
Compilation

Outline

1 Compilers

2 Why Study Compilers?

3 Phases of Compilation

4 The j-- Compiler

5 Adding New Constructs to j--

Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program

(low-level)

Examples of source language: C, Java

Examples of target language: MIPS instructions, JVM instructions (aka bytecode)

Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program

(low-level)

Examples of source language: C, Java

Examples of target language: MIPS instructions, JVM instructions (aka bytecode)

Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program

(low-level)

Examples of source language: C, Java

Examples of target language: MIPS instructions, JVM instructions (aka bytecode)

Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program

(low-level)

Examples of source language: C, Java

Examples of target language: MIPS instructions, JVM instructions (aka bytecode)

Compilers

A programming language specification consists of:

• Syntax of tokens

• Syntax of constructs such as classes, methods, statements, and expressions

• Semantics (ie, meaning) of the constructs

Compilers

A programming language specification consists of:

• Syntax of tokens

• Syntax of constructs such as classes, methods, statements, and expressions

• Semantics (ie, meaning) of the constructs

Compilers

A programming language specification consists of:

• Syntax of tokens

• Syntax of constructs such as classes, methods, statements, and expressions

• Semantics (ie, meaning) of the constructs

Compilers

A programming language specification consists of:

• Syntax of tokens

• Syntax of constructs such as classes, methods, statements, and expressions

• Semantics (ie, meaning) of the constructs

Compilers

A programming language specification consists of:

• Syntax of tokens

• Syntax of constructs such as classes, methods, statements, and expressions

• Semantics (ie, meaning) of the constructs

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

A machine’s instruction set along with its behavior is referred to as its architecture

Examples of machine architectures:

• Intel i386: a complex instruction set computer (CISC)

• MIPS: a reduced instruction set computer (RISC)

• Java Virtual Machine (JVM): a virtual machine

Compilers

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples of interpreters: Bash, Python

Compilers

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples of interpreters: Bash, Python

Compilers

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples of interpreters: Bash, Python

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of all those things you have learned about earlier

You learn a lot about the source language (in our case, Java)

You learn a lot about the target machine (in our case, JVM and MIPS)

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun

Phases of Compilation

A compiler can be broken into a front end and a back end

source
language
program

front end IR† back end

target
language
program

† Intermediate Representation

Phases of Compilation

A compiler can be broken into a front end and a back end

source
language
program

front end IR† back end

target
language
program

† Intermediate Representation

Phases of Compilation

The front end can be decomposed into a sequence of analysis phases

source
language
program

scanner tokens parser AST† semantics IR

† Abstract Syntax Tree

Phases of Compilation

The front end can be decomposed into a sequence of analysis phases

source
language
program

scanner tokens parser AST† semantics IR

† Abstract Syntax Tree

Phases of Compilation

The back end can be decomposed into a sequence of synthesis phases

IR codegen
target

language
instructions

peephole

better
target

language
instructions

object
target

language
program

Phases of Compilation

The back end can be decomposed into a sequence of synthesis phases

IR codegen
target

language
instructions

peephole

better
target

language
instructions

object
target

language
program

Phases of Compilation

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program

Phases of Compilation

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program

Phases of Compilation

Separating the front end from the back end enables code re-use

Java
program

C
program

Java
front end

C
front end

Intel
back end

SPARC
back end

Intel Core Duo
program

SPARC
program

IR

Phases of Compilation

Separating the front end from the back end enables code re-use

Java
program

C
program

Java
front end

C
front end

Intel
back end

SPARC
back end

Intel Core Duo
program

SPARC
program

IR

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

j-- is a compiler for a subset of Java, also called j--, with support for classes, methods, fields, statements, and expressions

Compiling a j-- program $j/j--/tests/jvm/HelloWorld.java for the JVM

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Running the JVM program HelloWorld.class

& ~/workspace/j--

$ java HelloWorld

Compiling a j-- program $j/j--/tests/spim/HelloWorld.java for the MIPS machine

& ~/workspace/j--

$ /bin/bash ./bin/j-- -s naive tests/spim/HelloWorld.java

Running the MIPS program HelloWorld.s

& ~/workspace/j--

$ spim -f HelloWorld.s

The j-- Compiler

The j-- compiler is organized in an object-oriented fashion

j--
program

Main Parser Scanner

AST
JVM .class

file(s)

compilationUnit()

nextToken()

