Lexical Analysis

(1) Scanning Tokens

2 Regular Expressions

3 Finite State Automata

4 Non-deterministic Versus Deterministic Finite State Automata

5 Regular Expressions to NFA

6 NFA to DFA

7 DFA to Minimal DFA

8 JavaCC

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

The first step in compiling a program is to break it into tokens

Scanning Tokens

The first step in compiling a program is to break it into tokens

```
Example
[& HelloWorld.java
// Copyright 2012- Bill Campbell, Swami Iyer and Bahar Akbal-Delibas
/1
// Writes to standard output the message "Hello, World".
import java.lang.System;
public class HelloWorld {
    // Entry point.
    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
}
```

Tokens: import, java, ., lang, ., System,;, public, class, HelloWorld, \{, ..., ; , \}, \}

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators For example, in Helloworld. java:

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Helloworld, etc are identifiers

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Helloworld, etc are identifiers
- "Hello, wor1d" is a (string) literal

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Helloworld, etc are identifiers
- "Hello, wor1d" is a (string) literal
- ., ;, £, [, etc are separators

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Helloworld, etc are identifiers
- "Hello, wor1d" is a (string) literal
- ., ;, \&, [, etc are separators
- There are no operators

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Hellowor1d.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Helloworld, etc are identifiers
- "Hello, wor1d" is a (string) literal
- ., ;, \&, [, etc are separators
- There are no operators

A program that breaks the source language program into a sequence of tokens is called a lexical analyzer or a scanner

Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in Helloworld.java:

- import, public, class, static, etc are reserved words
- java, lang, System, Hellowor1d, etc are identifiers
- "Hello, wor1d" is a (string) literal
- ., ;, f, [, etc are separators
- There are no operators

A program that breaks the source language program into a sequence of tokens is called a lexical analyzer or a scanner

A scanner may be hand-crafted or generated from a specification consisting of regular expressions

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

State transition diagrams can be used for describing scanners

State transition diagrams can be used for describing scanners
A state transition diagram for recognizing identifiers and integers

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

Scanner. java

if (isLetter (ch) || ch == ' _' || ch == '\$') \{ buffer = new StringBuffer();
do \{
buffer. append (ch);
nextch();
\} while (isLetter(ch) || isDigit(ch) || ch == ' -' \| ch == '\$'); return new TokenInfo(IDENTIFIER, buffer.toString(), line)
\} else if (isDigit(ch))\{
buffer = new StringBuffer();
do \{
buffer. append (ch);
nextch () ;
\} while (isDigit(ch));
return new TokenInfo(INT_LITERAL, buffer.toString(), line);
\}

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

A state transition diagram for recognizing keywords

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

```
Scanner.java
reserved = new Hashtable<String, Integer>();
    reserved.put("abstract", ABSTRACT);
    reserved.put("boolean", BOOLEAN);
    reserved.put("char", CHAR);
    reserved.put("while", WHILE);
    if (isLetter(ch) || ch == ' ,' || ch == '$') {
        buffer = new StringBuffer();
        do {
            buffer.append(ch);
            nextCh();
        } while (isLetter(ch) || isDigit(ch) || ch == '_' || ch == '$');
        String identifier = buffer.toString();
        if (reserved.containsKey(identifier)) {
            return new TokenInfo(reserved.get(identifier), line);
        } else {
            return new TokenInfo(IDENTIFIER, identifier, line);
        }
    }
```


Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

A state transition diagram for recognizing separators and operators

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

```
& Scanner.java
switch (ch) {
    case ';':
        nextCh();
        return new TokenInfo(SEMI, line);
    case '=':
        nextCh();
        if (ch == '=') {
            nextCh();
            return new TokenInfo(EQUAL, line);
        } else {
            return new TokenInfo(ASSIGN, line);
        }
        case '!':
        nextCh();
        return new TokenInfo(LNOT, line);
        case '*':
            nextCh();
            return new TokenInfo(STAR, line);
    }
```


Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

A state transition diagram for recognizing whitespace

Scanning Tokens

A state transition diagram for recognizing whitespace


```
& Scanner.java
    while (isWhitespace(ch)) {
        nextCh();
    }
```


Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

Scanning Tokens

A state transition diagram for recognizing comments

Scanning Tokens
 Canning Tokens

\square
 $\square+2$ 0
 －電 （正都正正 \square T （ ， （ ，
 －

\qquad

```
[/ Scanner.java
boolean moreWhiteSpace = true;
while (moreWhiteSpace) {
while (isWhitespace(ch)) {
    nextCh();
    }
    if (ch == '/') {
        nextCh();
            if (ch == '/') {
                while (ch != '\n' && ch != EOFCH) {
                    nextCh();
                }
            } else {
                reportScannerError("Operator / is not supported in j--.");
            }
        } else {
        moreWhiteSpace = false;
        }
}
```


Regular Expressions

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string
If $a \in \Sigma$, then a describes the language $L(a)$ consisting of the string a

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string
If $a \in \Sigma$, then a describes the language $L(a)$ consisting of the string a

If r and s are regular expressions, then their concatenation $r s$ describes the language $L(r s)$ consisting of strings obtained by concatenating a string from $L(r)$ to a string from $L(s)$

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string
If $a \in \Sigma$, then a describes the language $L(a)$ consisting of the string a

If r and s are regular expressions, then their concatenation r describes the language $L(r s)$ consisting of strings obtained by concatenating a string from $L(r)$ to a string from $L(s)$

If r and s are regular expressions, then their alternation $r \mid s$ describes the language $L(r \mid s)$ consisting of strings from $L(r)$ or $L(s)$

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string
If $a \in \Sigma$, then a describes the language $L(a)$ consisting of the string a

If r and s are regular expressions, then their concatenation r describes the language $L(r s)$ consisting of strings obtained by concatenating a string from $L(r)$ to a string from $L(s)$

If r and s are regular expressions, then their alternation $r \mid s$ describes the language $L(r \mid s)$ consisting of strings from $L(r)$ or $L(s)$

If r is a regular expression, then the Kleene closure $r *$ describes the language $L(r *)$ consisting of strings obtained by concatenating zero or more instances of strings from $L(r)$

Regular Expressions

A regular expression describes a language of strings over an alphabet Σ
ϵ (epsilon) describes the language consisting of only the empty string
If $a \in \Sigma$, then a describes the language $L(a)$ consisting of the string a

If r and s are regular expressions, then their concatenation r describes the language $L(r s)$ consisting of strings obtained by concatenating a string from $L(r)$ to a string from $L(s)$

If r and s are regular expressions, then their alternation $r \mid s$ describes the language $L(r \mid s)$ consisting of strings from $L(r)$ or $L(s)$

If r is a regular expression, then the Kleene closure $r *$ describes the language $L(r *)$ consisting of strings obtained by concatenating zero or more instances of strings from $L(r)$

Both r and (r) describe the same language, ie, $L(r)=L((r))$

Regular Expressions

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

As another example, in a programming language such as $j-$-:

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

As another example, in a programming language such as $j-$-:

- Reserved words may be described as
"abstract" | "boolean" | "char" | ...

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

As another example, in a programming language such as $j-$-:

- Reserved words may be described as
"abstract" | "boolean" | "char" | ...
- Separators and operators may be described as
", " | "." | " [" | ... | "=" | "==" | ">" | ...

Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

As another example, in a programming language such as $j--$:

- Reserved words may be described as
"abstract" | "boolean" | "char" | ...
- Separators and operators may be described as
", " | "." | " [" | ... | "=" | "==" | ">" | ...
- Identifiers may be described as

```
( "a"..."z" | "A"..."Z" | "_" | "$" ) ( "a"..."z" | "A"..."Z" | "_" | "O"..."9" | "$" )*
```


Regular Expressions

For example, given an alphabet $\Sigma=\{a, b\}$:

- $a(a \mid b) *$ describes the language of non-empty strings of a 's and b 's beginning with an a
- $a a|a b| b a \mid b b$ describes the language of all two-symbol strings over the alphabet
- $(a \mid b) * a b$ describes the language of all strings of a 's and b 's ending in $a b$

As another example, in a programming language such as $j--$:

- Reserved words may be described as
"abstract" | "boolean" | "char" | ...
- Separators and operators may be described as
"," | "." | " [" | ... | "=" | "==" | ">" | ...
- Identifiers may be described as
("a"..."z" | "A"..."Z" | "-" | "\$") ("a"..."z" | "A"..."Z" | "-" | "0"..."9" | "\$")*
- Integer literals may be described as
("0"..."9") ("0"..."9")*

Finite State Automata號 $+\rightarrow+$號

\square

?
T
－ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad （
\qquad

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:
(1) Σ is the input alphabet

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:
(1) Σ is the input alphabet
2) S is a set of states

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:
(1) Σ is the input alphabet
2) S is a set of states
(3) $s_{0} \in S$ is a special start state

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:
(1) Σ is the input alphabet
(2) S is a set of states
(3) $s_{0} \in S$ is a special start state
(4) $F \in S$ is a set of final states

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple $F=\left(\Sigma, S, s_{0}, F, M\right)$, where:
(1) Σ is the input alphabet
(2) S is a set of states
(3) $s_{0} \in S$ is a special start state
(4) $F \in S$ is a set of final states
${ }_{5} M$ is a set of moves (aka transitions) of the form $m(r, a)=s$, where $r, s \in S$ and $a \in \Sigma$

Finite State Automata號 $+\rightarrow+$號

\square

?
T
－ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad （
\qquad

For example, consider the regular expression $(a \mid b) a * b$ over the alphabet $\{a, b\}$

For example, consider the regular expression $(a \mid b) a * b$ over the alphabet $\{a, b\}$
An FSA F that recognizes the language described by the regular expression

Finite State Automata

For example, consider the regular expression $(a \mid b) a * b$ over the alphabet $\{a, b\}$
An FSA F that recognizes the language described by the regular expression

Formally, $F=\left(\Sigma, S, s_{0}, F, M\right)$, where $\Sigma=\{a, b\}, S=\{0,1,2\}, s_{0}=0, F=\{2\}$, and M is

r	a	$m(r, a)$
0	a	1
0	b	1
1	a	1
1	b	2

A non-deterministic finite state automaton (NFA) is one that allows:

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$
- More than one move from a state r on an input symbol a, ie, $m(r, a)=s$ and $m(r, a)=t$, where $s \neq t$

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$
- More than one move from a state r on an input symbol a, ie, $m(r, a)=s$ and $m(r, a)=t$, where $s \neq t$

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input that takes us into one of the final states

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$
- More than one move from a state r on an input symbol a, ie, $m(r, a)=s$ and $m(r, a)=t$, where $s \neq t$

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input that takes us into one of the final states

A deterministic finite state automaton (DFA) is one in which:

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$
- More than one move from a state r on an input symbol a, ie, $m(r, a)=s$ and $m(r, a)=t$, where $s \neq t$

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input that takes us into one of the final states

A deterministic finite state automaton (DFA) is one in which:

- There are no ϵ-moves

A non-deterministic finite state automaton (NFA) is one that allows:

- An ϵ-move defined on the empty string ϵ, ie, $m(r, \epsilon)=s$
- More than one move from a state r on an input symbol a, ie, $m(r, a)=s$ and $m(r, a)=t$, where $s \neq t$

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input that takes us into one of the final states

A deterministic finite state automaton (DFA) is one in which:

- There are no ϵ-moves
- There is a unique move from any state r on an input symbol a, ie, if $m(r, a)=s$ and $m(r, a)=t$, then $s=t$

