
JVM Code Generation

Outline

1 Introduction

2 Generating Code for Classes and their Members

3 Generating Code for Control and Logical Expressions

4 Generating Code for Message, Field Selection, and Array Expressions

5 Generating Code for Assignment and Similar Operations

6 Generating Code for String Concatenation

7 Generating Code for Casts

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ /bin/bash ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide

Introduction

public class Square extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Square;

const #2 = class #1; // Square

const #3 = Asciz java/lang/Object;

const #4 = class #3; // java/lang/Object

const #5 = Asciz <init >;

const #6 = Asciz ()V;

const #7 = NameAndType #5:#6;// "<init >":()V

const #8 = Method #4.#7; // java/lang/Object."<init >":()V

const #9 = Asciz Code;

const #10 = Asciz square;

const #11 = Asciz (I)I;

{

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public int square(int);

Code:

Stack=2, Locals=2, Args_size =2

0: iload_1

1: iload_1

2: imul

3: ireturn

}

Introduction

public class Square extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Square;

const #2 = class #1; // Square

const #3 = Asciz java/lang/Object;

const #4 = class #3; // java/lang/Object

const #5 = Asciz <init >;

const #6 = Asciz ()V;

const #7 = NameAndType #5:#6;// "<init >":()V

const #8 = Method #4.#7; // java/lang/Object."<init >":()V

const #9 = Asciz Code;

const #10 = Asciz square;

const #11 = Asciz (I)I;

{

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public int square(int);

Code:

Stack=2, Locals=2, Args_size =2

0: iload_1

1: iload_1

2: imul

3: ireturn

}

Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1);

Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1);

Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1);

Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1);

Introduction

For a more involved example of code generation, consider the Factorial program from before

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

int x = n;

// position 2:

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}

Introduction

For a more involved example of code generation, consider the Factorial program from before

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

int x = n;

// position 2:

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}

Introduction

Running javap on Factorial.class produced by the j-- compiler gives us

public class pass.Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

...

{

static int n;

public pass.Factorial ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int factorial(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method factorial :(I)I

17: imul

18: ireturn

19: nop

Introduction

Running javap on Factorial.class produced by the j-- compiler gives us

public class pass.Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

...

{

static int n;

public pass.Factorial ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int factorial(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method factorial :(I)I

17: imul

18: ireturn

19: nop

Introduction

public static void main(java.lang.String []);

Code:

Stack=3, Locals=2, Args_size =1

0: getstatic #19; //Field n:I

3: istore_1

4: getstatic #25; //Field java/lang/System.out:Ljava/io/PrintStream;

7: new #27; // class java/lang/StringBuilder

10: dup

11: invokespecial #28; // Method java/lang/StringBuilder ."<init >":()V

14: getstatic #19; //Field n:I

17: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

20: ldc #34; // String ! =

22: invokevirtual #37; // Method java/lang/StringBuilder.append:

(Ljava/lang/String ;) Ljava/lang/StringBuilder;

25: iload_1

26: invokestatic #13; // Method factorial :(I)I

29: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

32: invokevirtual #41; // Method java/lang/StringBuilder.toString:

()Ljava/lang/String;

35: invokevirtual #47; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

38: return

public static {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}

Introduction

public static void main(java.lang.String []);

Code:

Stack=3, Locals=2, Args_size =1

0: getstatic #19; //Field n:I

3: istore_1

4: getstatic #25; //Field java/lang/System.out:Ljava/io/PrintStream;

7: new #27; // class java/lang/StringBuilder

10: dup

11: invokespecial #28; // Method java/lang/StringBuilder ."<init >":()V

14: getstatic #19; //Field n:I

17: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

20: ldc #34; // String ! =

22: invokevirtual #37; // Method java/lang/StringBuilder.append:

(Ljava/lang/String ;) Ljava/lang/StringBuilder;

25: iload_1

26: invokestatic #13; // Method factorial :(I)I

29: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

32: invokevirtual #41; // Method java/lang/StringBuilder.toString:

()Ljava/lang/String;

35: invokevirtual #47; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

38: return

public static {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

• invokes codegen() on the JClassDeclaration for generating the code for that class,

• writes out the class to a class file in the destination directory, and

• adds the in-memory representation of the class to a list that stores such representations for all the classes within a
compilation unit; this list is used in translating JVM byte code to native (SPIM) code

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

• invokes codegen() on the JClassDeclaration for generating the code for that class,

• writes out the class to a class file in the destination directory, and

• adds the in-memory representation of the class to a list that stores such representations for all the classes within a
compilation unit; this list is used in translating JVM byte code to native (SPIM) code

