
Introduction to Compiler Construction
Marvin Code Generation: High-level Intermediate Representation (HIR)



Outline

1 Control Flow Graph

2 High Level Intermediate Representation (HIR)

3 Local Optimizations



Control Flow Graph

We scan through the intermediate JVM instructions and construct a flow graph of basic blocks

A basic block is a sequence of instructions with just one entry point at the start and one exit point at the end — there
are no branches into or out of the instruction sequence

Next, we identify basic blocks that are loop headers (LH) and loop tails (LT)

Next, we remove unreachable basic blocks (ie, basic blocks that are not reachable from the source block)



Control Flow Graph

We scan through the intermediate JVM instructions and construct a flow graph of basic blocks

A basic block is a sequence of instructions with just one entry point at the start and one exit point at the end — there
are no branches into or out of the instruction sequence

Next, we identify basic blocks that are loop headers (LH) and loop tails (LT)

Next, we remove unreachable basic blocks (ie, basic blocks that are not reachable from the source block)



Control Flow Graph

We scan through the intermediate JVM instructions and construct a flow graph of basic blocks

A basic block is a sequence of instructions with just one entry point at the start and one exit point at the end — there
are no branches into or out of the instruction sequence

Next, we identify basic blocks that are loop headers (LH) and loop tails (LT)

Next, we remove unreachable basic blocks (ie, basic blocks that are not reachable from the source block)



Control Flow Graph

We scan through the intermediate JVM instructions and construct a flow graph of basic blocks

A basic block is a sequence of instructions with just one entry point at the start and one exit point at the end — there
are no branches into or out of the instruction sequence

Next, we identify basic blocks that are loop headers (LH) and loop tails (LT)

Next, we remove unreachable basic blocks (ie, basic blocks that are not reachable from the source block)



Control Flow Graph

We scan through the intermediate JVM instructions and construct a flow graph of basic blocks

A basic block is a sequence of instructions with just one entry point at the start and one exit point at the end — there
are no branches into or out of the instruction sequence

Next, we identify basic blocks that are loop headers (LH) and loop tails (LT)

Next, we remove unreachable basic blocks (ie, basic blocks that are not reachable from the source block)



Control Flow Graph · Example (Factorial.iota)

// Accepts n (int) from standard input and writes n! (computed iteratively) to standard output.

// Returns n! computed iteratively.

int factorial(int n) {

int result = 1;

int i = 1;

while (i <= n) {

result = result * i;

i = i + 1;

}

return result;

}

// Entry point.

void main() {

int n = read ();

write(factorial(n));

}



Control Flow Graph · Example (Factorial.iota)

// Accepts n (int) from standard input and writes n! (computed iteratively) to standard output.

// Returns n! computed iteratively.

int factorial(int n) {

int result = 1;

int i = 1;

while (i <= n) {

result = result * i;

i = i + 1;

}

return result;

}

// Entry point.

void main() {

int n = read ();

write(factorial(n));

}



Control Flow Graph · Example (CFGs for Factorial.iota)

>>> factorial(I)I

B0 (pred: [], succ: [B1]):

B1 (pred: [B0], succ: [B2]):

0: ldc 1

2: istore 1

4: ldc 1

6: istore 2

B2 (pred: [B1 , B3], succ: [B3, B4], LH):

8: iload 2

10: iload 0

12: if_icmpgt 32

B3 (pred: [B2], succ: [B2], LT):

15: iload 1

17: iload 2

19: imul

20: istore 1

22: iload 2

24: ldc 1

26: iadd

27: istore 2

29: goto 8

B4 (pred: [B2], succ: []):

32: iload 1

34: ireturn



Control Flow Graph · Example (CFGs for Factorial.iota)

>>> factorial(I)I

B0 (pred: [], succ: [B1]):

B1 (pred: [B0], succ: [B2]):

0: ldc 1

2: istore 1

4: ldc 1

6: istore 2

B2 (pred: [B1 , B3], succ: [B3, B4], LH):

8: iload 2

10: iload 0

12: if_icmpgt 32

B3 (pred: [B2], succ: [B2], LT):

15: iload 1

17: iload 2

19: imul

20: istore 1

22: iload 2

24: ldc 1

26: iadd

27: istore 2

29: goto 8

B4 (pred: [B2], succ: []):

32: iload 1

34: ireturn



Control Flow Graph · Example (CFGs for Factorial.iota)