TokenInfo

object

preAnalyze()

analyze()
codegen()

The j-- Compiler

The j-- compiler is organized in an object-oriented fashion

j--
program

Main Parser Scanner

AST
JVM .class

file(s)

compilationUnit()

nextToken()

TokenInfo

object

preAnalyze()

analyze()
codegen()

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The scanner breaks down a j-- program into a sequence of tokens

For example, the following program

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

is broken down into import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

import, public, etc are reserved words with distinct names IMPORT and PUBLIC, etc

java, lang, etc are IDENTIFIER tokens with the images "java", "lang", etc

., ;, etc are separators with distinct names DOT, SEMI, etc

"Hello, World" is a STRING_LITERAL token with the image "Hello, World"

The j-- Compiler

The parser validates the syntax of a j-- program against the j-- grammar and represents the program as an AST

In the first instance, the parser is hand-crafted from the grammar, to parse programs using the recursive descent
algorithm

Grammar rules describing a compilation unit and a qualified identifier

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

The j-- Compiler

The parser validates the syntax of a j-- program against the j-- grammar and represents the program as an AST

In the first instance, the parser is hand-crafted from the grammar, to parse programs using the recursive descent
algorithm

Grammar rules describing a compilation unit and a qualified identifier

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

The j-- Compiler

The parser validates the syntax of a j-- program against the j-- grammar and represents the program as an AST

In the first instance, the parser is hand-crafted from the grammar, to parse programs using the recursive descent
algorithm

Grammar rules describing a compilation unit and a qualified identifier

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

The j-- Compiler

The parser validates the syntax of a j-- program against the j-- grammar and represents the program as an AST

In the first instance, the parser is hand-crafted from the grammar, to parse programs using the recursive descent
algorithm

Grammar rules describing a compilation unit and a qualified identifier

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

The j-- Compiler

L Parser.java

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

String fileName = scanner.fileName ();

TypeName packageName = null;

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations);

}

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "." + scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

The j-- Compiler

L Parser.java

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

String fileName = scanner.fileName ();

TypeName packageName = null;

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations);

}

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "." + scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

The j-- Compiler

{

"JCompilationUnit :5":

{

"source": "tests/jvm/HelloWorld.java",

"imports": ["java.lang.System"],

"JClassDeclaration :7":

{

"modifiers": ["public"],

"name": "HelloWorld",

"super": "java.lang.Object",

"JMethodDeclaration :9":

{

"name": "main",

"returnType": "void",

"modifiers": ["public", "static"],

"parameters": [["args", "String []"]],

"JBlock :9":

{

"JStatementExpression :10":

{

"JMessageExpression :10":

{

"ambiguousPart": "System.out", "name": "println",

"Argument":

{

"JLiteralString :10":

{

"type": "", "value": "Hello , World"

}

}

}

}

}

}

}

}

}

The j-- Compiler

{

"JCompilationUnit :5":

{

"source": "tests/jvm/HelloWorld.java",

"imports": ["java.lang.System"],

"JClassDeclaration :7":

{

"modifiers": ["public"],

"name": "HelloWorld",

"super": "java.lang.Object",

"JMethodDeclaration :9":

{

"name": "main",

"returnType": "void",

"modifiers": ["public", "static"],

"parameters": [["args", "String []"]],

"JBlock :9":

{

"JStatementExpression :10":

{

"JMessageExpression :10":

{

"ambiguousPart": "System.out", "name": "println",

"Argument":

{

"JLiteralString :10":

{

"type": "", "value": "Hello , World"

}

}

}

}

}

}

}

}

}

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j--, being statically typed, must determine the types of all names and expressions

Types in j-- are represented using:

• Type (wraps java.lang.Class)

• Method (wraps java.lang.reflect.Method)

• Constructor (wraps java.lang.reflect.Constructor)

• Field (wraps java.lang.reflect.Field)

• Member (wraps java.lang.reflect.Member)

In some places j-- uses TypeName and ArrayTypeName to denote a type by its name, before the type is known