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

• invokes codegen() on the JClassDeclaration for generating the code for that class,

• writes out the class to a class file in the destination directory, and

• adds the in-memory representation of the class to a list that stores such representations for all the classes within a
compilation unit; this list is used in translating JVM byte code to native (SPIM) code

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

• invokes codegen() on the JClassDeclaration for generating the code for that class,

• writes out the class to a class file in the destination directory, and

• adds the in-memory representation of the class to a list that stores such representations for all the classes within a
compilation unit; this list is used in translating JVM byte code to native (SPIM) code

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

• invokes codegen() on the JClassDeclaration for generating the code for that class,

• writes out the class to a class file in the destination directory, and

• adds the in-memory representation of the class to a list that stores such representations for all the classes within a
compilation unit; this list is used in translating JVM byte code to native (SPIM) code

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

• It computes the fully-qualified name for the class, taking any package name into account

• It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

• If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

• It generates code for its members, by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL ,

((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field :

definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL ,

((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field :

definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL ,

((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field :

definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type()

.toDescriptor (), false);

}

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type()

.toDescriptor (), false);

}

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type()

.toDescriptor (), false);

}

}

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1 We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2 We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1 The CLEmitter instance

2 The target label for the branch

3 A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel);

}

Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output);

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel);

}

output.addLabel(elseLabel);

if (elsePart != null) {

elsePart.codegen(output);

output.addLabel(endLabel);

}

}

Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output);

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel);

}

output.addLabel(elseLabel);

if (elsePart != null) {

elsePart.codegen(output);

output.addLabel(endLabel);

}

}

Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output);

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel);

}

output.addLabel(elseLabel);

if (elsePart != null) {

elsePart.codegen(output);

output.addLabel(endLabel);

}

}

Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...

Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...

Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...

Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false);

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel);

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}

Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false);

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel);

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}

Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false);

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel);

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}

Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 18

5: iload_2

6: iload_3

7: if_icmple 18

10: iload_3

11: iconst_5

12: if_icmple 18

15: iinc 1, -1

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue);

}

Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 18

5: iload_2

6: iload_3

7: if_icmple 18

10: iload_3

11: iconst_5

12: if_icmple 18

15: iinc 1, -1

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue);

}

Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 18

5: iload_2

6: iload_3

7: if_icmple 18

10: iload_3

11: iconst_5

12: if_icmple 18

15: iinc 1, -1

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue);

}

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1 If the message expression involves an instance message, codegen() generates code for the target

2 The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3 The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1 The instruction (invokevirtual or invokestatic)

2 The JVM name for the target’s type

3 The message name

4 The descriptor of the invoked method, which was determined in analysis.

4 If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away

Generating Code for Message, Field Selection, and Array Expressions
For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I

Generating Code for Message, Field Selection, and Array Expressions
For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I

Generating Code for Message, Field Selection, and Array Expressions
For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1 It generates code for its target; if the target is a class, no code is generated

2 The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3 Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4 The addMemberAccessInstruction() method is invoked with the following arguments

1 The instruction (getfield or getstatic)

2 The JVM name for the target’s type

3 The field name

4 The JVM descriptor for the type of the field, and so the type of the result

Generating Code for Message, Field Selection, and Array Expressions
For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload

Generating Code for Message, Field Selection, and Array Expressions
For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload

Generating Code for Message, Field Selection, and Array Expressions
For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload

Generating Code for Assignment and Similar Operations

Consider the simple assignment statement

x = y;

which asks that the value of the variable y be stored in variable x

We want the l-value (address or location) for x and the r -value (content or value) for y

All expressions have r -values, but many have no l-values; for example, if a is an array of ten integers, and o is an object
with field f, C is a class with static field sf, and x is a local variable, the following have both l-values and r -values

a[3]

o.f

C.sf

x

while the following have r -values, but not l-values

5

x+5

Factorial.factorial (5)

Generating Code for Assignment and Similar Operations

Consider the simple assignment statement

x = y;

which asks that the value of the variable y be stored in variable x

We want the l-value (address or location) for x and the r -value (content or value) for y

All expressions have r -values, but many have no l-values; for example, if a is an array of ten integers, and o is an object
with field f, C is a class with static field sf, and x is a local variable, the following have both l-values and r -values

a[3]

o.f

C.sf

x

while the following have r -values, but not l-values

5

x+5

Factorial.factorial (5)

Generating Code for Assignment and Similar Operations

Consider the simple assignment statement

x = y;

which asks that the value of the variable y be stored in variable x

We want the l-value (address or location) for x and the r -value (content or value) for y

