Graph G, int s) {

this.s = s;

marked = new boolean[G.V()];

edgeTo = new int[G.V()];

dfs(G, s);

}

public boolean hasPathTo(int v) {

return marked[v];

}

public Iterable <Integer > pathTo(int v) {

if (! hasPathTo(v)) {

return null;

}

LinkedStack <Integer > path = new LinkedStack <Integer >();

for (int x = v; x != s; x = edgeTo[x]) {

path.push(x);

}

path.push(s);

return path;

}

private void dfs(Graph G, int v) {

marked[v] = true;



Depth-First Search (DFS)

L DFSPaths.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DFSPaths {

private int s;

private boolean [] marked;

private int[] edgeTo;

public DFSPaths(Graph G, int s) {

this.s = s;

marked = new boolean[G.V()];

edgeTo = new int[G.V()];

dfs(G, s);

}

public boolean hasPathTo(int v) {

return marked[v];

}

public Iterable <Integer > pathTo(int v) {

if (! hasPathTo(v)) {

return null;

}

LinkedStack <Integer > path = new LinkedStack <Integer >();

for (int x = v; x != s; x = edgeTo[x]) {

path.push(x);

}

path.push(s);

return path;

}

private void dfs(Graph G, int v) {

marked[v] = true;



Depth-First Search (DFS)

L DFSPaths.java

for (int w : G.adj(v)) {

if (! marked[w]) {

edgeTo[w] = v;

dfs(G, w);

}

}

}

public static void main(String [] args) {

In in = new In(args [0]);

int s = Integer.parseInt(args [1]);

Graph G = new Graph(in);

DFSPaths dfs = new DFSPaths(G, s);

for (int v = 0; v < G.V(); v++) {

if (dfs.hasPathTo(v)) {

StdOut.printf("%d to %d: ", s, v);

for (int x : dfs.pathTo(v)) {

if (x == s) {

StdOut.print(x);

} else {

StdOut.print("-" + x);

}

}

StdOut.println ();

} else {

StdOut.printf("%d to %d: not connected\n", s, v);

}

}

}

}



Depth-First Search (DFS)
Trace

0 2

5 4

3

1

marked[] adj[]

0
1
2
3
4
5

0
1
2
3
4
5

dfs(0) T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(2)
check 0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(1)
check 0
check 2

1 done

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(3)
T

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T
T

T

dfs(5)
check 3
check 0

5 done

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T
T

T

dfs(4)
check 3
check 2

4 done

T
Tcheck 2

3 done
check 4

2 done
check 1
check 5

0 done



Depth-First Search (DFS)
Trace

0 2

5 4

3

1

marked[] adj[]

0
1
2
3
4
5

0
1
2
3
4
5

dfs(0) T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(2)
check 0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(1)
check 0
check 2

1 done

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T

dfs(3)
T

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T
T

T

dfs(5)
check 3
check 0

5 done

T

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

T
T

T

dfs(4)
check 3
check 2

4 done

T
Tcheck 2

3 done
check 4

2 done
check 1
check 5

0 done



Breadth-First Search (BFS)

Goal: given a graph and a source vertex s, support queries
of the form

• Is there a path from s to a given target vertex v?

• If so, find a shortest such path (one with minimal
number of edges)

Repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices adjacent to v and
mark them



Breadth-First Search (BFS)

Goal: given a graph and a source vertex s, support queries
of the form

• Is there a path from s to a given target vertex v?

• If so, find a shortest such path (one with minimal
number of edges)

Repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices adjacent to v and
mark them



Breadth-First Search (BFS)

Goal: given a graph and a source vertex s, support queries
of the form

• Is there a path from s to a given target vertex v?

• If so, find a shortest such path (one with minimal
number of edges)

Repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices adjacent to v and
mark them



Breadth-First Search (BFS)

L BreadthFirstPaths.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class BFSPaths {

private int s;

private boolean [] marked;

private int[] edgeTo;

private int[] distTo;

public BFSPaths(Graph G, int s) {

this.s = s;

marked = new boolean[G.V()];

distTo = new int[G.V()];

for (int v = 0; v < G.V(); v++) {

distTo[v] = Integer.MAX_VALUE;

}

edgeTo = new int[G.V()];

bfs(G, s);

}

public boolean hasPathTo(int v) {

return marked[v];

}

public Iterable <Integer > pathTo(int v) {

if (! hasPathTo(v)) {

return null;

}

LinkedStack <Integer > path = new LinkedStack <Integer >();

for (int x = v; x != s; x = edgeTo[x]) {

path.push(x);