For example, consider the regular expression $a(a \mid b) * b$ over the alphabet $\{a, b\}$
An NFA N that recognizes the language described by the regular expression

$N=\left(\Sigma, S, s_{0}, F, M\right)$ where $\Sigma=\{a, b\}, S=\{0,1,2\}, s_{0}=0, F=\{2\}$, and M is

r	a	$m(r, a)$
0	a	1
1	ϵ	0
1	a	1
1	b	1
1	b	2

Non-deterministic Versus Deterministic Finite State Automata
And a DFA D that recognizes the same language

$D=\left(\Sigma, S, s_{0}, F, M\right)$ where $\Sigma=\{a, b\}, S=\{0,1,2, \phi\}, s_{0}=0, F=\{2\}$, and M is

r	a	$m(r, a)$
0	a	1
0	b	ϕ
1	a	1
1	b	2
2	a	1
2	b	2
ϕ	a, b	ϕ

Regular Expressions to NFA

Given any regular expression r, we can construct (using Thompson's construction procedure) an NFA N that recognizes the same language; ie, $L(N)=L(r)$

Given any regular expression r, we can construct (using Thompson's construction procedure) an NFA N that recognizes the same language; ie, $L(N)=L(r)$
(Rule 1) NFA N_{r} for recognizing $L(r=\epsilon)$

Regular Expressions to NFA

Given any regular expression r, we can construct (using Thompson's construction procedure) an NFA N that recognizes the same language; ie, $L(N)=L(r)$
(Rule 1) NFA N_{r} for recognizing $L(r=\epsilon)$

(Rule 2) NFA N_{r} for recognizing $L(r=a)$

Regular Expressions to NFA

(Rule 3) NFA $N_{r s}$ for recognizing $L(r s)$

(Rule 3) NFA $N_{r s}$ for recognizing $L(r s)$

(Rule 4) NFA $N_{r \mid s}$ for recognizing $L(r \mid s)$

Regular Expressions to NFA

(Rule 5) NFA $N_{r *}$ for recognizing $L(r *)$

(Rule 5) NFA $N_{r *}$ for recognizing $L(r *)$

(Rule 6) NFA N_{r} for recognizing $L(r)$ also recognizes $L((r))$

Regular Expressions to NFA

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression (a|b)a*b

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression ($a \mid b$) $a * b$

Using Rule 2, we get the NFAs N_{a} and N_{b} for recognizing a and b as

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression ($a \mid b$) $a * b$

Using Rule 2, we get the NFAs N_{a} and N_{b} for recognizing a and b as

$$
\rightarrow \text { (1) } \xrightarrow{a}
$$

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression ($a \mid b$) $a * b$

Using Rule 2, we get the NFAs N_{a} and N_{b} for recognizing a and b as

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression ($a \mid b$) $a * b$

Using Rule 2, we get the NFAs N_{a} and N_{b} for recognizing a and b as

Using Rules 4 and 6 , we get the NFA $N_{(a \mid b)}$ for recognizing $(a \mid b)$ as

Regular Expressions to NFA

As an example, let's construct an NFA for the regular expression ($a \mid b$) $a * b$

Using Rule 2, we get the NFAs N_{a} and N_{b} for recognizing a and b as

Using Rules 4 and 6 , we get the NFA $N_{(a \mid b)}$ for recognizing $(a \mid b)$ as

Regular Expressions to NFA

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

$$
\rightarrow(7) \xrightarrow{a}
$$

Using Rule 5, we get the NFA $N_{\text {a* }}$ for recognizing $a *$ as

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

$$
\rightarrow(7) \xrightarrow{a}
$$

Using Rule 5, we get the NFA $N_{a *}$ for recognizing $a *$ as

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

Using Rule 5, we get the NFA $N_{a *}$ for recognizing $a *$ as

Using Rule 3, we get the NFA $N_{(a \mid b) a *}$ for recognizing (a|b)a*

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{a} for recognizing the second instance of a as

$$
\rightarrow(7) \xrightarrow{a}
$$

Using Rule 5, we get the NFA $N_{a *}$ for recognizing $a *$ as

Using Rule 3, we get the NFA $N_{(a \mid b) a *}$ for recognizing (a|b)a*

Regular Expressions to NFA

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{b} for recognizing the second instance of b as

