Name:

Instructions:

- 1. Write your name at the top of this page.
- 2. There are 3 problems in this exam and you have 120 minutes to answer them.
- 3. This is a closed book exam. The algorithms relevant to the exam problems are provided on pages 3 and 4.
- 4. To receive full credit, your solution must not only be correct but also show all the steps.
- 5. Discussing the exam contents with anyone who has not taken the exam is a violation of the academic honesty code.

Problem 1. (32 points) Consider the language L of binary strings (ie, strings over the alphabet $\{0,1\}$) of length at least 1.

- a. (2 points) Provide a regular expression for L?
- b. (10 points) Use the Thompson's construction algorithm to derive a non-deterministic finite automaton (NFA) that recognizes L. It is enough to draw the final NFA. You must use 0, 1, 2, ... for state labels.
- c. (10 points) Use the subset construction algorithm to derive an equivalent deterministic finite automaton (DFA). You must show the computation of ϵ -closures and draw the DFA.
- d. (10 points) Use the partitioning algorithm to derive an equivalent, minimal DFA. You must show the partitioning steps and draw the minimal DFA.

Problem 2. (32 points) Consider the following context-free grammar.

1. S ::= A a 2. A ::= b B3. A ::= c B4. $A ::= \epsilon$ 5. B ::= c A6. B ::= d B7. $B ::= \epsilon$

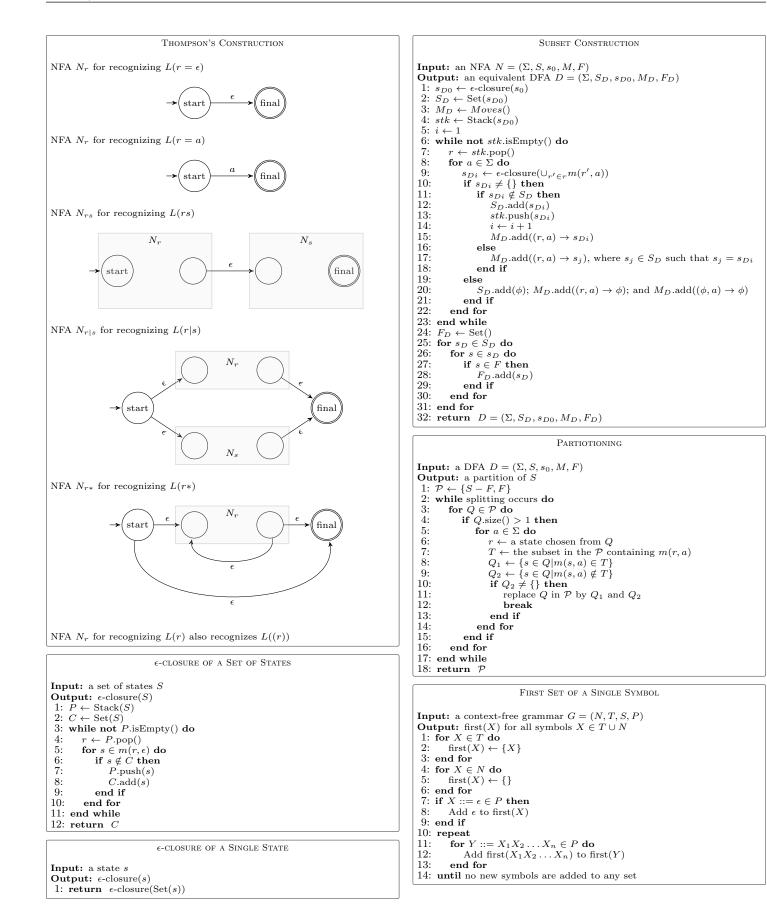
- a. (8 points) Compute the first sets for S, A, and B. You must show the iterations of the algorithm separately.
- b. (8 points) Compute the follow sets for S, A, and B. You must show the iterations of the algorithm separately.
- c. (8 points) Construct the LL(1) parsing table for the grammar. It is enough to just show the table.
- d. (8 points) Show the steps in parsing the input sentence c d c b a.

Problem 3. (36 points) The Action and Goto tables for the grammar

are shown below.

	а	,	()	#	S	L
0	s3		s2			1	
1					1		
2	s7		s6			5	4
3					r2		
4		s9		s8			
5		r4		r4			
6	s7		s6			5	10
7		r2		r2			
8					r1		
9	s7		s6			11	4
10		s9		s12			
11		r3		r3			
12		r1		r1			

- a. (12 points) Show the steps in the $\mathrm{LR}(1)$ parse for ((\mathtt{a})).
- b. (8 points) Compute the itemset $s_0 = \text{closure}(\{[S' \to \cdot S, \#]\}).$
- c. (16 points) Compute the following itemsets:
 - i $s_1 = \operatorname{goto}(s_0, S)$ ii $s_2 = \operatorname{goto}(s_0, \mathsf{C})$ iii $s_3 = \operatorname{goto}(s_0, \mathsf{a})$ iv $s_6 = \operatorname{goto}(s_2, \mathsf{C})$