All expressions have r -values, but many have no l-values; for example, if a is an array of ten integers, and o is an object
with field f, C is a class with static field sf, and x is a local variable, the following have both l-values and r -values

a[3]

o.f

C.sf

x

while the following have r -values, but not l-values

5

x+5

Factorial.factorial (5)

Generating Code for Assignment and Similar Operations

Consider the simple assignment statement

x = y;

which asks that the value of the variable y be stored in variable x

We want the l-value (address or location) for x and the r -value (content or value) for y

All expressions have r -values, but many have no l-values; for example, if a is an array of ten integers, and o is an object
with field f, C is a class with static field sf, and x is a local variable, the following have both l-values and r -values

a[3]

o.f

C.sf

x

while the following have r -values, but not l-values

5

x+5

Factorial.factorial (5)

Generating Code for Assignment and Similar Operations
The right-hand-side expression is compiled to produce code for computing its r -value and leaving it on the stack

For the left-hand-side, sometimes no code needs to be generated, as in the following example

x = y;

produces

iload y’

istore x’

On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

An assignment may act as a statement, as shown below

x = y;

or as an expression, as shown below

z = x = y;

Generating Code for Assignment and Similar Operations
The right-hand-side expression is compiled to produce code for computing its r -value and leaving it on the stack

For the left-hand-side, sometimes no code needs to be generated, as in the following example

x = y;

produces

iload y’

istore x’

On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

An assignment may act as a statement, as shown below

x = y;

or as an expression, as shown below

z = x = y;

Generating Code for Assignment and Similar Operations
The right-hand-side expression is compiled to produce code for computing its r -value and leaving it on the stack

For the left-hand-side, sometimes no code needs to be generated, as in the following example

x = y;

produces

iload y’

istore x’

On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

An assignment may act as a statement, as shown below

x = y;

or as an expression, as shown below

z = x = y;

Generating Code for Assignment and Similar Operations
The right-hand-side expression is compiled to produce code for computing its r -value and leaving it on the stack

For the left-hand-side, sometimes no code needs to be generated, as in the following example

x = y;

produces

iload y’

istore x’

On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

An assignment may act as a statement, as shown below

x = y;

or as an expression, as shown below

z = x = y;

Generating Code for Assignment and Similar Operations
The right-hand-side expression is compiled to produce code for computing its r -value and leaving it on the stack

For the left-hand-side, sometimes no code needs to be generated, as in the following example

x = y;

produces

iload y’

istore x’

On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

An assignment may act as a statement, as shown below

x = y;

or as an expression, as shown below

z = x = y;

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations

In the first case, no value is left on the stack

In the second case, x = y must assign the value of y to x but also leave a value (the r -value for y) on the stack so that it
may be popped off and assigned to z, ie, the code might look something like

iload y’

dup

istore x’

istore z’

In parsing, when an expression is used as a statement, Parser’s statementExpression() method sets a flag isStatementExpression in the
expression node to true, and the code generation phase makes use of this flag in deciding when code must be produced
for duplicating r -values on the run-time stack

The most important property of the assignment is its side effect; one uses the assignment operation for its side effect:
overwriting a variable’s r -value with another

x--

++x

x += 6

Generating Code for Assignment and Similar Operations
The table below compares the various operations (labeled down the left), with an assortment of left-hand sides (labeled
across the top)

The instructions in brackets [...] must be generated if and only if the operation is a sub-expression of some other
expression, ie, if the operation is not a statement expression

Generating Code for Assignment and Similar Operations
The table below compares the various operations (labeled down the left), with an assortment of left-hand sides (labeled
across the top)

The instructions in brackets [...] must be generated if and only if the operation is a sub-expression of some other
expression, ie, if the operation is not a statement expression

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

The table above suggests four sub-operations common to most of the assignment-like operations in j--

1 codegenLoadLhsLvalue() - this generates code to load any up-front data for the left-hand side of an assignment needed for
an eventual store, ie, its l-value

2 codegenLoadLhsRvalue() - this generates code to load the r -value of the left-hand side, needed for implementing, for
example the += operator

3 codegenDuplicateRvalue() - this generates code to duplicate an r -value on the stack and put it in a place where it will be
on top of the stack once the store is executed

4 codegenStore() - this generates the code necessary to perform the actual store

The code needed for each of these differs for each potential left-hand side of an assignment: a simple local variable x, an
indexed array element a[i], an instance field o.f, and a static field C.sf

The code necessary for each of the four operations, and for each left-hand-side form, is illustrated in the table below