An ambiguous expression such as x.y.z in x.y.z.w() is denoted as AmbiguousName by the parser and is reclassified during analysis

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

j-- maintains a singly-linked list of Context objects in which it declares names

Each object in the list represents some area of scope and contains a symbol table that maps names to definitions

A CompilationUnitContext object represents the scope comprising the program

A ClassContext object represents the scope of a class declaration

A LocalContext object represents the scope of a block

A MethodContext (subclass of LocalContext) object represents the scopes of methods/constructors

The j-- Compiler

The preAnalyze() method builds the part of the symbol table close to the top of the AST, declaring imported types, types
introduced by class declarations, and their members

The analyze() method builds the rest of the symbol table, decorating the AST with type information

The analyze() method also does type checking, accessibility checking, member finding, tree rewriting, and storage
allocation

Example (analysis of a while-statement)

L JWhileStatement.java

public JWhileStatement analyze(Context context) {

condition = condition.analyze(context);

condition.type (). mustMatchExpected(line(), Type.BOOLEAN);

body = (JStatement) body.analyze(context);

return this;

}

The j-- Compiler

The preAnalyze() method builds the part of the symbol table close to the top of the AST, declaring imported types, types
introduced by class declarations, and their members

The analyze() method builds the rest of the symbol table, decorating the AST with type information

The analyze() method also does type checking, accessibility checking, member finding, tree rewriting, and storage
allocation

Example (analysis of a while-statement)

L JWhileStatement.java

public JWhileStatement analyze(Context context) {

condition = condition.analyze(context);

condition.type (). mustMatchExpected(line(), Type.BOOLEAN);

body = (JStatement) body.analyze(context);

return this;

}

The j-- Compiler

The preAnalyze() method builds the part of the symbol table close to the top of the AST, declaring imported types, types
introduced by class declarations, and their members

The analyze() method builds the rest of the symbol table, decorating the AST with type information

The analyze() method also does type checking, accessibility checking, member finding, tree rewriting, and storage
allocation

Example (analysis of a while-statement)

L JWhileStatement.java

public JWhileStatement analyze(Context context) {

condition = condition.analyze(context);

condition.type (). mustMatchExpected(line(), Type.BOOLEAN);

body = (JStatement) body.analyze(context);

return this;

}

The j-- Compiler

The preAnalyze() method builds the part of the symbol table close to the top of the AST, declaring imported types, types
introduced by class declarations, and their members

The analyze() method builds the rest of the symbol table, decorating the AST with type information

The analyze() method also does type checking, accessibility checking, member finding, tree rewriting, and storage
allocation

Example (analysis of a while-statement)

L JWhileStatement.java

public JWhileStatement analyze(Context context) {

condition = condition.analyze(context);

condition.type (). mustMatchExpected(line(), Type.BOOLEAN);

body = (JStatement) body.analyze(context);

return this;

}

The j-- Compiler

The preAnalyze() method builds the part of the symbol table close to the top of the AST, declaring imported types, types
introduced by class declarations, and their members

The analyze() method builds the rest of the symbol table, decorating the AST with type information

The analyze() method also does type checking, accessibility checking, member finding, tree rewriting, and storage
allocation

Example (analysis of a while-statement)

L JWhileStatement.java

public JWhileStatement analyze(Context context) {

condition = condition.analyze(context);

condition.type (). mustMatchExpected(line(), Type.BOOLEAN);

body = (JStatement) body.analyze(context);

return this;

}

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

The JVM is a stack machine — all computations are carried out atop the run-time stack

Each time a method is called, the JVM:

• Allocates a stack frame — contiguous block of memory locations on top of the stack

• Assigns positions on the frame for formal parameters and substitutes actual arguments for the parameters

• Assigns positions on the frame for values of local variables and temporary results

The j-- Compiler

Stack frame for a static method call with m formal parameters and n local variables

.

.

.
computations

.

.

.

m + n − 1 local variable n

.

.

.

m + 1 local variable 2

m local variable 1

m − 1 formal parameter m

.

.

.

1 formal parameter 2

0 formal parameter 1

The j-- Compiler

Stack frame for a static method call with m formal parameters and n local variables

.

.

.
computations

.