Using Rule 2, we get the NFAs N_{b} for recognizing the second instance of b as

$$
\rightarrow 10 \xrightarrow{b}
$$

Using Rule 2, we get the NFAs N_{b} for recognizing the second instance of b as

$$
\rightarrow 10 \xrightarrow{b}
$$

Finally, using Rule 3, we get the NFA $N_{(a \mid b) a * b}$ for recognizing $(a \mid b) a * b$ as

Regular Expressions to NFA

Using Rule 2, we get the NFAs N_{b} for recognizing the second instance of b as

$$
\rightarrow 10 \rightarrow 11
$$

Finally, using Rule 3, we get the NFA $N_{(a \mid b) a * b}$ for recognizing (a|b)a*b as

NFA to DFA
 NFA to

左

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure

NFA to DFA

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the same portion of the input

NFA to DFA

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure
The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the same portion of the input

The computation of all states reachable from a given state s based on ϵ-moves alone is called taking the ϵ-closure of that state

NFA to DFA

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure
The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the same portion of the input

The computation of all states reachable from a given state s based on ϵ-moves alone is called taking the ϵ-closure of that state

The ϵ-closure(s) for a state s includes s and all states reachable from s using ϵ-moves alone, ie, ϵ-closure $(s)=\{s\} \cup\{r \in S \mid$ there is a path of only ϵ-moves from s to $r\}$

NFA to DFA

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure
The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the same portion of the input

The computation of all states reachable from a given state s based on ϵ-moves alone is called taking the ϵ-closure of that state

The ϵ-closure(s) for a state s includes s and all states reachable from s using ϵ-moves alone, ie, ϵ-closure $(s)=\{s\} \cup\{r \in S \mid$ there is a path of only ϵ-moves from s to $r\}$

The ϵ-closure (S) for a set of states S includes S and all states reachable from any state $s \in S$ using ϵ-moves alone

NFA to DFA
 NFA to

左

```
Algorithm \(\epsilon\)-closure(S) for a set of states \(S\)
Input: a set of states \(S\)
Output: \(\epsilon\)-closure(S)
    1: \(P \leftarrow \operatorname{Stack}(S)\)
    \(C \leftarrow \operatorname{Set}(S)\)
    while not \(P\).isEmpty() do
        \(r \leftarrow P\).pop()
        for \(s \in m(r, \epsilon)\) do
            if \(s \notin C\) then
            P.push(s)
            C.add(s)
                end if
        end for
    end while
    return C
```


NFA to DFA
 NFA to

左

```
Algorithm \(\epsilon\)-closure(s) for a state \(s\)
Input: a state \(s\)
Output: \(\epsilon\)-closure(s)
    1: \(S \leftarrow \operatorname{Set}(s)\)
    2: return \(\epsilon\)-closure(S)
```


NFA to DFA
 NFA to

左

NFA to DFA

As an example, let's convert the NFA $N_{(a \mid b) a * b}$ to a DFA

NFA to DFA

As an example, let's convert the NFA $N_{(a \mid b) a * b}$ to a DFA

r	a	$m(r, a)$
$\{0,1,3\}=0$ (start state)	a	$\{2,5,6,7,9,10\}=1$
0	b	$\{4,5,6,7,9,10\}=2$
1	a	$\{7,8,9,10\}=3$
1	b	$\{11\}=4$ (accept state)
2	a	3
2	b	4
3	a	3
3	b	4
4	a, b	ϕ
ϕ	a, b	ϕ