Generating Code for Assignment and Similar Operations

Our compiler defines an interface JLhs, which declares four abstract methods for these four sub-operations; each of
JVariable, JArrayExpression and JFieldSelection implements JLhs

Of course, one must also be able to generate code for the right-hand side expression, but codegen() is sufficient for that

For example, JPlusAssignOp’s codegen() is shown below

public void codegen(CLEmitter output) {

((JLhs) lhs). codegenLoadLhsLvalue(output);

if (lhs.type (). equals(Type.STRING)) {

rhs.codegen(output);

} else {

((JLhs) lhs). codegenLoadLhsRvalue(output);

rhs.codegen(output);

output.addNoArgInstruction(IADD);

}

if (! isStatementExpression) {

// Generate code to leave the r-value atop stack

((JLhs) lhs). codegenDuplicateRvalue(output);

}

((JLhs) lhs). codegenStore(output);

}

Generating Code for Assignment and Similar Operations

Our compiler defines an interface JLhs, which declares four abstract methods for these four sub-operations; each of
JVariable, JArrayExpression and JFieldSelection implements JLhs

Of course, one must also be able to generate code for the right-hand side expression, but codegen() is sufficient for that

For example, JPlusAssignOp’s codegen() is shown below

public void codegen(CLEmitter output) {

((JLhs) lhs). codegenLoadLhsLvalue(output);

if (lhs.type (). equals(Type.STRING)) {

rhs.codegen(output);

} else {

((JLhs) lhs). codegenLoadLhsRvalue(output);

rhs.codegen(output);

output.addNoArgInstruction(IADD);

}

if (! isStatementExpression) {

// Generate code to leave the r-value atop stack

((JLhs) lhs). codegenDuplicateRvalue(output);

}

((JLhs) lhs). codegenStore(output);

}

Generating Code for Assignment and Similar Operations

Our compiler defines an interface JLhs, which declares four abstract methods for these four sub-operations; each of
JVariable, JArrayExpression and JFieldSelection implements JLhs

Of course, one must also be able to generate code for the right-hand side expression, but codegen() is sufficient for that

For example, JPlusAssignOp’s codegen() is shown below

public void codegen(CLEmitter output) {

((JLhs) lhs). codegenLoadLhsLvalue(output);

if (lhs.type (). equals(Type.STRING)) {

rhs.codegen(output);

} else {

((JLhs) lhs). codegenLoadLhsRvalue(output);

rhs.codegen(output);

output.addNoArgInstruction(IADD);

}

if (! isStatementExpression) {

// Generate code to leave the r-value atop stack

((JLhs) lhs). codegenDuplicateRvalue(output);

}

((JLhs) lhs). codegenStore(output);

}

Generating Code for Assignment and Similar Operations

Our compiler defines an interface JLhs, which declares four abstract methods for these four sub-operations; each of
JVariable, JArrayExpression and JFieldSelection implements JLhs

Of course, one must also be able to generate code for the right-hand side expression, but codegen() is sufficient for that

For example, JPlusAssignOp’s codegen() is shown below

public void codegen(CLEmitter output) {

((JLhs) lhs). codegenLoadLhsLvalue(output);

if (lhs.type (). equals(Type.STRING)) {

rhs.codegen(output);

} else {

((JLhs) lhs). codegenLoadLhsRvalue(output);

rhs.codegen(output);

output.addNoArgInstruction(IADD);

}

if (! isStatementExpression) {

// Generate code to leave the r-value atop stack

((JLhs) lhs). codegenDuplicateRvalue(output);

}

((JLhs) lhs). codegenStore(output);

}

Generating Code for String Concatenation

In j--, as in Java, the binary + operator is overloaded; if both of its operands are integers, it denotes addition, but if
either operand is a string then the operator denotes string concatenation and the result is a string

The compiler’s analysis phase determines whether or not string concatenation is implied, and when it is, the
concatenation is made explicit, ie, the operation’s AST is rewritten, replacing JPlusOp with a JStringConcatenationOp

Also, when x is a string, analysis replaces

x += <expression >

by

x = x + <expression >

Generating Code for String Concatenation

In j--, as in Java, the binary + operator is overloaded; if both of its operands are integers, it denotes addition, but if
either operand is a string then the operator denotes string concatenation and the result is a string

The compiler’s analysis phase determines whether or not string concatenation is implied, and when it is, the
concatenation is made explicit, ie, the operation’s AST is rewritten, replacing JPlusOp with a JStringConcatenationOp

Also, when x is a string, analysis replaces

x += <expression >

by

x = x + <expression >

Generating Code for String Concatenation

In j--, as in Java, the binary + operator is overloaded; if both of its operands are integers, it denotes addition, but if
either operand is a string then the operator denotes string concatenation and the result is a string