.

.

m + n − 1 local variable n

.

.

.

m + 1 local variable 2

m local variable 1

m − 1 formal parameter m

.

.

.

1 formal parameter 2

0 formal parameter 1

The j-- Compiler

Stack frame for an instance method call with m formal parameters and n local variables

.

.

.
computations

.

.

.

m + n local variable n

.

.

.

m + 2 local variable 2

m + 1 local variable 1

m formal parameter m

.

.

.

2 formal parameter 2

1 formal parameter 1

0 this

The j-- Compiler

Stack frame for an instance method call with m formal parameters and n local variables

.

.

.
computations

.

.

.

m + n local variable n

.

.

.

m + 2 local variable 2

m + 1 local variable 1

m formal parameter m

.

.

.

2 formal parameter 2

1 formal parameter 1

0 this

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

2 z :

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

6

2 z :

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

7

6

2 z :

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

42

2 z :

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

2 z : 42

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

42

2 z : 42

1 y : 7

0 x : 6

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

poof!

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

A j-- method

public static int multiply(int x, int y) {

int z = x * y;

return z;

}

JVM code for the method

public static int multiply(int , int);

stack=2, locals=3, args_size =2

0: iload_0

1: iload_1

2: imul

3: istore_2

4: iload_2

5: ireturn

Stack frame for the call multiply(6, 7)

poof!

CLEmitter provides an abstraction for the JVM class file

The j-- Compiler

L GenFactorial.java

import java.util.ArrayList;

import jminusminus.CLEmitter;

import static jminusminus.CLConstants .*;

/**

* This class programatically generates the class file for the following Java application:

*

* <pre >

* public class Factorial {

* public static void main(String [] args) {

* int n = Integer.parseInt(args [0]);

* int result = factorial(n);

* System.out.println(n + "! = " + result);

* }

*

* private static int factorial(int n) {

* if (n <= 1) {

* return 1;

* }

* return n * factorial(n - 1);

* }

* }

* </pre >

*/

public class GenFactorial {

public static void main(String [] args) {

// Create a CLEmitter instance

CLEmitter e = new CLEmitter(true);

// Create an ArrayList instance to store modifiers

ArrayList <String > modifiers = new ArrayList <String >();

// public class Factorial {

The j-- Compiler

L GenFactorial.java

modifiers.add("public");

e.addClass(modifiers , "Factorial", "java/lang/Object", null , true);

// public static void main(String [] args) {

modifiers.clear ();

modifiers.add("public");

modifiers.add("static");

e.addMethod(modifiers , "main", "([Ljava/lang/String ;)V", null , true);

// int n = Integer.parseInt(args [0]);

e.addNoArgInstruction(ALOAD_0);

e.addNoArgInstruction(ICONST_0);

e.addNoArgInstruction(AALOAD);

e.addMemberAccessInstruction(INVOKESTATIC , "java/lang/Integer", "parseInt",

"(Ljava/lang/String ;)I");

e.addNoArgInstruction(ISTORE_1);

// int result = factorial(n);

e.addNoArgInstruction(ILOAD_1);

e.addMemberAccessInstruction(INVOKESTATIC , "Factorial", "factorial", "(I)I");

e.addNoArgInstruction(ISTORE_2);

// System.out.println(n + "! = " + result);

// Get System.out on stack

e.addMemberAccessInstruction(GETSTATIC , "java/lang/System", "out", "Ljava/io/PrintStream;");

// Create an intance (say sb) of StringBuffer on stack for string concatenations

// sb = new StringBuffer ();

e.addReferenceInstruction(NEW , "java/lang/StringBuffer");

e.addNoArgInstruction(DUP);

e.addMemberAccessInstruction(INVOKESPECIAL , "java/lang/StringBuffer", "<init >", "()V");

// sb.append(n);

e.addNoArgInstruction(ILOAD_1);

The j-- Compiler

L GenFactorial.java

e.addMemberAccessInstruction(INVOKEVIRTUAL , "java/lang/StringBuffer", "append",

"(I)Ljava/lang/StringBuffer;");

