
CS451/651 Exam 1 Sample

Name:

Instructions:

1. Write your name at the top of this page.

2. There are 3 problems in this exam and you have 120 minutes to answer them.

3. This is a closed book exam. The algorithms relevant to the exam problems are provided on pages 3 and 4.

4. To receive full credit, your solution must not only be correct but also show all the steps.

5. Discussing the exam contents with anyone who has not taken the exam is a violation of the academic honesty code.

Problem 1. (32 points) Consider the language L of binary strings (ie, strings over the alphabet {0, 1}) of length at least 1.

a. (2 points) Provide a regular expression for L?

b. (10 points) Use the Thompson’s construction algorithm to derive a non-deterministic finite automaton (NFA) that
recognizes L. It is enough to draw the final NFA. You must use 0, 1, 2, . . . for state labels.

c. (10 points) Use the subset construction algorithm to derive an equivalent deterministic finite automaton (DFA). You
must show the computation of ϵ-closures and draw the DFA.

d. (10 points) Use the partitioning algorithm to derive an equivalent, minimal DFA. You must show the partitioning steps
and draw the minimal DFA.

Problem 2. (32 points) Consider the following context-free grammar.

1. S ::= A a

2. A ::= b B
3. A ::= c B
4. A ::= ϵ
5. B ::= c A
6. B ::= d B
7. B ::= ϵ

a. (8 points) Compute the first sets for S, A, and B. You must show the iterations of the algorithm separately.

b. (8 points) Compute the follow sets for S, A, and B. You must show the iterations of the algorithm separately.

c. (8 points) Construct the LL(1) parsing table for the grammar. It is enough to just show the table.

d. (8 points) Show the steps in parsing the input sentence c d c b a.

Problem 3. (36 points) The Action and Goto tables for the grammar

0. S’ ::= S
1. S ::= (L)

2. S ::= a

3. L ::= L , S
4. L ::= S

are shown below.

1/7

CS451/651 Exam 1 Sample

a , () # S L

0 s3 s2 1

1 ✓

2 s7 s6 5 4

3 r2

4 s9 s8

5 r4 r4

6 s7 s6 5 10

7 r2 r2

8 r1

9 s7 s6 11 4

10 s9 s12

11 r3 r3

12 r1 r1

a. (12 points) Show the steps in the LR(1) parse for ((a)).

b. (8 points) Compute the itemset s0 = closure({[S′ → ·S, #]}).

c. (16 points) Compute the following itemsets:

i s1 = goto(s0, S)

ii s2 = goto(s0, ()

iii s3 = goto(s0, a)

iv s6 = goto(s2, ()

2/7

CS451/651 Exam 1 Sample

Thompson’s Construction

NFA Nr for recognizing L(r = ϵ)

start final
ϵ

NFA Nr for recognizing L(r = a)

start final
a

NFA Nrs for recognizing L(rs)

start final
ϵ

Nr Ns

NFA Nr|s for recognizing L(r|s)

start final

ϵ

ϵ

ϵ

ϵ

Nr

Ns

NFA Nr∗ for recognizing L(r∗)

start final
ϵ ϵ

ϵ

ϵ

Nr

NFA Nr for recognizing L(r) also recognizes L((r))

ϵ-closure of a Set of States

Input: a set of states S
Output: ϵ-closure(S)
1: P ← Stack(S)
2: C ← Set(S)
3: while not P .isEmpty() do
4: r ← P .pop()
5: for s ∈ m(r, ϵ) do
6: if s /∈ C then
7: P .push(s)
8: C.add(s)
9: end if
10: end for
11: end while
12: return C

ϵ-closure of a Single State

Input: a state s
Output: ϵ-closure(s)
1: return ϵ-closure(Set(s))

Subset Construction

Input: an NFA N = (Σ, S, s0,M, F)
Output: an equivalent DFA D = (Σ, SD, sD0,MD, FD)
1: sD0 ← ϵ-closure(s0)
2: SD ← Set(sD0)
3: MD ←Moves()
4: stk ← Stack(sD0)
5: i← 1
6: while not stk.isEmpty() do
7: r ← stk.pop()
8: for a ∈ Σ do
9: sDi ← ϵ-closure(∪r′∈rm(r′, a))
10: if sDi ̸= {} then
11: if sDi /∈ SD then
12: SD.add(sDi)
13: stk.push(sDi)
14: i← i + 1
15: MD.add((r, a)→ sDi)
16: else
17: MD.add((r, a)→ sj), where sj ∈ SD such that sj = sDi