NFA to DFA
 NFA to

左

The DFA for recognizing $(a \mid b) a * b$

NFA to DFA
 NFA to

左

NFA to DFA

```
Algorithm NFA to DFA construction
```

```
Input: an NFA \(N=\left(\Sigma, S, s_{0}, M, F\right)\)
```

Input: an NFA $N=\left(\Sigma, S, s_{0}, M, F\right)$
Output: an equivalent DFA $D=\left(\Sigma, S_{D}, s_{D 0}, M_{D}, F_{D}\right)$
Output: an equivalent DFA $D=\left(\Sigma, S_{D}, s_{D 0}, M_{D}, F_{D}\right)$
${ }^{s} D 0 \leftarrow \epsilon$-closure $\left(s_{0}\right)$
${ }^{s} D 0 \leftarrow \epsilon$-closure $\left(s_{0}\right)$
$S_{D} \leftarrow \operatorname{Set}\left(s_{D O}\right)$
$S_{D} \leftarrow \operatorname{Set}\left(s_{D O}\right)$
$M_{D} \leftarrow$ Moves ()
$M_{D} \leftarrow$ Moves ()
stk $\leftarrow \operatorname{Stack}\left({ }^{s} D 0\right)$
stk $\leftarrow \operatorname{Stack}\left({ }^{s} D 0\right)$
$i \leftarrow 0$
$i \leftarrow 0$
while not $s t k$.isEmpty() do
while not $s t k$.isEmpty() do
$r \leftarrow s t k \cdot \operatorname{pop}()$
$r \leftarrow s t k \cdot \operatorname{pop}()$
for $a \in \Sigma$ do
for $a \in \Sigma$ do
${ }^{s} D i+1 \leftarrow \epsilon$-closure $(m(r, a))$
${ }^{s} D i+1 \leftarrow \epsilon$-closure $(m(r, a))$
if $s_{D i+1} \neq\{ \}$ then
if $s_{D i+1} \neq\{ \}$ then
if $s_{D i+1} \notin S_{D}$ then
if $s_{D i+1} \notin S_{D}$ then
$S_{D} \cdot \operatorname{add}\left(s_{D i+1}\right)$
$S_{D} \cdot \operatorname{add}\left(s_{D i+1}\right)$
stk.push(s ${ }^{D i+1}$)
stk.push(s ${ }^{D i+1}$)
$i \leftarrow i+1$
$i \leftarrow i+1$
$M_{D} \cdot \operatorname{add}\left((r, a) \rightarrow s_{D i+1}\right)$
$M_{D} \cdot \operatorname{add}\left((r, a) \rightarrow s_{D i+1}\right)$
else if $\exists s_{j} \in S_{D}$ such that $s_{D i+1}=s_{j}$ then
else if $\exists s_{j} \in S_{D}$ such that $s_{D i+1}=s_{j}$ then
$M_{D} \cdot \operatorname{add}\left((r, a) \rightarrow s_{j}\right)$
$M_{D} \cdot \operatorname{add}\left((r, a) \rightarrow s_{j}\right)$
end if
end if
end if
end if
end for
end for
end while
end while
$F_{D} \leftarrow \operatorname{Set}()$
$F_{D} \leftarrow \operatorname{Set}()$
for $s_{D} \in S_{D}$ do
for $s_{D} \in S_{D}$ do
for $s \in s_{D}$ do
for $s \in s_{D}$ do
if $s \in F$ then
if $s \in F$ then
$F_{D} \cdot \operatorname{add}\left(s_{D}\right)$
$F_{D} \cdot \operatorname{add}\left(s_{D}\right)$
end
end
end for
end for
end for
end for
return $D=\left(\Sigma, S_{D}, s_{D 0}, M_{D}, F_{D}\right)$

```
    return \(D=\left(\Sigma, S_{D}, s_{D 0}, M_{D}, F_{D}\right)\)
```