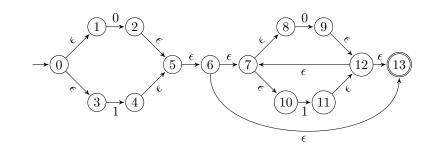


12: end for

FIRST SET OF A SEQUENCE OF SYMBOLS CLOSURE OF AN ITEMSET **Input:** a context-free grammar G = (N, T, S, P) and a sequence of symbols Input: itemset s $\begin{array}{c} \overbrace{X_1 X_2 \dots X_n} \\ \textbf{Output: } \operatorname{first}(X_1 X_2 \dots X_n) \end{array}$ **Output:** closure(s) 1: $\hat{C} \leftarrow \operatorname{Set}(s)$ 1: $F \leftarrow \operatorname{first}(X_1)$ 2: repeat 2: $i \leftarrow 2$ 3: If C contains an item of the form 3: while $\epsilon \in F$ and $i \leq n$ do $F \leftarrow F - \epsilon$ Add first(X_i) to F 4: $[Y ::= \alpha \cdot X \ \beta, a],$ 5:6: $i \leftarrow i + 1$ then add the item 7: end while $[X ::= \cdot \gamma, \mathbf{b}]$ 8: return Fto C for every rule $X::=\gamma$ in P and for every token b in $\operatorname{first}(\beta \mathbf{a})$ Follow Set of a Symbol 4: until no new items may be added 5: return C**Input:** a context-free grammar G = (N, T, S, P)**Output:** follow(X) for all symbols $X \in N$ GOTO(s, X)1: follow(S) $\leftarrow \{\#\}$ 2: for $X \in N$ do 3: $follow(X) \leftarrow \{\}$ **Input:** a state s, and a symbol $X \in T \cup N$ **Output:** the state goto(s, X)4: end for 5: repeat 1: $\vec{r} \leftarrow \text{Set}()$ for $Y ::= X_1 X_2 \dots X_n \in P$ do 2: for $[Y ::= \alpha \cdot X\beta, a] \in s$ do 6: for $X_i \in X_1 X_2 \dots X_n$ do $r.add([Y ::= \alpha X \cdot \beta, a])$ 7: 3: Add first($X_{i+1} \times X_{i+2} \dots X_n$) - { ϵ } to follow(X_i) If X_i is the last symbol or $\epsilon \in \text{first}(X_{i+1} \dots X_n)$, add 8: 4: end for 9: 5: return closure(r)follow(Y) to follow(\check{X}_i) 10: end for LR(1) PARSING end for 11: 12: until no new symbols are added to any set **Input:** Action and Goto tables and a sentence wOutput: a right-most derivation in reverse LL(1) PARSING 1: Initially, the parser has the configuration, **Input:** parse table *table*, productions *rules*, and a sentence w**Output:** a left-most derivation for wStack Input 1: $stk \leftarrow Stack(\#, S)$ $a_1a_2\ldots a_n\#$ s_0 2: $sym \leftarrow first symbol in w#$ 3: while true do 4: $top \leftarrow stk.pop()$ where $a_1 a_2 \ldots a_n$ is the input sentence if top = sym = # then Halt successfully 5: 2: repeat 6: 3: If $Action[s_m, a_k] = ss_i$, the parser executes a shift (the s stands for else if top is a terminal then 7: "shift") and goes into state s_i 8: if top = sym then 9. Advance sym to be the next symbol in w#10:else Stack Input 11: Halt with an error: sym found where top was expected $s_0 X_1 s_1 X_2 s_2 \dots X_m s_m a_k s_i \qquad a_{k+1} \dots a_n \#$ 12:end if 13:else if top is a non-terminal Y then 14: $index \leftarrow table[Y, sym]$ Otherwise, if Action $[s_m, a_k] = ri$ (the r stands for "reduce"), where i is the index of the rule $Y ::= X_j X_{j+1} \dots X_m$, the parser replaces the symbols and states $X_j s_j X_{j+1} s_{j+1} \dots X_m s_m$ by Ys, where $s = C_{j+1} (X_j) (Y_j) (Y_j)$ 4: 15:if $index \neq err$ then 16: $rule \leftarrow rules[index]$ If $Y ::= X_1 X_2 \dots X_n$, then $stk.push(X_n, \dots, X_2, X_1)$ 17: $Goto[s_{j-1}, Y]$, and outputs i 18. else 19:Halt with an error: no rule to follow 20:end if Stack Input 21:end if $s_0 X_1 s_1 X_2 s_2 \dots X_{j-1} s_{j-1} Y s = a_{k+1} \dots a_n \#$ 22: end while LL(1) PARSE TABLE Otherwise, if $Action[s_m, a_k] = accept$, the parser halts successfully Otherwise, if $Action[s_m, a_k] = error$, the parser raises an error 5: 6: **Input:** a context-free grammar G = (N, T, S, P)7: until either the sentence is parsed or an error is raised **Output:** LL(1) parse table for G Output: LL(1) For $Y \in N$ do 2: for $Y \in N$ do 3: for $a \in first(X_1X_2...X_n) - \{\epsilon\}$ do table[*Y*, *a*] $\leftarrow i$ if $\epsilon \in \text{first}(X_1 X_2 \dots X_n)$ then 5:6: 7: for $a \in follow(Y)$ do $\texttt{table}[Y, a] \gets i$ 8: end for q٠ end if 10:end for 11: end for

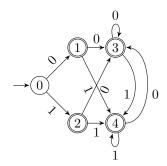
Solution 1. a. (0|1)(0|1)*

b.



