

Exercise 1. Consider a language over the alphabet $\{a, b\}$ that consists of strings with zero or more *as* or *bs*.

- a. Provide a regular expression for the language.
- b. Use Thompson's algorithm to derive an equivalent non-deterministic finite state automaton (NFA).
- c. Use powerset construction algorithm to derive an equivalent deterministic finite state automaton (DFA).
- d. Use partition refinement algorithm to derive an equivalent minimal DFA.

Exercise 2. Consider a language over the alphabet $\{a, b\}$ that consists of strings ending with an *ab*.

- a. Provide a regular expression for the language.
- b. Use Thompson's algorithm to derive an equivalent non-deterministic finite state automaton (NFA).
- c. Use powerset construction algorithm to derive an equivalent deterministic finite state automaton (DFA).
- d. Use partition refinement algorithm to derive an equivalent minimal DFA.

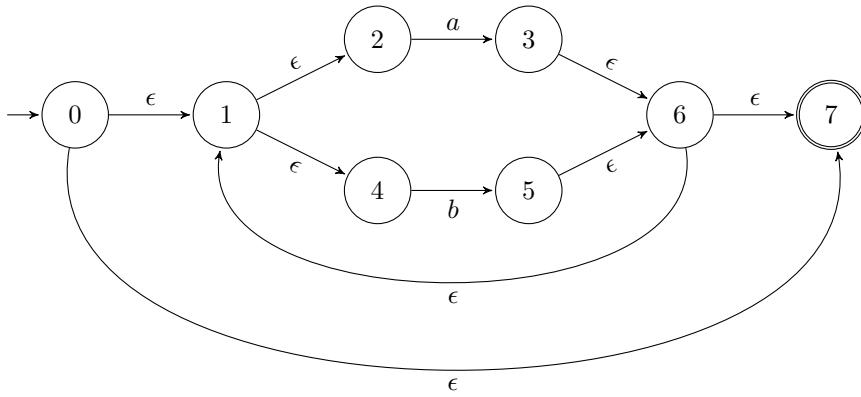
Exercise 3. Consider a language over the alphabet $\{a, b\}$ that consists of strings starting with an *a* and ending with a *b*.

- a. Provide a regular expression for the language.
- b. Use Thompson's algorithm to derive an equivalent non-deterministic finite state automaton (NFA).
- c. Use powerset construction algorithm to derive an equivalent deterministic finite state automaton (DFA).
- d. Use partition refinement algorithm to derive an equivalent minimal DFA.

SOLUTIONS

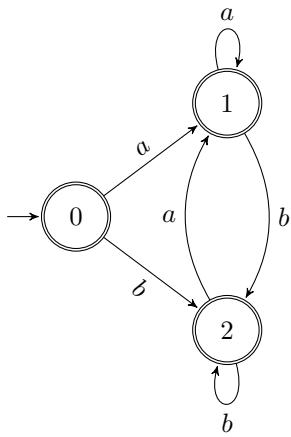
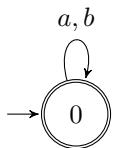
Solution 1.a. $(a|b)^*$

b.



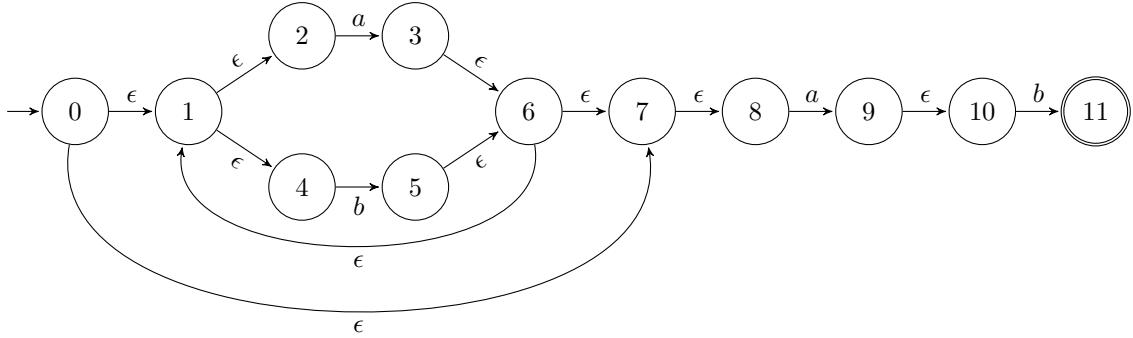
c.

r	a	$m(r, a)$
ϵ -closure(0) = {0, 1, 2, 4, 7} = 0 (final)	a	ϵ -closure(3) = {1, 2, 3, 4, 6, 7} = 1 (final)
0	b	ϵ -closure(5) = {1, 2, 5, 4, 6, 7} = 2 (final)
1	a	ϵ -closure(3) = 1
1	b	ϵ -closure(5) = 2
2	a	ϵ -closure(3) = 1
2	b	ϵ -closure(5) = 2

d. The initial (and final) partition is $\mathcal{P} = \{\{0, 1, 2\}\}$. Labeling the subset $\{0, 1, 2\}$ as 0, we have the following minimal DFA:

