
JVM Code Generation

1 Exercises

Exercise 1. Consider the j-- program Sum shown below:

1 package pass;
2
3 import java.lang.Integer;
4 import java.lang.System;
5
6 public class Sum {
7 private static String MSG = "SUM = ";
8 private int n;
9

10 public Sum(int n) {
11 this.n = n;
12 }
13
14 public int compute () {
15 int sum = 0, i = n;
16 while (i > 0) {
17 sum += i--;
18 }
19 return sum;
20 }
21
22 public static void main(String [] args) {
23 int n = Integer.parseInt(args [0]);
24 Sum sum = new Sum(n);
25 System.out.println(MSG + sum.compute ());
26 }
27 }

How does JVM bytecode generation (JCompilationUnit.codegen()) for the program work?

Exercise 2. Suppose lhs and rhs are boolean expressions. How does j-- generate code for the following statements?

a.

1 boolean x = lhs && rhs;

b.

1 if (lhs && rhs) {
2 then_statement
3 } else {
4 else_statement
5 }

c.

1 while (lhs && rhs) {
2 statement
3 }

Exercise 3. Suppose x is an object and y is an integer field within.

a. What is the JVM bytecode generated for the following statement? How does the runtime stack evolve as the instructions
are executed?

1 ++x.y;

b. If z is also an integer, what is the JVM bytecode generated for the following statement? How does the runtime stack
evolve as the instructions are executed?

1 z = ++x.y;

Exercise 4. How is code generated for the expression "The first perfect number is " + 6?

Exercise 5. How is code generated for casts?

Exercise 6. How would you generate JVM bytecode for the do-while statement, ie, implement codegen() in JDoWhileStatement.java?

1 / 3

JVM Code Generation

2 Solutions to Exercises

Solution 1. Consult sections 5.2 – 5.6 of our text.

Solution 2.
a. lhs code

branch to Target on false
rhs code
branch to Target on false
push 1 on stack
goto End

Target: push 0 on stack
End: ...

b. lhs code
branch to Target on false
rhs code
branch to Target on false
then_statement code
goto End

Target: else_statement code
End: ...

c. Test: lhs code
branch to Target on false
rhs code
branch to Target on false
body code
goto Test

Target: ...

Solution 3. We use table on slide 26 from the JVM Code Generation chapter.
a. Bytecode:

aload x’
dup
getfield y
iconst_1
iadd
putfield y

Runtime stack (right to left is top to bottom):

| x |
| x | x
| x | y
| x | y | 1
| x | y+1
|

b. Bytecode:

aload x
dup
getfield y
iconst_1
iadd
dup_x1
putfield y

Runtime stack (right to left is top to bottom):

| x |
| x | x
| x | y
| x | y | 1
| x | y+1
| y+1 | x | y+1
| y+1

Solution 4. Since the left-hand-side expression of + is a string, the operation denotes string concatenation, and is represented
in the AST as a JStringConcatenationOp object. The codegen() method therein does the following:

1. Creates an empty string buffer, ie, a StringBuffer object, and initializes it.

2. Appends the string "The first perfect number is " to the buffer using StringBuffer’s append(String x) method.

3. Appends the integer value 6 to the buffer using StringBuffer’s append(int x) method.

2 / 3

JVM Code Generation

4. Invokes the toString() method on the buffer to produce a string on the runtime stack.

Solution 5. Analysis determines both the validity of a cast and the necessary converter, which encapsulates the code
generated for the particular cast. Each Converter implements a method codegen(), which generates any code necessary to the
cast. Code is first generated for the expression being cast, and then for the cast, using the appropriate converter.

Solution 6.

1 public void codegen(CLEmitter output) {
2 String bodyStart = output.createLabel ();
3 output.addLabel(bodyStar);
4 body.codegen(output);
5 condition.codegen(output , bodyStart , true);
6 }

3 / 3

	Exercises
	Solutions to Exercises