}

path.push(s);



Breadth-First Search (BFS)

L BreadthFirstPaths.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class BFSPaths {

private int s;

private boolean [] marked;

private int[] edgeTo;

private int[] distTo;

public BFSPaths(Graph G, int s) {

this.s = s;

marked = new boolean[G.V()];

distTo = new int[G.V()];

for (int v = 0; v < G.V(); v++) {

distTo[v] = Integer.MAX_VALUE;

}

edgeTo = new int[G.V()];

bfs(G, s);

}

public boolean hasPathTo(int v) {

return marked[v];

}

public Iterable <Integer > pathTo(int v) {

if (! hasPathTo(v)) {

return null;

}

LinkedStack <Integer > path = new LinkedStack <Integer >();

for (int x = v; x != s; x = edgeTo[x]) {

path.push(x);

}

path.push(s);



Breadth-First Search (BFS)

L BreadthFirstPaths.java

return path;

}

public int distTo(int v) {

return distTo[v];

}

private void bfs(Graph G, int s) {

LinkedQueue <Integer > q = new LinkedQueue <Integer >();

marked[s] = true;

distTo[s] = 0;

q.enqueue(s);

while (!q.isEmpty ()) {

int v = q.dequeue ();

for (int w : G.adj(v)) {

if (! marked[w]) {

marked[w] = true;

edgeTo[w] = v;

distTo[w] = distTo[v] + 1;

q.enqueue(w);

}

}

}

}

public static void main(String [] args) {

In in = new In(args [0]);

int s = Integer.parseInt(args [1]);

Graph G = new Graph(in);

BFSPaths bfs = new BFSPaths(G, s);

for (int v = 0; v < G.V(); v++) {

if (bfs.hasPathTo(v)) {

StdOut.printf("%d to %d (%d): ", s, v, bfs.distTo(v));

for (int x : bfs.pathTo(v)) {

if (x == s) {



Breadth-First Search (BFS)

L BreadthFirstPaths.java

StdOut.print(x);

} else {

StdOut.print("-" + x);

}

}

StdOut.println ();

} else {

StdOut.printf("%d to %d (-): not connected\n", s, v);

}

}

}

}



Breadth-First Search (BFS)
Trace

0 2

5 4

3

1

marked[] adj[]

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

edgeTo[]

0
1
2
3
4
5

q

0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

2
1
5 T

T

T

0
0

0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

1
5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

T
T

T

0
0

0

4

T
T

2
2



Breadth-First Search (BFS)
Trace

0 2

5 4

3

1

marked[] adj[]

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

edgeTo[]

0
1
2
3
4
5

q

0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

2
1
5 T

T

T

0
0

0

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

1
5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

T
T

T

0
0

0

3
4

T
T

2
2

0 2

5 4

3

1

0
1
2
3
4
5

0
1
2
3
4
5

T 2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0

0
1
2
3
4
5

T
T

T

0
0

0

4

T
T

2
2



Symbol Graphs
Typical applications involve processing graphs defined in files or on web pages, using strings, not integer indices, to
define and refer to vertices

To accommodate such applications, we define an input format with these properties
• Vertex names are strings
• A specified delimiter separates vertex names (to allow for the possibility of spaces in names)
• Each line represents a set of edges, connecting the first vertex name on the line to each of the other vertices named

on the line
• The number of vertices V and the number of edges E are both implicitly defined

Example (routes.txt)

& ~/workspace/dsa/programs

JFK MCO

ORD DEN

ORD HOU

DFW PHX

JFK ATL

...

Example (movies.txt)

& ~/workspace/dsa/programs

’Breaker ’ Morant (1980)/ Brown , Bryan (I)/Henderson , Dick (II )/...

’burbs , The (1989)/ Jayne , Billy/Howard , Rance/Ducommun , Rick /...

’Crocodile ’ Dundee II (1988)/ Jbara , Gregory/Holt , Jim (I)/...

*batteries not included (1987)/ Aldredge , Tom/Boutsikaris , Dennis /...

... And Justice for All (1979)/ Williams , Jonathan (XI)/...

...



Symbol Graphs
Typical applications involve processing graphs defined in files or on web pages, using strings, not integer indices, to
define and refer to vertices

To accommodate such applications, we define an input format with these properties
• Vertex names are strings
• A specified delimiter separates vertex names (to allow for the possibility of spaces in names)
• Each line represents a set of edges, connecting the first vertex name on the line to each of the other vertices named

on the line
• The number of vertices V and the number of edges E are both implicitly defined

Example (routes.txt)

& ~/workspace/dsa/programs

JFK MCO

ORD DEN

ORD HOU

DFW PHX

JFK ATL

...