>>> main()V

B0 (pred: [], succ: [B1]):

B1 (pred: [B0], succ: []):

0: invokestatic read()I

3: istore 0

5: iload 0

7: invokestatic factorial(I)I

10: invokestatic write(I)V

13: return



Control Flow Graph · Example (CFGs for Factorial.iota)

>>> main()V

B0 (pred: [], succ: [B1]):

B1 (pred: [B0], succ: []):

0: invokestatic read()I

3: istore 0

5: iload 0

7: invokestatic factorial(I)I

10: invokestatic write(I)V

13: return



High Level Intermediate Representation (HIR)

Next, we convert the tuples to HIR

HIR employs static single assignment (SSA) form, where for every variable, there is just one place in the method where
that variable is assigned a value

For example, the following code

x = 3;

x = x + y;

is expressed in SSA form as

x1 = 3;

x2 = x1 + y1;



High Level Intermediate Representation (HIR)

Next, we convert the tuples to HIR

HIR employs static single assignment (SSA) form, where for every variable, there is just one place in the method where
that variable is assigned a value

For example, the following code

x = 3;

x = x + y;

is expressed in SSA form as

x1 = 3;

x2 = x1 + y1;



High Level Intermediate Representation (HIR)

Next, we convert the tuples to HIR

HIR employs static single assignment (SSA) form, where for every variable, there is just one place in the method where
that variable is assigned a value

For example, the following code

x = 3;

x = x + y;

is expressed in SSA form as

x1 = 3;

x2 = x1 + y1;



High Level Intermediate Representation (HIR)

Next, we convert the tuples to HIR

HIR employs static single assignment (SSA) form, where for every variable, there is just one place in the method where
that variable is assigned a value

For example, the following code

x = 3;

x = x + y;

is expressed in SSA form as

x1 = 3;

x2 = x1 + y1;



High Level Intermediate Representation (HIR)

In the HIR we represent a variable’s value by the instruction that computed it and we track these values in the state
vector

The values in a state vector may change as we sequence through the block’s instructions

If the next block has just one predecessor, it can copy the predecessor’s state vector at its start; if there are two or more
predecessors, the states must be merged



High Level Intermediate Representation (HIR)

In the HIR we represent a variable’s value by the instruction that computed it and we track these values in the state
vector

The values in a state vector may change as we sequence through the block’s instructions

If the next block has just one predecessor, it can copy the predecessor’s state vector at its start; if there are two or more
predecessors, the states must be merged



High Level Intermediate Representation (HIR)

In the HIR we represent a variable’s value by the instruction that computed it and we track these values in the state
vector

The values in a state vector may change as we sequence through the block’s instructions

If the next block has just one predecessor, it can copy the predecessor’s state vector at its start; if there are two or more
predecessors, the states must be merged



High Level Intermediate Representation (HIR)

In the HIR we represent a variable’s value by the instruction that computed it and we track these values in the state
vector

The values in a state vector may change as we sequence through the block’s instructions

If the next block has just one predecessor, it can copy the predecessor’s state vector at its start; if there are two or more
predecessors, the states must be merged



High Level Intermediate Representation (HIR)

For example, consider the following iota method, where the variables are in SSA form

int ssa(int w1) {

if (w1 > 5) {

w2 = 0;

} else if (w1 > 3) {

w3 = 1;

} else {

w4 = 2;

}

return w?;

}

In the statement

return w?;

which w do we return?

We solve this problem by using a Phi function, an HIR instruction that captures the possibility of a variable having one
of several values

In our example, the final block would contain the following code

w5 = phi(w2, w3 , w4);

return w5;



High Level Intermediate Representation (HIR)

For example, consider the following iota method, where the variables are in SSA form

int ssa(int w1) {

if (w1 > 5) {

w2 = 0;

} else if (w1 > 3) {

w3 = 1;

} else {

w4 = 2;

}

return w?;

}

In the statement

return w?;

which w do we return?

We solve this problem by using a Phi function, an HIR instruction that captures the possibility of a variable having one
of several values

In our example, the final block would contain the following code

w5 = phi(w2, w3 , w4);

return w5;



High Level Intermediate Representation (HIR)

For example, consider the following iota method, where the variables are in SSA form

int ssa(int w1) {

if (w1 > 5) {

w2 = 0;

} else if (w1 > 3) {

w3 = 1;

} else {

w4 = 2;

}

return w?;

}

In the statement

return w?;

which w do we return?