The compiler’s analysis phase determines whether or not string concatenation is implied, and when it is, the
concatenation is made explicit, ie, the operation’s AST is rewritten, replacing JPlusOp with a JStringConcatenationOp

Also, when x is a string, analysis replaces

x += <expression >

by

x = x + <expression >

Generating Code for String Concatenation

In j--, as in Java, the binary + operator is overloaded; if both of its operands are integers, it denotes addition, but if
either operand is a string then the operator denotes string concatenation and the result is a string

The compiler’s analysis phase determines whether or not string concatenation is implied, and when it is, the
concatenation is made explicit, ie, the operation’s AST is rewritten, replacing JPlusOp with a JStringConcatenationOp

Also, when x is a string, analysis replaces

x += <expression >

by

x = x + <expression >

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for String Concatenation

To implement string concatenation, the compiler generates code to do the following

1 Create an empty string buffer, ie, a StringBuffer object, and initialize it

2 Append any operands to that buffer; that StringBuffer’s append() method is overloaded to deal with any type makes
handling operands of mixed types easy

3 Invoke the toString() method on the string buffer to produce a String

JStringConcatenationOp’s codegen() makes use of a helper method, nestedCodegen() for performing only step 2 for any nested string
concatenation operations, which eliminates the instantiation of unnecessary string buffers

For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encapsulates the code generated for the
particular cast

Each Converter implements a method codegen(), which generates any code necessary to the cast

For example, consider the converter for casting a reference type to one of its sub-types (narrowing cast) which requires
that a checkcast instruction be generated

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST , target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference type is cast to one of its super
types (called widening), no code need be generated

Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encapsulates the code generated for the
particular cast

Each Converter implements a method codegen(), which generates any code necessary to the cast

For example, consider the converter for casting a reference type to one of its sub-types (narrowing cast) which requires
that a checkcast instruction be generated

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST , target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference type is cast to one of its super
types (called widening), no code need be generated

Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encapsulates the code generated for the
particular cast

Each Converter implements a method codegen(), which generates any code necessary to the cast

For example, consider the converter for casting a reference type to one of its sub-types (narrowing cast) which requires
that a checkcast instruction be generated

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST , target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference type is cast to one of its super
types (called widening), no code need be generated

Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encapsulates the code generated for the
particular cast

Each Converter implements a method codegen(), which generates any code necessary to the cast

For example, consider the converter for casting a reference type to one of its sub-types (narrowing cast) which requires
that a checkcast instruction be generated

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST , target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference type is cast to one of its super
types (called widening), no code need be generated

Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encapsulates the code generated for the
particular cast

Each Converter implements a method codegen(), which generates any code necessary to the cast

For example, consider the converter for casting a reference type to one of its sub-types (narrowing cast) which requires
that a checkcast instruction be generated

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST , target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference type is cast to one of its super
types (called widening), no code need be generated

Generating Code for Casts

Casting an int to an Integer is called boxing and requires an invocation of the Integer.valueOf() method

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the Integer.intValue() method

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another require that a special instruction be executed; for example, the i2c

instruction converts an int to a char

There is a Converter defined for each valid conversion in j--

Generating Code for Casts

Casting an int to an Integer is called boxing and requires an invocation of the Integer.valueOf() method

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the Integer.intValue() method

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another require that a special instruction be executed; for example, the i2c

instruction converts an int to a char

There is a Converter defined for each valid conversion in j--

Generating Code for Casts

Casting an int to an Integer is called boxing and requires an invocation of the Integer.valueOf() method

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the Integer.intValue() method

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another require that a special instruction be executed; for example, the i2c

instruction converts an int to a char

There is a Converter defined for each valid conversion in j--

Generating Code for Casts

Casting an int to an Integer is called boxing and requires an invocation of the Integer.valueOf() method

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the Integer.intValue() method

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another require that a special instruction be executed; for example, the i2c

instruction converts an int to a char

There is a Converter defined for each valid conversion in j--

Generating Code for Casts

Casting an int to an Integer is called boxing and requires an invocation of the Integer.valueOf() method

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the Integer.intValue() method

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another require that a special instruction be executed; for example, the i2c

instruction converts an int to a char

There is a Converter defined for each valid conversion in j--

	Outline
	Introduction
	Generating Code for Classes and their Members
	Generating Code for Control and Logical Expressions
	Generating Code for Message, Field Selection, and Array Expressions
	Generating Code for Assignment and Similar Operations
	Generating Code for String Concatenation
	Generating Code for Casts