Example (movies.txt)

& ~/workspace/dsa/programs

’Breaker ’ Morant (1980)/ Brown , Bryan (I)/Henderson , Dick (II )/...

’burbs , The (1989)/ Jayne , Billy/Howard , Rance/Ducommun , Rick /...

’Crocodile ’ Dundee II (1988)/ Jbara , Gregory/Holt , Jim (I)/...

*batteries not included (1987)/ Aldredge , Tom/Boutsikaris , Dennis /...

... And Justice for All (1979)/ Williams , Jonathan (XI)/...

...



Symbol Graphs
Typical applications involve processing graphs defined in files or on web pages, using strings, not integer indices, to
define and refer to vertices

To accommodate such applications, we define an input format with these properties
• Vertex names are strings
• A specified delimiter separates vertex names (to allow for the possibility of spaces in names)
• Each line represents a set of edges, connecting the first vertex name on the line to each of the other vertices named

on the line
• The number of vertices V and the number of edges E are both implicitly defined

Example (routes.txt)

& ~/workspace/dsa/programs

JFK MCO

ORD DEN

ORD HOU

DFW PHX

JFK ATL

...

Example (movies.txt)

& ~/workspace/dsa/programs

’Breaker ’ Morant (1980)/ Brown , Bryan (I)/Henderson , Dick (II )/...

’burbs , The (1989)/ Jayne , Billy/Howard , Rance/Ducommun , Rick /...

’Crocodile ’ Dundee II (1988)/ Jbara , Gregory/Holt , Jim (I)/...

*batteries not included (1987)/ Aldredge , Tom/Boutsikaris , Dennis /...

... And Justice for All (1979)/ Williams , Jonathan (XI)/...

...



Symbol Graphs
Typical applications involve processing graphs defined in files or on web pages, using strings, not integer indices, to
define and refer to vertices

To accommodate such applications, we define an input format with these properties
• Vertex names are strings
• A specified delimiter separates vertex names (to allow for the possibility of spaces in names)
• Each line represents a set of edges, connecting the first vertex name on the line to each of the other vertices named

on the line
• The number of vertices V and the number of edges E are both implicitly defined

Example (routes.txt)

& ~/workspace/dsa/programs

JFK MCO

ORD DEN

ORD HOU

DFW PHX

JFK ATL

...

Example (movies.txt)

& ~/workspace/dsa/programs

’Breaker ’ Morant (1980)/ Brown , Bryan (I)/Henderson , Dick (II )/...

’burbs , The (1989)/ Jayne , Billy/Howard , Rance/Ducommun , Rick /...

’Crocodile ’ Dundee II (1988)/ Jbara , Gregory/Holt , Jim (I)/...

*batteries not included (1987)/ Aldredge , Tom/Boutsikaris , Dennis /...

... And Justice for All (1979)/ Williams , Jonathan (XI)/...

...



Symbol Graphs
Typical applications involve processing graphs defined in files or on web pages, using strings, not integer indices, to
define and refer to vertices

To accommodate such applications, we define an input format with these properties
• Vertex names are strings
• A specified delimiter separates vertex names (to allow for the possibility of spaces in names)
• Each line represents a set of edges, connecting the first vertex name on the line to each of the other vertices named

on the line
• The number of vertices V and the number of edges E are both implicitly defined

Example (routes.txt)

& ~/workspace/dsa/programs

JFK MCO

ORD DEN

ORD HOU

DFW PHX

JFK ATL

...

Example (movies.txt)

& ~/workspace/dsa/programs

’Breaker ’ Morant (1980)/ Brown , Bryan (I)/Henderson , Dick (II )/...

’burbs , The (1989)/ Jayne , Billy/Howard , Rance/Ducommun , Rick /...

’Crocodile ’ Dundee II (1988)/ Jbara , Gregory/Holt , Jim (I)/...

*batteries not included (1987)/ Aldredge , Tom/Boutsikaris , Dennis /...

... And Justice for All (1979)/ Williams , Jonathan (XI)/...

...