We solve this problem by using a Phi function, an HIR instruction that captures the possibility of a variable having one
of several values

In our example, the final block would contain the following code

w5 = phi(w2, w3 , w4);

return w5;



High Level Intermediate Representation (HIR)

For example, consider the following iota method, where the variables are in SSA form

int ssa(int w1) {

if (w1 > 5) {

w2 = 0;

} else if (w1 > 3) {

w3 = 1;

} else {

w4 = 2;

}

return w?;

}

In the statement

return w?;

which w do we return?

We solve this problem by using a Phi function, an HIR instruction that captures the possibility of a variable having one
of several values

In our example, the final block would contain the following code

w5 = phi(w2, w3 , w4);

return w5;



High Level Intermediate Representation (HIR)

For example, consider the following iota method, where the variables are in SSA form

int ssa(int w1) {

if (w1 > 5) {

w2 = 0;

} else if (w1 > 3) {

w3 = 1;

} else {

w4 = 2;

}

return w?;

}

In the statement

return w?;

which w do we return?

We solve this problem by using a Phi function, an HIR instruction that captures the possibility of a variable having one
of several values

In our example, the final block would contain the following code

w5 = phi(w2, w3 , w4);

return w5;



High Level Intermediate Representation (HIR)

Another place where Phi functions are needed are in loop headers

B1 (pred: [B0], succ: [B2], locals: [w1 , x1]):

w1 = 1

x1 = 1

B2 (pred: [B1], succ: [B3], LH, locals: [w2 , x2]):

w2 = phi(w1, w3)

x2 = phi(x1, x2)

B3 (pred: [B2], succ: [B2], LT, locals: [w3 , x2]):

w3 = w2 + 1

Redundant phi functions, ie, phi functions of the form x = phi(y, x, x, ..., x), are replaced with y

In the above example, x2 is replaced with x1



High Level Intermediate Representation (HIR)

Another place where Phi functions are needed are in loop headers

B1 (pred: [B0], succ: [B2], locals: [w1 , x1]):

w1 = 1

x1 = 1

B2 (pred: [B1], succ: [B3], LH, locals: [w2 , x2]):

w2 = phi(w1, w3)

x2 = phi(x1, x2)

B3 (pred: [B2], succ: [B2], LT, locals: [w3 , x2]):

w3 = w2 + 1

Redundant phi functions, ie, phi functions of the form x = phi(y, x, x, ..., x), are replaced with y

In the above example, x2 is replaced with x1



High Level Intermediate Representation (HIR)

Another place where Phi functions are needed are in loop headers

B1 (pred: [B0], succ: [B2], locals: [w1 , x1]):

w1 = 1

x1 = 1

B2 (pred: [B1], succ: [B3], LH, locals: [w2 , x2]):

w2 = phi(w1, w3)

x2 = phi(x1, x2)

B3 (pred: [B2], succ: [B2], LT, locals: [w3 , x2]):

w3 = w2 + 1

Redundant phi functions, ie, phi functions of the form x = phi(y, x, x, ..., x), are replaced with y

In the above example, x2 is replaced with x1



High Level Intermediate Representation (HIR)

Another place where Phi functions are needed are in loop headers

B1 (pred: [B0], succ: [B2], locals: [w1 , x1]):

w1 = 1

x1 = 1

B2 (pred: [B1], succ: [B3], LH, locals: [w2 , x2]):

w2 = phi(w1, w3)

x2 = phi(x1, x2)

B3 (pred: [B2], succ: [B2], LT, locals: [w3 , x2]):

w3 = w2 + 1

Redundant phi functions, ie, phi functions of the form x = phi(y, x, x, ..., x), are replaced with y

In the above example, x2 is replaced with x1



High Level Intermediate Representation (HIR)

Another place where Phi functions are needed are in loop headers

B1 (pred: [B0], succ: [B2], locals: [w1 , x1]):

w1 = 1

x1 = 1

B2 (pred: [B1], succ: [B3], LH, locals: [w2 , x2]):

w2 = phi(w1, w3)

x2 = phi(x1, x2)

B3 (pred: [B2], succ: [B2], LT, locals: [w3 , x2]):

w3 = w2 + 1

Redundant phi functions, ie, phi functions of the form x = phi(y, x, x, ..., x), are replaced with y

In the above example, x2 is replaced with x1



High Level Intermediate Representation (HIR) · Example (HIRs for Factorial.iota)