// sb.append ("!=");

e.addLDCInstruction("! = ");

e.addMemberAccessInstruction(INVOKEVIRTUAL , "java/lang/StringBuffer", "append",

"(Ljava/lang/String ;)Ljava/lang/StringBuffer;");

// sb.append(result);

e.addNoArgInstruction(ILOAD_2);

e.addMemberAccessInstruction(INVOKEVIRTUAL , "java/lang/StringBuffer", "append",

"(I)Ljava/lang/StringBuffer;");

// System.out.println(sb.toString ());

e.addMemberAccessInstruction(INVOKEVIRTUAL , "java/lang/StringBuffer",

"toString", "()Ljava/lang/String;");

e.addMemberAccessInstruction(INVOKEVIRTUAL , "java/io/PrintStream", "println",

"(Ljava/lang/String ;)V");

// return;

e.addNoArgInstruction(RETURN);

// private static int factorial(int n) {

modifiers.clear ();

modifiers.add("private");

modifiers.add("static");

e.addMethod(modifiers , "factorial", "(I)I", null , true);

// if (n > 1) branch to "Recurse"

e.addNoArgInstruction(ILOAD_0);

e.addNoArgInstruction(ICONST_1);

e.addBranchInstruction(IF_ICMPGT , "Recurse");

// Base case: return 1;

e.addNoArgInstruction(ICONST_1);

The j-- Compiler

L GenFactorial.java

e.addNoArgInstruction(IRETURN);

// Recursive case: return n * factorial(n - 1);

e.addLabel("Recurse");

e.addNoArgInstruction(ILOAD_0);

e.addNoArgInstruction(ILOAD_0);

e.addNoArgInstruction(ICONST_1);

e.addNoArgInstruction(ISUB);

e.addMemberAccessInstruction(INVOKESTATIC , "Factorial", "factorial", "(I)I");

e.addNoArgInstruction(IMUL);

e.addNoArgInstruction(IRETURN);

// Write Factorial.class to file system

e.write ();

}

}

The j-- Compiler

Compile GenFactorial.java

& ~/workspace/j--

$ /bin/bash ./bin/clemitter tests/clemitter/GenFactorial.java

Run Factorial.class

& ~/workspace/j--

$ java Factorial 5

5! = 120

The j-- Compiler

Compile GenFactorial.java

& ~/workspace/j--

$ /bin/bash ./bin/clemitter tests/clemitter/GenFactorial.java

Run Factorial.class

& ~/workspace/j--

$ java Factorial 5

5! = 120

The j-- Compiler

Compile GenFactorial.java

& ~/workspace/j--

$ /bin/bash ./bin/clemitter tests/clemitter/GenFactorial.java

Run Factorial.class

& ~/workspace/j--

$ java Factorial 5

5! = 120

The j-- Compiler

The codegen() method, starting at the root, recursively descends the AST, generating JVM bytecode

Example (code generation for a method declaration)

L JMethodDeclaration.java

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

The j-- Compiler

The codegen() method, starting at the root, recursively descends the AST, generating JVM bytecode

Example (code generation for a method declaration)

L JMethodDeclaration.java

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

The j-- Compiler

The codegen() method, starting at the root, recursively descends the AST, generating JVM bytecode

Example (code generation for a method declaration)

L JMethodDeclaration.java

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

The zip file j--.zip for the base j-- compiler may be unzipped into any directory (referred to as $j) of your choosing

The directory $j/j--/src/jminusminus contains:

• Main.java, the driver program

• A hand-crafted scanner (Scanner.java) and parser (Parser.java)

• J*.java files defining classes representing the AST nodes

• CL*.java files for creating JVM bytecode

• N*.java files for translating JVM bytecode into MIPS code

• j--.jj, the JavaCC specification file for generating a scanner and parser

• JavaCCMain.java, the driver program that uses the generated scanner and parser

• Other supporting Java files

The directory $j/j--/bin contains wrapper scripts

The directory $j/j--/tests contains test programs

The file $j/j--/build.xml is the Ant build configuration file

The j-- Compiler

Usage syntax for the j-- compiler ($j/j--/bin/j--)

& ~/workspace/j--

$ /bin/bash ./bin/j--

Usage: j-- <options > <source file >

Where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Physical registers (1 -18) available for allocation; default = 8

-d <dir > Specify where to place output files; default = .