Symbol Graphs

API for graphs with symbolic vertex names

² SymbolGraph

SymbolGraph(String filename, String delim) build graph specified in filename using delim to separate vertex names

boolean contains(String key) is key a vertex?

int indexOf(String key) index associated with key

String nameOf(int v) key associated with index v

Graph G() underlying graph as a Graph object



Symbol Graphs

API for graphs with symbolic vertex names

² SymbolGraph

SymbolGraph(String filename, String delim) build graph specified in filename using delim to separate vertex names

boolean contains(String key) is key a vertex?

int indexOf(String key) index associated with key

String nameOf(int v) key associated with index v

Graph G() underlying graph as a Graph object



Symbol Graphs

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/routes.txt " "

Done reading routes.txt

JFK

ORD

ATL

MCO

LAX

LAS

PHX

<ctrl -d>

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/movies.txt "/"

Done reading movies.txt

Tin Men (1987)

Hershey , Barbara

Geppi , Cindy

...

Blumenfeld , Alan

DeBoy , David

Bacon , Kevin

Woodsman , The (2004)

Wild Things (1998)

...

Apollo 13 (1995)

Animal House (1978)

<ctrl -d>



Symbol Graphs

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/routes.txt " "

Done reading routes.txt

JFK

ORD

ATL

MCO

LAX

LAS

PHX

<ctrl -d>

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/movies.txt "/"

Done reading movies.txt

Tin Men (1987)

Hershey , Barbara

Geppi , Cindy

...

Blumenfeld , Alan

DeBoy , David

Bacon , Kevin

Woodsman , The (2004)

Wild Things (1998)

...

Apollo 13 (1995)

Animal House (1978)

<ctrl -d>



Symbol Graphs

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/routes.txt " "

Done reading routes.txt

JFK

ORD

ATL

MCO

LAX

LAS

PHX

<ctrl -d>

& ~/workspace/dsa/programs

$ java dsa.SymbolGraph ../ data/movies.txt "/"

Done reading movies.txt

Tin Men (1987)

Hershey , Barbara

Geppi , Cindy

...

Blumenfeld , Alan

DeBoy , David

Bacon , Kevin

Woodsman , The (2004)

Wild Things (1998)

...

Apollo 13 (1995)

Animal House (1978)

<ctrl -d>



Symbol Graphs

L SymbolGraph.java

package dsa;

import stdlib.In;

import stdlib.StdIn;

import stdlib.StdOut;

public class SymbolGraph {

private SeparateChainingHashST <String , Integer > st;

private String [] keys;

private Graph G;

public SymbolGraph(In in, String delim) {

st = new SeparateChainingHashST <>();

String [] lines = in.readAllLines ();

for (String line : lines) {

String [] a = line.split(delim);

for (int i = 0; i < a.length; i++) {

if (!st.contains(a[i])) {

st.put(a[i], st.size ());

}

}

}

keys = new String[st.size ()];

for (String name : st.keys ()) {

keys[st.get(name)] = name;

}

G = new Graph(st.size ());

for (String line : lines) {

String [] a = line.split(delim);

int v = st.get(a[0]);

for (int i = 1; i < a.length; i++) {

int w = st.get(a[i]);

G.addEdge(v, w);

}

}



Symbol Graphs

L SymbolGraph.java

package dsa;

import stdlib.In;

import stdlib.StdIn;

import stdlib.StdOut;

public class SymbolGraph {

private SeparateChainingHashST <String , Integer > st;

private String [] keys;

private Graph G;

public SymbolGraph(In in, String delim) {

st = new SeparateChainingHashST <>();

String [] lines = in.readAllLines ();

for (String line : lines) {

String [] a = line.split(delim);

for (int i = 0; i < a.length; i++) {

if (!st.contains(a[i])) {

st.put(a[i], st.size ());

}

}

}

keys = new String[st.size ()];

for (String name : st.keys ()) {

keys[st.get(name)] = name;

}

G = new Graph(st.size ());

for (String line : lines) {

String [] a = line.split(delim);

int v = st.get(a[0]);

for (int i = 1; i < a.length; i++) {

int w = st.get(a[i]);

G.addEdge(v, w);

}

}



Symbol Graphs

L SymbolGraph.java

}

public boolean contains(String s) {

return st.contains(s);

}

public int indexOf(String s) {

return st.get(s);

}

public String nameOf(int v) {

return keys[v];

}

public Graph graph() {

return G;

}

public static void main(String [] args) {

In in = new In(args [0]);

String delim = args [1];

SymbolGraph sg = new SymbolGraph(in , delim);

Graph graph = sg.graph ();

while (!StdIn.isEmpty ()) {

String source = StdIn.readLine ();

if (sg.contains(source )) {

int s = sg.indexOf(source );

for (int v : graph.adj(s)) {

StdOut.println(" " + sg.nameOf(v));

}

} else {

StdOut.println(source + " not in database");