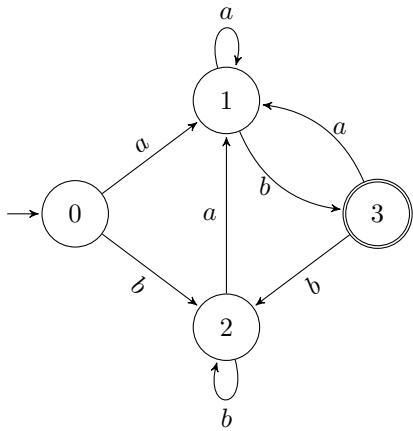
Solution 2.a. $(a|b)*ab$

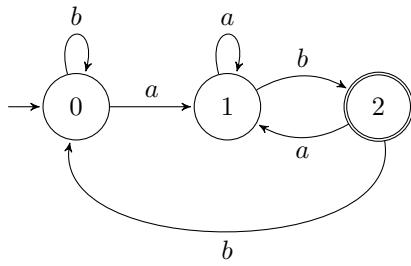
b.



c.

r	a	$m(r, a)$
$\epsilon\text{-closure}(0) = \{0, 1, 2, 4, 7, 8\} = 0$	a	$\epsilon\text{-closure}(3) \cup \epsilon\text{-closure}(9) = \{1, 2, 3, 4, 6, 7, 8, 9, 10\} = 1$
0	b	$\epsilon\text{-closure}(5) = \{1, 2, 4, 5, 6, 7, 8\} = 2$
1	a	$\epsilon\text{-closure}(3) \cup \epsilon\text{-closure}(9) = 1$
1	b	$\epsilon\text{-closure}(5) \cup \epsilon\text{-closure}(11) = \{1, 2, 4, 5, 6, 7, 8, 11\} = 3$ (final)
2	a	$\epsilon\text{-closure}(3) \cup \epsilon\text{-closure}(9) = 1$
2	b	$\epsilon\text{-closure}(5) = 2$
3	a	$\epsilon\text{-closure}(3) \cup \epsilon\text{-closure}(9) = 1$
3	b	$\epsilon\text{-closure}(5) = 2$

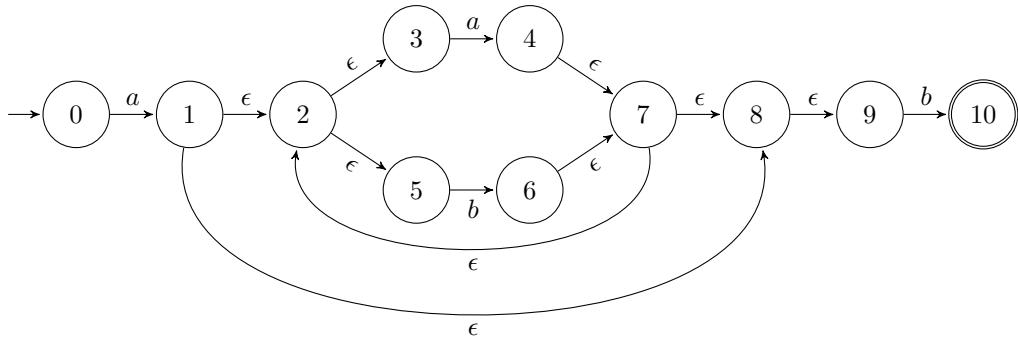
d. The initial partition is $\mathcal{P} = \{\{0, 1, 2\}, \{3\}\}$. The subset $\{0, 1, 2\}$ splits on b into subsets $\{0, 2\}$ and $\{1\}$. The final partition is $\mathcal{P} = \{\{0, 2\}, \{1\}, \{3\}\}$. Labeling the subsets $\{0, 1, 2\}$ as 0, 1, and 2, we have the following minimal DFA:



Solution 3.

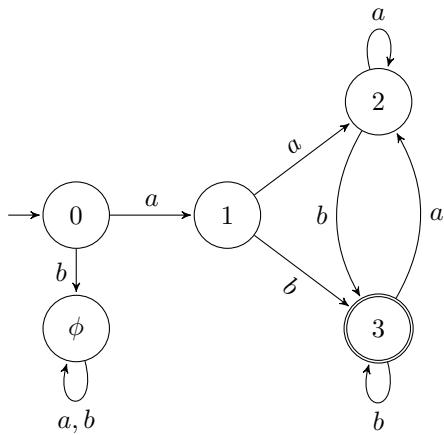
a. $a(a|b)^*b$

b.



c.

r	a	$m(r, a)$
ϵ -closure(0) = {0} = 0	a	ϵ -closure(1) = {1, 2, 3, 5, 8, 9} = 1
0	b	ϕ (dead state)
1	a	ϵ -closure(4) = {2, 3, 4, 5, 7, 8, 9} = 2
1	b	ϵ -closure(6) \cup ϵ -closure(10) = {2, 3, 5, 6, 7, 8, 9, 10} = 3 (final)
2	a	ϵ -closure(4) = 2
2	b	ϵ -closure(6) \cup ϵ -closure(10) = 3
3	a	ϵ -closure(4) = 2
3	b	ϵ -closure(6) \cup ϵ -closure(10) = 3
ϕ	a	ϕ
ϕ	b	ϕ



- d. The initial partition is $\mathcal{P} = \{\{0, 1, 2, \phi\}, \{3\}\}$. The subset $\{0, 1, 2, \phi\}$ splits on b into subsets $\{0, \phi\}$ and $\{1, 2\}$. The subset $\{0, \phi\}$ further splits on a into subsets $\{0\}$ and ϕ . The final partition is $\mathcal{P} = \{\{0\}, \{1, 2\}, \{3\}, \phi\}$. Labeling the subsets 0, 1, 2, and ϕ , we have the following minimal DFA:

