Instructions

1. The is a closed-book exam, but you are allowed to use a single page (both sides) of notes.
2. There are 6 problems in this exam and you have 75 minutes to answer them.
3. To receive full credit, your solution must not only be correct but also show all the steps.
4. Discussing the exam contents with anyone who has not taken the exam is a violation of the academic honesty code.

Problem 1. (10 points) Consider the following j-- program:

```
public class Mystery {
    private int f = 42;
    public static int f(int u, long v, int w) {
        int x = u + w;
        {
            Mystery m = new Mystery();
            long y = m.g(u, v);
            long z = (long) x * y;
        }
        {
            Mystery m = new Mystery();
            int y = u * w;
            long z = m.g(w, v);
        }
        return x;
    }
    public long g(int u, long v) {
        int w = u * u;
        long x = (long) f + (long) w;
        long y = x * x;
        return y;
    }
}
```

a. (5 points) Show in detail the compilation unit context for Mystery, as built by preAnalyze().
b. (5 points) Show in detail the method/local contexts for $f()$ and $g()$.

Problem 2. (10 points) Classify the following casts as identity, narrowing, widening, boxing, or unboxing. What instructions (if any) must generated for each?
a. (1.25 points)

String $x=(S t r i n g)(n e w ~ O b j e c t()) ;$
b. (1.25 points)

```
char x = (char) 42;
```

c. (1.25 points)

```
char x = (char) (new Character('*'));
```

d. (1.25 points)

```
Object x = (Object) (new String("Hello, World"));
```

e. (1.25 points)

```
Boolean x = (Boolean) false;
```

f. (1.25 points)

```
String x = (String) (new String("Hello, World"));
```

g. (1.25 points)

```
int x = (int) '@';
```

h. (1.25 points)

```
char x = (char) '@';
```

Problem 3. (20 points) Suppose \circ is an object and f an instance integer field within, a is an array of integers, and y, i and z are integers. For each of the j-- statements below, using the following table, list the instructions generated and show how the runtime stack evolves as those instructions are executed.

	x	a[i]	o.f	C.sf
lhs $=\mathrm{y}$	$\begin{aligned} & \text { iload y' } \\ & \text { [dup] } \\ & \text { istore } \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { aload a' } \\ & \text { iload i' } \\ & \text { iload y' } \\ & \text { [dup_x2] } \\ & \text { iastore } \end{aligned}$	```aload o' iload y [dup_x1] putfield f```	iload y' [dup] putstatic sf
lhs += y	```iload x' iload y' iadd [dup] istore x'```	```aload a' iload i' dup2 iaload iload y' iadd [dup_x2] iastore```	```aload o' dup getfield f iload y' iadd [dup_x1] putfield f```	getstatic sf iload y' iadd [dup] putstatic sf
++lhs	$\begin{aligned} & \text { iinc } x^{\prime}, 1 \\ & \text { [iload x'] } \end{aligned}$	```aload a' iload i' dup2 iaload iconst_1 iadd [dup_x2] iastore```	```aload o' dup getfield f iconst_1 iadd [dup_x1] putfield f```	```getstatic sf iconst_1 iadd [dup] putstatic sf```
lhs--	$\begin{aligned} & \text { [iload x'] } \\ & \text { iinc } x^{\prime},-1 \end{aligned}$	aload a' iload i' dup2 iaload [dup_x2] iconst_1 isub iastore	```aload o' dup getfield f [dup_x1] iconst_1 isub putfield f```	getstatic sf [dup] iconst_1 isub putstatic sf

a. (10 points)
o.f - - ;
b. (10 points)

```
z = ++a[i];
```

Problem 4. (20 points) Consider the following JVM bytecode for a j-- method int mystery(int x , int y):

```
public static int mystery(int, int);
    : iconst_1
        istore_2
        iload_1
        iconst_0
        if_icmple 18
        iload_2
        iload_0
        imul
        istore_2
        iload_1
        iconst_1
        isub
        istore_1
    15: goto 
        2
    19: ireturn
```

a. (10 points) Show how the runtime stack evolves as a result of the call mystery (3, 4).
b. (5 points) What value does the above call return?
c. (5 points) What does mystery(x, y) compute and return in general?

Problem 5. (20 points) The LIR instructions for the method int mystery(int x, int y) from the previous problem are listed below.

```
B0
B1
0: LDC [1] [V32|I]
5: MOVE $a1 [V33|I]
10: MOVE [V32|I] [V34|I]
B2
15: LDC [0] [V35|I]
20: BRANCH [LE] [V33|I] [V35|I] B4
B3
25: MUL [V34|I] $a0 [V36|I]
30: LDC [1] [V37|I]
35: SUB [V33|I] [V37|I] [V38|I]
40: MOVE [V36|I] [V34|I]
45: MOVE [V38|I] [V33|I]
50: BRANCH B2
B4
55: MOVE [V34|I] $v0
60: RETURN $v0
```

a. (10 points) Compute the liveUse and liveDef sets for each basic block in the method.
b. (10 points) Compute the liveIn and liveOut sets for each basic block in the method.

Problem 6. (20 points) The liveness intervals for the registers (all except v33 and v34) in the LIR instructions from the previous problem are listed below.

```
v0: [55, 60]
a0: [0, 25] [25, 50]
a1: [0, 5]
V32: [0, 10]
V33: ???
V34: ???
V35: [15, 20]
V36: [25, 40]
V37: [30, 35]
V38: [35, 45]
```

a. (10 points) Compute the liveness intervals for v33 and v34.
b. (5 points) List the neighbors of the 7 vertices (v32 - v38) in the interference graph G for the method, in ascending order.
c. (5 points) Color the graph G using 3 physical registers and draw the graph using symbols $\mathbf{\Lambda}$, $\boldsymbol{\star}$, and \square for vertices, where the symbols denote the three registers.

Exam 2 Solutions
 java.lang. Object $] \xrightarrow{\text { clampes Object.dans }}$ Object

Mystery $\xrightarrow{\text { clankuy Mystay. ctam }}$

- private vit f;
- pubhi stati cil f (int, lony, íL)
- pushi long g (int, long)
b) $f()$
$g()$

$M C \Rightarrow$ Methred Context
$L C \Rightarrow$ Local Context
(2) a) Nanowing Neference
caEckcAST java|bang|stuing (faib at mutime)
b) Nanowing primitive

I2C
c) Unbosing

INVOKEVIRTUAL Character. Char Value (java/lay/Character;)C
d) Wieteniny refereme

No code
e) Busuing

INVOKESTATIC BOSlean, value of (z) jara l lang / Brolean;
f) I dentily

No code
g) Widening primitive

No code
h) Identity

No code
(3) a) $0 \cdot f-$
b) $z=++a[i] ;$
10
1010
$1010 \cdot f$
$1010 \cdot f \mid 1$
$1010 \cdot f^{-1}$
1
la
la|i
$|a|$ i|a|i
la|i|a[i]
$|a| i|a[i]| 1$
$|a| i \mid a[i]+1$
$|a[i]+1| a|i| a[i]+1$
$\mid a[i]+1$

$$
|a| i|a| i
$$

$$
|a| i \mid a[i]
$$

$$
|a| i|a[i]| 1
$$

$$
|a| i \mid a[i]+1
$$

$$
|a[i]+1| a|i| a[i]+1
$$

$$
1 a[i]+1
$$

(4) a)

$$
\begin{aligned}
& \times 40 \times 3 \mathrm{~B} 4 \times 330339 \\
& 3 \times 2120 \text { \& } 3 \text { 27 } 2 \times 1 \times 0 \\
& 273 \% 1 \times 1 \circ \rho \circ \text { \& }
\end{aligned}
$$

b) 81
c) x^{y}
aload 0 dup get field f const-1 siub prot fied f
aload a iload i dup 2 iaload ionst-1 iadd $\operatorname{dup}-x_{2}$ castore

0	1	2
x	y	z
3	4	
	3	x
	2	3
	y	d
	0	$2 x$
		81

(5) a) line the
linesed

b) $\quad \ln i I_{n}$
lui 0 ut

Bo $\$ a_{0}, \$ a_{1}$
$\$ a_{0}, \$ a_{1}$
$\$ 00, \sqrt{33}, \sqrt{34}$
$\$ 00, V_{33}, v_{34}$
$\$ 90, v_{33}, \sqrt{34}$
$\$ 90, v 33, v 34$
$\$ 00, \sqrt{33}, \sqrt{ } 34$

$$
V 34
$$

(6) a)

V33

$\sqrt{ } 34$
 $[10,25],[40,5 \pi]$

b)
c) Allocation

$$
\sqrt{3} 2-\Gamma_{1}
$$

$$
\sqrt{33}-\sqrt{2}
$$

$$
\sqrt{34}-r_{3}
$$

V35-ri
V36 r_{3}
$V_{37}-r_{1}$
$\sqrt{38}-r_{1}$

Stack

$$
\begin{aligned}
& \sqrt{32} \quad V 33 \\
& v_{33} \quad v 32, v 34, v 35, v 36, v 37 \\
& V_{34}=\sqrt{3} 3, \sqrt{35}, \sqrt{ } 38 \\
& \sqrt{35} \quad \sqrt{3} 3, \sqrt{34} \\
& \sqrt{36}-\sqrt{3} 3, \sqrt{37}, \sqrt{38} \\
& \sqrt{37}=\sqrt{33}, \sqrt{36} \\
& \text { V38 } V 34, V 36
\end{aligned}
$$