 $\mathbf{c}.$

r	a	m(r,a)
$s_0 = \epsilon$ -closure(0) = {0, 1, 3}	0	ϵ -closure(2) = {2, 5, 6, 7, 8, 10, 13} = s_1
s ₀	1	ϵ -closure(4) = {4, 5, 6, 7, 8, 10, 13} = s_2
<i>s</i> ₁	0	ϵ -closure(9) = {7, 8, 9, 10, 12, 13} = s_3
s_1	1	ϵ -closure(11) = {7, 8, 10, 11, 12, 13} = s_4
s_2	0	ϵ -closure(9) = s_3
s_2	1	ϵ -closure(11) = s_4
s_3	0	ϵ -closure(9) = s_3
s_3	1	ϵ -closure(11) = s_4
s_4	0	ϵ -closure(9) = s_3
s_4	1	ϵ -closure(11) = s_4



d. The initial partition is $\mathcal{P} = \{\{0\}, \{1, 2, 3, 4\}\}.$

The subset $\{1, 2, 3, 4\}$ does not split on the symbol 0 because from every state in the subset, the DFA transitions to 3 (ie, an identical subset) on a 0.

The subset $\{1, 2, 3, 4\}$ does not split on the symbol 1 because from every state in the subset, the DFA transitions to 4 (ie, an identical subset) on a 1.

So the final partition is $\mathcal{P} = \{\{0\}, \{1, 2, 3, 4\}\}$. Labeling the two subsets of \mathcal{P} as 0 and 1, we have the following minimal DFA:



Solution 2. a.

X	first(X) (iteration 1)	first(X) (iteration 2)
S	{ a }	$\{a,b,c\}$
A	$\{\epsilon, \mathtt{b}, \mathtt{c}\}$	$\{\epsilon, {\tt b}, {\tt c}\}$
B	$\{\epsilon, \mathtt{c}, \mathtt{d}\}$	$\{\epsilon, {\tt c}, {\tt d}\}$

X	follow(X) (iteration 1)
S	{#}
A	{ a }
B	{ a }

	a	b	с	d	#
S	1	1	1		
A	4	2	3		
В	7		5	6	

Stack	Input	Output
# S	cdcba#	1
#a A	cdcba#	3
#a B c	cdcba#	-
#a B	dcba#	6
#a B d	dcba#	-
#a B	cba#	5
#aAc	cba#	-
#a A	ba#	2
#a B b	ba#	-
#a B	a#	7
#a	a#	-
#	#	1

b.

c.

d.

Solution 3. a.

Stack	Input	Output
0	((a))#	s2
0(2	(a))#	s6
0(2(6	a))#	s7
0(2(6a7))#	r2
0(2(6S5))#	r4
0(2(6 <i>L</i> 10))#	s12
0(2(6 <i>L</i> 10)12)#	r1
0(2S5)#	r4
0(2 <i>L</i> 4)#	s8
0(2 <i>L</i> 4)8	#	r1
0S1	#	1

b.
$$s_0 = \epsilon$$
-closure({[$S' ::= \cdot S, #$]}) = {[$S' ::= \cdot S, #$], [$S ::= \cdot (L), #$], [$S ::= \cdot a, #$]}

c. $s_1 = \text{goto}(s_0, S) = \epsilon \text{-closure}(\{[S' ::= \cdot S, \#]\}) = \{[S' ::= S \cdot, \#]\}$ $s_2 = \text{goto}(s_0, () = \epsilon \text{-closure}(\{[S ::= \cdot (L), \#]\}) = \{[S ::= (\cdot L), \#], [L ::= \cdot L, S,),], [L ::= \cdot S,),][S ::= \cdot (L),),][S ::= \cdot a,),]\}$

 $s_3 = \text{goto}(s_0, \mathbf{a}) = \epsilon \text{-closure}(\{[S ::= \cdot \mathbf{a}, \#]\}) = \{[S ::= \mathbf{a}, \#]\}$

 $s_6 = \text{goto}(s_2, () = \epsilon \text{-closure}(\{[S ::= (\cdot L),),]\}) = \{[S ::= (\cdot L),),], [L ::= \cdot L, S,),], [L ::= \cdot S,),][S ::= \cdot (L),),][S ::= \cdot a,),]\}$