>>> factorial(I)I

B0 (pred: [], succ: [B1], locals: [I0, ?, ?]):

I0: ldparam 0

B1 (pred: [B0], succ: [B2], locals: [I0 , I1 , I2]):

I1: ldc 1

I2: ldc 1

B2 (pred: [B1 , B3], succ: [B3, B4], LH , locals: [I0, I4, I5]):

I4: phi(I1 , I7)

I5: phi(I2 , I9)

6: if I5 > I0 then B4 else B3

B3 (pred: [B2], succ: [B2], LT, locals: [I0 , I7, I9]):

I7: I4 * I5

I8: ldc 1

I9: I5 + I8

10: goto B2

B4 (pred: [B2], succ: [], locals: [I0, I4, I5]):

I11: ireturn I4



High Level Intermediate Representation (HIR) · Example (HIRs for Factorial.iota)

>>> factorial(I)I

B0 (pred: [], succ: [B1], locals: [I0, ?, ?]):

I0: ldparam 0

B1 (pred: [B0], succ: [B2], locals: [I0 , I1 , I2]):

I1: ldc 1

I2: ldc 1

B2 (pred: [B1 , B3], succ: [B3, B4], LH , locals: [I0, I4, I5]):

I4: phi(I1 , I7)

I5: phi(I2 , I9)

6: if I5 > I0 then B4 else B3

B3 (pred: [B2], succ: [B2], LT, locals: [I0 , I7, I9]):

I7: I4 * I5

I8: ldc 1

I9: I5 + I8

10: goto B2

B4 (pred: [B2], succ: [], locals: [I0, I4, I5]):

I11: ireturn I4



High Level Intermediate Representation (HIR) · Example (HIRs for Factorial.iota)

>>> main()V

B0 (pred: [], succ: [B1], locals: [?]):

B1 (pred: [B0], succ: [], locals: [I0]):

I0: invoke read()

I1: invoke factorial(I0)

V2: invoke write(I1)

3: return



High Level Intermediate Representation (HIR) · Example (HIRs for Factorial.iota)

>>> main()V

B0 (pred: [], succ: [B1], locals: [?]):

B1 (pred: [B0], succ: [], locals: [I0]):

I0: invoke read()

I1: invoke factorial(I0)

V2: invoke write(I1)

3: return



Local Optimizations

That the HIR is in SSA form makes it amenable to several simple optimizations, which make for fewer instructions
and/or faster programs

Local optimizations are improvements made based on analysis of the linear sequence of instructions within a basic block



Local Optimizations

That the HIR is in SSA form makes it amenable to several simple optimizations, which make for fewer instructions
and/or faster programs

Local optimizations are improvements made based on analysis of the linear sequence of instructions within a basic block



Local Optimizations

That the HIR is in SSA form makes it amenable to several simple optimizations, which make for fewer instructions
and/or faster programs

Local optimizations are improvements made based on analysis of the linear sequence of instructions within a basic block



Local Optimizations

Expressions having operands that are both constants, or variables whose values are known to be constants, can be
folded, that is replaced by their constant value

For example, consider the iota method

int f() {

int i = 1;

int j = 2;

int k = i + j + 3;

return k;

}

and the corresponding HIR code

B0 (pred: [], succ: [B1], locals: [?, ?, ?]):

B1 (pred: [B0], succ: [], locals: [I0, I1, I4]):

I0: ldc 1

I1: ldc 2

I2: I0 + I1

I3: ldc 3

I4: I2 + I3

I5: ireturn I4

The instruction I0 + I1 at I2 can be replaced by the constant 3 and the instruction I2 + I3 at I4 can replaced by the
constant 6



Local Optimizations

Expressions having operands that are both constants, or variables whose values are known to be constants, can be
folded, that is replaced by their constant value

For example, consider the iota method

int f() {

int i = 1;

int j = 2;

int k = i + j + 3;

return k;

}

and the corresponding HIR code

B0 (pred: [], succ: [B1], locals: [?, ?, ?]):

B1 (pred: [B0], succ: [], locals: [I0, I1, I4]):

I0: ldc 1

I1: ldc 2

I2: I0 + I1

I3: ldc 3

I4: I2 + I3

I5: ireturn I4

The instruction I0 + I1 at I2 can be replaced by the constant 3 and the instruction I2 + I3 at I4 can replaced by the
constant 6



Local Optimizations

Expressions having operands that are both constants, or variables whose values are known to be constants, can be
folded, that is replaced by their constant value

