JVM Code Generation

1 Exercises

Exercise 1. Consider the j-- program sum shown below:

package pass;

import java.lang.Integer;
import java.lang.System;

public class Sum {
private static String MSG = "SUM = ";
private int n;

public Sum(int n) {
this.n = n;

}

public int compute() {
int sum = 0, i = n;
while (i > 0) {
sum += i--;
}
return sum;

}

public static void main(Stringl[] args) {
int n = Integer.parselnt(args[0]);
Sum sum = new Sum(n);
System.out.println(MSG + sum.compute ());

}

How does JVM bytecode generation (scompilationtnit.codegen()) for the program work?

Exercise 2. Suppose 1ns and rhs are boolean expressions. How does j-- generate code for the following statements?

a.
boolean x = lhs && rhs;
b.
if (lhs && rhs) {
then_statement
} else {
else_statement
}
C.

while (lhs && rhs) {
statement

}

Exercise 3. Suppose x is an object and y is an integer field within.

a. What is the JVM bytecode generated for the following statement? How does the runtime stack evolve as the instructions
are executed?

++x.y; ]

b. If z is also an integer, what is the JVM bytecode generated for the following statement? How does the runtime stack
evolve as the instructions are executed?

zZ = ++x.y;

Exercise 4. How is code generated for the expression "The first perfect number is " + 67
Exercise 5. How is code generated for casts?

Exercise 6. How would you generate JVM bytecode for the do-while statement, ie, implement codegen() in JDowhileStatement.java?

1/3



JVM Code Generation

2 Solutions to Exercises

Solution 1. Consult sections 5.2 — 5.6 of our text.

Solution 2.

a. lhs code

branch to Target on false
rhs code
branch to Target on false
push 1 on stack
goto End

Target: push 0 on stack

End: .

b. lhs code

branch to Target on false
rhs code
branch to Target on false
then_statement code
goto End

Target: else_statement code

End:

C. Test: lhs code
branch to Target on false
rhs code
branch to Target on false
body code
goto Test
Target: ...

Solution 3. We use table on slide 26 from the JVM Code Generation chapter.
a. Bytecode:

aload x’
dup
getfield y
iconst_1
iadd
putfield y

Runtime stack (right to left is top to bottom):

|

| x
Iy
Iy I 1
| y+1

Mo M XM

b. Bytecode:

aload x
dup
getfield y
iconst_1
iadd
dup_x1
putfield y

Runtime stack (right to left is top to bottom):

MoM oM MM

y+1

I
I
I
|
|
|
| y+1

Solution 4. Since the left-hand-side expression of + is a string, the operation denotes string concatenation, and is represented
in the AST as a JstringConcatenationop object. The codegen() method therein does the following:

1. Creates an empty string buffer, ie, a stringdutter object, and initializes it.
2. Appends the string "The first perfect number is " tO the buffer using StringBuffer’S append (String x) method.

3. Appends the integer value 6 to the buffer using stringButfer’s append(int x) method.

2/3



JVM Code Generation

4. Invokes the tostring() method on the buffer to produce a string on the runtime stack.

Solution 5. Analysis determines both the validity of a cast and the necessary converter, which encapsulates the code
generated for the particular cast. Each Converter implements a method codegen(), which generates any code necessary to the
cast. Code is first generated for the expression being cast, and then for the cast, using the appropriate converter.

Solution 6.

public void codegen(CLEmitter output) {
String bodyStart = output.createLabel();
output.addLabel (bodyStar);
body.codegen (output);
condition.codegen(output, bodyStart, true);

3/3



	Exercises
	Solutions to Exercises