For example, to just tokenize the j-- program $j/j--/tests/jvm/HelloWorld.java, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- -t tests/jvm/HelloWorld.java

And to compile the program for the JVM, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

The j-- Compiler

Usage syntax for the j-- compiler ($j/j--/bin/j--)

& ~/workspace/j--

$ /bin/bash ./bin/j--

Usage: j-- <options > <source file >

Where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Physical registers (1 -18) available for allocation; default = 8

-d <dir > Specify where to place output files; default = .

For example, to just tokenize the j-- program $j/j--/tests/jvm/HelloWorld.java, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- -t tests/jvm/HelloWorld.java

And to compile the program for the JVM, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

The j-- Compiler

Usage syntax for the j-- compiler ($j/j--/bin/j--)

& ~/workspace/j--

$ /bin/bash ./bin/j--

Usage: j-- <options > <source file >

Where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Physical registers (1 -18) available for allocation; default = 8

-d <dir > Specify where to place output files; default = .

For example, to just tokenize the j-- program $j/j--/tests/jvm/HelloWorld.java, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- -t tests/jvm/HelloWorld.java

And to compile the program for the JVM, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

The j-- Compiler

Usage syntax for the j-- compiler ($j/j--/bin/j--)

& ~/workspace/j--

$ /bin/bash ./bin/j--

Usage: j-- <options > <source file >

Where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Physical registers (1 -18) available for allocation; default = 8

-d <dir > Specify where to place output files; default = .

For example, to just tokenize the j-- program $j/j--/tests/jvm/HelloWorld.java, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- -t tests/jvm/HelloWorld.java

And to compile the program for the JVM, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/HelloWorld.java

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

j-- provides an elaborate framework for adding new Java constructs to the j-- language

For example, to add the division operator (/) to j--, we must:

• Modify the (lexical and syntactic) grammar and semantics files

• Modify the scanner

• Modify the parser

• Implement type checking (aka semantic analysis)

• Implement code generation

• Test the changes

Adding New Constructs to j--

L lexicalgrammar

DIV ::= "/"

L grammar

multiplicativeExpression ::= unaryExpression

{ (STAR | DIV) unaryExpression }

L semantics

JBinaryExpression:

- JDivideOp

- lhs and rhs must be integers.

Adding New Constructs to j--

L lexicalgrammar

DIV ::= "/"

L grammar

multiplicativeExpression ::= unaryExpression

{ (STAR | DIV) unaryExpression }

L semantics

JBinaryExpression:

- JDivideOp

- lhs and rhs must be integers.

Adding New Constructs to j--

L lexicalgrammar

DIV ::= "/"

L grammar

multiplicativeExpression ::= unaryExpression

{ (STAR | DIV) unaryExpression }

L semantics

JBinaryExpression:

- JDivideOp

- lhs and rhs must be integers.

Adding New Constructs to j--

L lexicalgrammar

DIV ::= "/"

L grammar

multiplicativeExpression ::= unaryExpression

{ (STAR | DIV) unaryExpression }

L semantics

JBinaryExpression:

- JDivideOp

- lhs and rhs must be integers.

Adding New Constructs to j--

L TokenInfo.java

enum TokenKind {

DIV ("/"),

}

L Scanner.java

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’.

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

} else {

return new TokenInfo(DIV , line);

}

}

Adding New Constructs to j--

L TokenInfo.java

enum TokenKind {

DIV ("/"),

}

L Scanner.java

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’.

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

} else {

return new TokenInfo(DIV , line);

}

}

Adding New Constructs to j--

L TokenInfo.java

enum TokenKind {

DIV ("/"),

}

L Scanner.java

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’.