For example, consider the iota method

int f() {

int i = 1;

int j = 2;

int k = i + j + 3;

return k;

}

and the corresponding HIR code

B0 (pred: [], succ: [B1], locals: [?, ?, ?]):

B1 (pred: [B0], succ: [], locals: [I0, I1, I4]):

I0: ldc 1

I1: ldc 2

I2: I0 + I1

I3: ldc 3

I4: I2 + I3

I5: ireturn I4

The instruction I0 + I1 at I2 can be replaced by the constant 3 and the instruction I2 + I3 at I4 can replaced by the
constant 6



Local Optimizations

Expressions having operands that are both constants, or variables whose values are known to be constants, can be
folded, that is replaced by their constant value

For example, consider the iota method

int f() {

int i = 1;

int j = 2;

int k = i + j + 3;

return k;

}

and the corresponding HIR code

B0 (pred: [], succ: [B1], locals: [?, ?, ?]):

B1 (pred: [B0], succ: [], locals: [I0, I1, I4]):

I0: ldc 1

I1: ldc 2

I2: I0 + I1

I3: ldc 3

I4: I2 + I3

I5: ireturn I4

The instruction I0 + I1 at I2 can be replaced by the constant 3 and the instruction I2 + I3 at I4 can replaced by the
constant 6



Local Optimizations

Another optimization one may consider is common subexpression elimination, where we identify expressions that are
re-evaluated even if their operands are unchanged

Example

void f(int i) {

int j = i * i * i;

int k = i * i * i;

}

can be optimized as

void f(int i) {

int j = i * i * i;

int k = j;

}



Local Optimizations

Another optimization one may consider is common subexpression elimination, where we identify expressions that are
re-evaluated even if their operands are unchanged

Example

void f(int i) {

int j = i * i * i;

int k = i * i * i;

}

can be optimized as

void f(int i) {

int j = i * i * i;

int k = j;

}



Local Optimizations

Another optimization one may consider is common subexpression elimination, where we identify expressions that are
re-evaluated even if their operands are unchanged

Example

void f(int i) {

int j = i * i * i;

int k = i * i * i;

}

can be optimized as

void f(int i) {

int j = i * i * i;

int k = j;

}



Local Optimizations

Common subexpressions do arise in places one might not expect them

Example

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

where a, b, and c are integer matrices

If a’, b’, and c’ are their base addresses respectively, then the memory addresses of a[i][j], b[i][j], and c[i][j] are
a’ + i * 4 * 1000 + j * 4, b’ + i * 4 * 1000 + j * 4, and c’ + i * 4 * 1000 + j * 4; eliminating the common offsets, i * 4 * 1000 + j * 4, can
save us a lot of computation



Local Optimizations

Common subexpressions do arise in places one might not expect them

Example

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

where a, b, and c are integer matrices

If a’, b’, and c’ are their base addresses respectively, then the memory addresses of a[i][j], b[i][j], and c[i][j] are
a’ + i * 4 * 1000 + j * 4, b’ + i * 4 * 1000 + j * 4, and c’ + i * 4 * 1000 + j * 4; eliminating the common offsets, i * 4 * 1000 + j * 4, can
save us a lot of computation



Local Optimizations

Common subexpressions do arise in places one might not expect them

Example

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

where a, b, and c are integer matrices

If a’, b’, and c’ are their base addresses respectively, then the memory addresses of a[i][j], b[i][j], and c[i][j] are
a’ + i * 4 * 1000 + j * 4, b’ + i * 4 * 1000 + j * 4, and c’ + i * 4 * 1000 + j * 4; eliminating the common offsets, i * 4 * 1000 + j * 4, can
save us a lot of computation



Local Optimizations

Common subexpressions do arise in places one might not expect them

Example

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

where a, b, and c are integer matrices

If a’, b’, and c’ are their base addresses respectively, then the memory addresses of a[i][j], b[i][j], and c[i][j] are
a’ + i * 4 * 1000 + j * 4, b’ + i * 4 * 1000 + j * 4, and c’ + i * 4 * 1000 + j * 4; eliminating the common offsets, i * 4 * 1000 + j * 4, can
save us a lot of computation


	Outline
	Control Flow Graph
	Example (Factorial.iota)
	Example (CFGs for Factorial.iota)

	High Level Intermediate Representation (HIR)
	Example (HIRs for Factorial.iota)

	Local Optimizations