DFA to Minimal DFA

To obtain a smaller but equivalent DFA, partition the states such that the states in the new DFA are subsets of the states in the original (perhaps larger) DFA

To obtain a smaller but equivalent DFA, partition the states such that the states in the new DFA are subsets of the states in the original (perhaps larger) DFA

The initial partition contains two subsets: the non-final states and the final states

To obtain a smaller but equivalent DFA, partition the states such that the states in the new DFA are subsets of the states in the original (perhaps larger) DFA

The initial partition contains two subsets: the non-final states and the final states
For example, consider the DFA for $(a \mid b) a * b$

To obtain a smaller but equivalent DFA, partition the states such that the states in the new DFA are subsets of the states in the original (perhaps larger) DFA

The initial partition contains two subsets: the non-final states and the final states
For example, consider the DFA for $(a \mid b) a * b$

The initial partition contains the subsets $\{0,1,2,3, \phi\}$ and $\{4\}$

DFA to Minimal DFA

Make sure that from a particular subset, on each input symbol, you transition into an identical subset; if not, split the subset

Make sure that from a particular subset, on each input symbol, you transition into an identical subset; if not, split the subset

The symbol a does not split the subset $\{0,1,2,3, \phi\}$, since

$$
\begin{aligned}
& m(0, a)=1 \\
& m(1, a)=3 \\
& m(2, a)=3 \\
& m(3, a)=3 \\
& m(\phi, a)=\phi
\end{aligned}
$$

Make sure that from a particular subset, on each input symbol, you transition into an identical subset; if not, split the subset

The symbol a does not split the subset $\{0,1,2,3, \phi\}$, since

$$
\begin{aligned}
& m(0, a)=1 \\
& m(1, a)=3 \\
& m(2, a)=3 \\
& m(3, a)=3 \\
& m(\phi, a)=\phi
\end{aligned}
$$

The symbol b splits the subset $\{0,1,2,3, \phi\}$ into subsets $\{0, \phi\}$ and $\{1,2,3\}$, since

$$
\begin{aligned}
& m(0, b)=2 \\
& m(1, b)=4 \\
& m(2, b)=4 \\
& m(3, b)=4 \\
& m(\phi, b)=\phi
\end{aligned}
$$

DFA to Minimal DFA

The symbol a splits the subset $\{0, \phi\}$ into subsets $\{0\}$ and $\{\phi\}$

The symbol a splits the subset $\{0, \phi\}$ into subsets $\{0\}$ and $\{\phi\}$
Neither a nor b splits the subset $\{1,2,3\}$

The symbol a splits the subset $\{0, \phi\}$ into subsets $\{0\}$ and $\{\phi\}$
Neither a nor b splits the subset $\{1,2,3\}$
The final partition is therefore $\{\{0\},\{1,2,3\},\{4\},\{\phi\}\}$

DFA to Minimal DFA

Minimal DFA for recognizing $(a \mid b) a * b$

DFA to Minimal DFA

```
Algorithm Minimizing a DFA
Input: a DFA \(D=\left(\Sigma, S, s_{0}, M, F\right)\)
Output: a partition of \(S\)
    partition \(\leftarrow\{S-F, F\}\)
    while splitting occurs do
        for subset \(\in\) partition do
            if subset.size() \(>1\) then
                for \(a \in \Sigma\) do
                    \(r \leftarrow\) a state chosen from subset
                    targetSet \(\leftarrow\) the subset in the partition containing \(m(r, a)\)
                    set \(1 \leftarrow\{s \in \operatorname{subset} \mid m(s, a) \in\) targetSet \(\}\)
                    set \(2 \leftarrow\{s \in \operatorname{subset} \mid m(s, a) \notin\) targetSet \(\}\)
                    if \(\operatorname{set} 2 \neq\{ \}\) then
                    replace subset in partition by set 1 and set 2
                    break
                    end if
                end for
            end if
        end for
    end while
```