}

}

}



Symbol Graphs

L SymbolGraph.java

}



Symbol Graphs

L DegreesOfSeparation.java

import dsa.BFSPaths;

import dsa.Graph;

import dsa.SymbolGraph;

import stdlib.In;

import stdlib.StdIn;

import stdlib.StdOut;

public class DegreesOfSeparation {

public static void main(String [] args) {

String filename = args [0];

String delim = args [1];

String source = args [2];

In in = new In(filename );

SymbolGraph sg = new SymbolGraph(in , delim);

Graph G = sg.graph ();

if (!sg.contains(source )) {

StdOut.println(source + " not in database");

return;

}

int s = sg.indexOf(source );

BFSPaths bfs = new BFSPaths(G, s);

while (!StdIn.isEmpty ()) {

String sink = StdIn.readLine ();

if (sg.contains(sink)) {

int t = sg.indexOf(sink);

if (bfs.hasPathTo(t)) {

for (int v : bfs.pathTo(t)) {

StdOut.println(" " + sg.nameOf(v));

}

} else {

StdOut.println(source + " and " + sink + " are not connected");

}

} else {

StdOut.println(sink + " not in database");

}



Symbol Graphs

L DegreesOfSeparation.java

import dsa.BFSPaths;

import dsa.Graph;

import dsa.SymbolGraph;

import stdlib.In;

import stdlib.StdIn;

import stdlib.StdOut;

public class DegreesOfSeparation {

public static void main(String [] args) {

String filename = args [0];

String delim = args [1];

String source = args [2];

In in = new In(filename );

SymbolGraph sg = new SymbolGraph(in , delim);

Graph G = sg.graph ();

if (!sg.contains(source )) {

StdOut.println(source + " not in database");

return;

}

int s = sg.indexOf(source );

BFSPaths bfs = new BFSPaths(G, s);

while (!StdIn.isEmpty ()) {

String sink = StdIn.readLine ();

if (sg.contains(sink)) {

int t = sg.indexOf(sink);

if (bfs.hasPathTo(t)) {

for (int v : bfs.pathTo(t)) {

StdOut.println(" " + sg.nameOf(v));

}

} else {

StdOut.println(source + " and " + sink + " are not connected");

}

} else {

StdOut.println(sink + " not in database");

}



Symbol Graphs

L DegreesOfSeparation.java

}

}

}



Symbol Graphs

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/routes.txt " " JFK

Done reading routes.txt

LAS

JFK

ORD

PHX

LAS

DFW

JFK

ORD

DFW

<ctrl -d>

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/movies.txt "/" "Bacon , Kevin"

Done reading movies.txt

Kidman , Nicole

Bacon , Kevin

Woodsman , The (2004)

Grier , David Alan

Bewitched (2005)

Kidman , Nicole

Grant , Cary

Bacon , Kevin

Planes , Trains & Automobiles (1987)

Martin , Steve (I)

Dead Men Don ’t Wear Plaid (1982)

Grant , Cary

<ctrl -d>



Symbol Graphs

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/routes.txt " " JFK

Done reading routes.txt

LAS

JFK

ORD

PHX

LAS

DFW

JFK

ORD

DFW

<ctrl -d>

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/movies.txt "/" "Bacon , Kevin"

Done reading movies.txt

Kidman , Nicole

Bacon , Kevin

Woodsman , The (2004)

Grier , David Alan

Bewitched (2005)

Kidman , Nicole

Grant , Cary

Bacon , Kevin

Planes , Trains & Automobiles (1987)

Martin , Steve (I)

Dead Men Don ’t Wear Plaid (1982)

Grant , Cary

<ctrl -d>



Symbol Graphs

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/routes.txt " " JFK

Done reading routes.txt

LAS

JFK

ORD

PHX

LAS

DFW

JFK

ORD

DFW

<ctrl -d>

& ~/workspace/dsa/programs

$ java DegreesOfSeparation ../ data/movies.txt "/" "Bacon , Kevin"

Done reading movies.txt

Kidman , Nicole

Bacon , Kevin

Woodsman , The (2004)

Grier , David Alan

Bewitched (2005)

Kidman , Nicole

Grant , Cary

Bacon , Kevin

Planes , Trains & Automobiles (1987)

Martin , Steve (I)

Dead Men Don ’t Wear Plaid (1982)

Grant , Cary

<ctrl -d>


	Outline
	What are Graphs?
	Undirected Graphs
	Depth-First Search (DFS)
	Breadth-First Search (BFS)
	Symbol Graphs