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

} else {

return new TokenInfo(DIV , line);

}

}

Adding New Constructs to j--

L JBinaryExpression.java

class JDivideOp extends JBinaryExpression {

public JDivideOp(int line , JExpression lhs , JExpression rhs) {

super(line , "/", lhs , rhs);

}

public JExpression analyze (Context context) {

// TODO

return this;

}

public void codegen(CLEmitter output) {

// TODO

}

}

Adding New Constructs to j--

L JBinaryExpression.java

class JDivideOp extends JBinaryExpression {

public JDivideOp(int line , JExpression lhs , JExpression rhs) {

super(line , "/", lhs , rhs);

}

public JExpression analyze (Context context) {

// TODO

return this;

}

public void codegen(CLEmitter output) {

// TODO

}

}

Adding New Constructs to j--

L Parser.java

private JExpression multiplicativeExpression () {

int line = scanner.token (). line ();

boolean more = true;

JExpression lhs = unaryExpression ();

while (more) {

if (have(STAR)) {

lhs = new JMultiplyOp(line , lhs , unaryExpression ());

}

else if (have(DIV)) {

lhs = new JDivideOp(line , lhs , unaryExpression ());

}

else {

more = false;

}

}

return lhs;

}

Adding New Constructs to j--

L Parser.java

private JExpression multiplicativeExpression () {

int line = scanner.token (). line ();

boolean more = true;

JExpression lhs = unaryExpression ();

while (more) {

if (have(STAR)) {

lhs = new JMultiplyOp(line , lhs , unaryExpression ());

}

else if (have(DIV)) {

lhs = new JDivideOp(line , lhs , unaryExpression ());

}

else {

more = false;

}

}

return lhs;

}

Adding New Constructs to j--

L JBinaryExpression.java

class JDivideOp extends JBinaryExpression {

public JExpression analyze(Context context) {

lhs = (JExpression) lhs.analyze(context);

rhs = (JExpression) rhs.analyze(context);

lhs.type (). mustMatchExpected(line(), Type.INT);

rhs.type (). mustMatchExpected(line(), Type.INT);

type = Type.INT;

return this;

}

public void codegen(CLEmitter output) {

lhs.codegen(output);

rhs.codegen(output);

output.addNoArgInstruction(IDIV);

}

}

Adding New Constructs to j--

L JBinaryExpression.java

class JDivideOp extends JBinaryExpression {

public JExpression analyze(Context context) {

lhs = (JExpression) lhs.analyze(context);

rhs = (JExpression) rhs.analyze(context);

lhs.type (). mustMatchExpected(line(), Type.INT);

rhs.type (). mustMatchExpected(line(), Type.INT);

type = Type.INT;

return this;

}

public void codegen(CLEmitter output) {

lhs.codegen(output);

rhs.codegen(output);

output.addNoArgInstruction(IDIV);

}

}

Adding New Constructs to j--

L Division.java

import java.lang.Integer;

import java.lang.System;

public class Division {

public static void main(String [] args) {

int a = Integer.parseInt(args [0]);

int b = Integer.parseInt(args [1]);

System.out.println(a / b);

}

}

Adding New Constructs to j--

L Division.java

import java.lang.Integer;

import java.lang.System;

public class Division {

public static void main(String [] args) {

int a = Integer.parseInt(args [0]);

int b = Integer.parseInt(args [1]);

System.out.println(a / b);

}

}

Adding New Constructs to j--

To compile the changes to the j-- compiler, go to $j/j--, and run

& ~/workspace/j--

$ ant

To compile the test program using j--, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/Division.java

To run the test program (Division.class), run

& ~/workspace/j--

$ java Division 42 6

7

Adding New Constructs to j--

To compile the changes to the j-- compiler, go to $j/j--, and run

& ~/workspace/j--

$ ant

To compile the test program using j--, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/Division.java

To run the test program (Division.class), run

& ~/workspace/j--

$ java Division 42 6

7

Adding New Constructs to j--

To compile the changes to the j-- compiler, go to $j/j--, and run

& ~/workspace/j--

$ ant

To compile the test program using j--, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/Division.java

To run the test program (Division.class), run

& ~/workspace/j--

$ java Division 42 6

7

Adding New Constructs to j--

To compile the changes to the j-- compiler, go to $j/j--, and run

& ~/workspace/j--

$ ant

To compile the test program using j--, run

& ~/workspace/j--

$ /bin/bash ./bin/j-- tests/jvm/Division.java

To run the test program (Division.class), run

& ~/workspace/j--

$ java Division 42 6

7

	Outline
	Compilers
	Why Study Compilers?
	Phases of Compilation
	The j– Compiler
	Adding New Constructs to j–