\author{

}

\qquad

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars
A lexical grammar consists a set of regular expressions and a set of lexical states

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars
A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars
A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a defaut state in which scanning begins; one may specify additional states as required

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars
A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a defaut state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the greatest number of input characters

JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars
A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a defaut state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state

\author{

}

\qquad

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:

There are four kinds of regular expressions that determine what happens when the regular expression has been matched: (1) skip: throws away the matched string

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:
(1) skip: throws away the matched string

2 more: continues to the next state, taking the matched string along

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:
(1) skip: throws away the matched string

2 more: continues to the next state, taking the matched string along
3 Tokev: creates a token from the matched string and returns it to the parser

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:
(1) skip: throws away the matched string

2 more: continues to the next state, taking the matched string along
3 Tokev: creates a token from the matched string and returns it to the parser
4 Spectal_token: creates a special token that does not participate in the parsing

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:
(1) skip: throws away the matched string

2 more: continues to the next state, taking the matched string along
3 Tokev: creates a token from the matched string and returns it to the parser
4 Spectal_token: creates a special token that does not participate in the parsing

$$
{ }_{\mathrm{j}-\mathrm{-} . \mathrm{jj}}^{\longrightarrow \text { JavaCC } \longrightarrow \text { TokenManager. java }}
$$

\author{

}

\qquad

JavaCC

Scanning whitespace

SKIP: \{ " " | " \tt" | "\n" | "\r" | "\f" \}

JavaCC

Scanning whitespace

```
SKIP: { " " | "\t" | "\n" | "\r" | "\f" }
```


Scanning single-line comments

```
SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <COMMENT: ~[]> }
```


JavaCC

Scanning whitespace

```
SKIP: { " " | "\t" | "\n" | "\r" | "\f" }
```


Scanning single-line comments

```
SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <COMMENT: ~ []> }
```


Alternative way of scanning single-line comments

```
SPECIAL_TOKEN: {
    <SINGLE_LINE_COMMENT: "//" ( ~ [ "\n", "\r" ] )* ( "\n" | "\r" | "\r\n" )>
}
```


JavaCC

Scanning whitespace

```
SKIP: { " " | "\t" | "\n" | "\r" | "\f" }
```


Scanning single-line comments

```
SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <COMMENT: ~ []> }
```


Alternative way of scanning single-line comments

```
SPECIAL_TOKEN: {
    <SINGLE_LINE_COMMENT: "//" ( ~[ "\n", "\r" ] )* ( "\n" | "\r" | "\r\n" )>
}
```

Scanning reserved words, separators, and operators

```
TOKEN: {
    <ABSTRACT: "abstract">
    <BOOLEAN: "boolean">
    <cомmA: ",">
| <DOT: ".">>
| <ASSIGN: "=">
    | <DEC: "--">
j
```

\author{

}

\qquad

JavaCC

Scanning identifiers

```
TOKEN: {
    <IDENTIFIER: ( <LETTER> | " -" | "$" ) (<LETTER> | <DIGIT> | " _" | "$" )*>
    <#LETTER: [ "a"-"z", "A"-"Z"
    <#DIGIT: [ "O"-"9" ]>
}
```


Scanning identifiers

```
TOKEN: {
    <IDENTIFIER: ( <LETTER> | "_" | "$") ( <LETTER> | <DIGIT> | " _" | "$" )*>
    <#LETTER: [ "a"-"z", "A"-"Z"
    <#DIGIT: [ "O"-"9" ]>
}
```


Scanning literals

```
TOKEN: {
    <INT_LITERAL: <DIGIT> ( <DIGIT> )*>
    <CHAR_LITERAL: "'" ( <ESC> | ~[ "'", "\\" ]) "'">
    <STRING_LITERAL: "\"" ( <ESC> | ~ [ "\"", "\\" ] )* "\"">
    | <#ESC: "\\" [ "n", "t", "b", "r", "f", "\\", ">", "\"" ]>
}
```