18: end if
19: else
20: SD.add(ϕ); MD.add((r, a)→ ϕ); and MD.add((ϕ, a)→ ϕ)
21: end if
22: end for
23: end while
24: FD ← Set()
25: for sD ∈ SD do
26: for s ∈ sD do
27: if s ∈ F then
28: FD.add(sD)
29: end if
30: end for
31: end for
32: return D = (Σ, SD, sD0,MD, FD)

Partiotioning

Input: a DFA D = (Σ, S, s0,M, F)
Output: a partition of S
1: P ← {S − F, F}
2: while splitting occurs do
3: for Q ∈ P do
4: if Q.size() > 1 then
5: for a ∈ Σ do
6: r ← a state chosen from Q
7: T ← the subset in the P containing m(r, a)
8: Q1 ← {s ∈ Q|m(s, a) ∈ T}
9: Q2 ← {s ∈ Q|m(s, a) /∈ T}
10: if Q2 ̸= {} then
11: replace Q in P by Q1 and Q2

12: break
13: end if
14: end for
15: end if
16: end for
17: end while
18: return P

First Set of a Single Symbol

Input: a context-free grammar G = (N, T, S, P)
Output: first(X) for all symbols X ∈ T ∪N
1: for X ∈ T do
2: first(X)← {X}
3: end for
4: for X ∈ N do
5: first(X)← {}
6: end for
7: if X ::= ϵ ∈ P then
8: Add ϵ to first(X)
9: end if
10: repeat
11: for Y ::= X1X2 . . . Xn ∈ P do
12: Add first(X1X2 . . . Xn) to first(Y)
13: end for
14: until no new symbols are added to any set

3/7

CS451/651 Exam 1 Sample

First Set of a Sequence of Symbols

Input: a context-free grammar G = (N, T, S, P) and a sequence of symbols
X1X2 . . . Xn

Output: first(X1X2 . . . Xn)
1: F ← first(X1)
2: i← 2
3: while ϵ ∈ F and i ≤ n do
4: F ← F − ϵ
5: Add first(Xi) to F
6: i← i + 1
7: end while
8: return F

Follow Set of a Symbol

Input: a context-free grammar G = (N, T, S, P)
Output: follow(X) for all symbols X ∈ N
1: follow(S)← {#}
2: for X ∈ N do
3: follow(X)← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . . Xn ∈ P do
7: for Xi ∈ X1X2 . . . Xn do
8: Add first(Xi+1Xi+2 . . . Xn)− {ϵ} to follow(Xi)
9: If Xi is the last symbol or ϵ ∈ first(Xi+1 . . . Xn), add

follow(Y) to follow(Xi)
10: end for
11: end for
12: until no new symbols are added to any set

LL(1) Parsing

Input: parse table table, productions rules, and a sentence w
Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym← first symbol in w#
3: while true do
4: top← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#
10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index← table[Y, sym]
15: if index ̸= err then
16: rule← rules[index]
17: If Y ::= X1X2 . . . Xn, then stk.push(Xn, . . . , X2, X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while

LL(1) Parse Table

Input: a context-free grammar G = (N, T, S, P)
Output: LL(1) parse table for G
1: for Y ∈ N do
2: for Y ::= X1X2 . . . Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . . Xn)− {ϵ} do
4: table[Y, a]← i
5: if ϵ ∈ first(X1X2 . . . Xn) then
6: for a ∈ follow(Y) do
7: table[Y, a]← i
8: end for
9: end if
10: end for
11: end for
12: end for

Closure of an Itemset

Input: itemset s
Output: closure(s)
1: C ← Set(s)
2: repeat
3: If C contains an item of the form

[Y ::= α · X β, a],

then add the item

[X ::= · γ, b]

to C for every rule X ::= γ in P and for every token b in first(βa)
4: until no new items may be added
5: return C

goto(s,X)

Input: a state s, and a symbol X ∈ T ∪N
Output: the state goto(s,X)
1: r ← Set()
2: for [Y ::= α ·Xβ, a] ∈ s do
3: r.add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parsing

Input: Action and Goto tables and a sentence w
Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
2: repeat
3: If Action[sm, ak] = ssi, the parser executes a shift (the s stands for

“shift”) and goes into state si

Stack Input

s0X1s1X2s2 . . . Xmsmaksi ak+1 . . . an#

4: Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where
i is the index of the rule Y ::= XjXj+1 . . . Xm, the parser replaces
the symbols and states XjsjXj+1sj+1 . . . Xmsm by Y s, where s =
Goto[sj−1, Y], and outputs i

Stack Input

s0X1s1X2s2 . . . Xj−1sj−1Y s ak+1 . . . an#

5: Otherwise, if Action[sm, ak] = accept, the parser halts successfully
6: Otherwise, if Action[sm, ak] = error, the parser raises an error
7: until either the sentence is parsed or an error is raised

4/7

CS451/651 Exam 1 Sample

Solution 1. a. (0|1)(0|1)∗

b.

0

1

3

2

4

5 6 7

8 9

10 11

12 13

ϵ

ϵ

0

1

ϵ

ϵ

ϵ ϵ
ϵ

ϵ

0

1

ϵ

ϵ

ϵ

ϵ
ϵ

c.

r a m(r, a)

s0 = ϵ-closure(0) = {0, 1, 3} 0 ϵ-closure(2) = {2, 5, 6, 7, 8, 10, 13} = s1

s0 1 ϵ-closure(4) = {4, 5, 6, 7, 8, 10, 13} = s2

s1 0 ϵ-closure(9) = {7, 8, 9, 10, 12, 13} = s3

s1 1 ϵ-closure(11) = {7, 8, 10, 11, 12, 13} = s4

s2 0 ϵ-closure(9) = s3

s2 1 ϵ-closure(11) = s4

s3 0 ϵ-closure(9) = s3

s3 1 ϵ-closure(11) = s4

s4 0 ϵ-closure(9) = s3

s4 1 ϵ-closure(11) = s4

0

1

2

3

4

0

1

0

1

1 0 1 0

0

1

d. The initial partition is P = {{0}, {1, 2, 3, 4}}.

The subset {1, 2, 3, 4}} does not split on the symbol 0 because from every state in the subset, the DFA transitions to 3
(ie, an identical subset) on a 0.

The subset {1, 2, 3, 4}} does not split on the symbol 1 because from every state in the subset, the DFA transitions to 4
(ie, an identical subset) on a 1.

So the final partition is P = {{0}, {1, 2, 3, 4}}. Labeling the two subsets of P as 0 and 1 , we have the following minimal
DFA:

5/7

CS451/651 Exam 1 Sample

0 1

0

1
0

1

Solution 2. a.

X first(X) (iteration 1) first(X) (iteration 2)

S {a} {a, b, c}
A {ϵ, b, c} {ϵ, b, c}
B {ϵ, c, d} {ϵ, c, d}

b.

X follow(X) (iteration 1)

S {#}
A {a}
B {a}

c.

a b c d #

S 1 1 1

A 4 2 3

B 7 5 6

d.

Stack Input Output

#S cdcba# 1

#aA cdcba# 3

#aBc cdcba# -

#aB dcba# 6

#aBd dcba# -

#aB cba# 5

#aAc cba# -

#aA ba# 2

#aBb ba# -

#aB a# 7

#a a# -

✓

6/7

CS451/651 Exam 1 Sample

Solution 3. a.

Stack Input Output

0 ((a))# s2

0(2 (a))# s6

0(2(6 a))# s7

0(2(6a7))# r2

0(2(6S5))# r4

0(2(6L10))# s12

0(2(6L10)12)# r1

0(2S5)# r4

0(2L4)# s8

0(2L4)8 # r1

0S1 # ✓

b. s0 = ϵ-closure({[S′ ::= ·S, #]}) = {[S′ ::= ·S, #], [S ::= ·(L), #], [S ::= ·a, #]}

c. s1 = goto(s0, S) = ϵ-closure({[S′ ::= ·S, #]}) = {[S′ ::= S·, #]}
s2 = goto(s0, () = ϵ-closure({[S ::= ·(L), #]}) = {[S ::= (· L), #], [L ::= ·L,S,),], [L ::= ·S,),][S ::= ·(L),),][S ::=
·a,),]}
s3 = goto(s0, a) = ϵ-closure({[S ::= ·a, #]}) = {[S ::= a·, #]}
s6 = goto(s2, () = ϵ-closure({[S ::= (·L),),]}) = {[S ::= (·L),),], [L ::= ·L,S,),], [L ::= ·S,),][S ::= ·(L),),][S ::=
·a,),]}

7/7

