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Scanning Tokens

The first step in compiling a program is to break it into tokens

Example

L HelloWorld.java

// Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

//

// Writes to standard output the message "Hello , World".

import java.lang.System;

public class HelloWorld {

// Entry point.

public static void main(String [] args) {

System.out.println("Hello , World");

}

}

Tokens: import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }
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Scanning Tokens

Tokens are separated into categories such as reserved words, identifiers, literals, separators, and operators

For example, in HelloWorld.java:

• import, public, class, static, etc are reserved words

• java, lang, System, HelloWorld, etc are identifiers

• "Hello, World" is a (string) literal

• ., ;, {, [, etc are separators

• There are no operators

A program that breaks the source language program into a sequence of tokens is called a lexical analyzer or a scanner

A scanner may be hand-crafted or generated from a specification consisting of regular expressions
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Scanning Tokens

State transition diagrams can be used for describing scanners

A state transition diagram for recognizing identifiers and integers

start

id

int

idEnd

intEnd

le
tt
er
,
_,

$

digit

letter, digit, _, $

digit



Scanning Tokens

State transition diagrams can be used for describing scanners

A state transition diagram for recognizing identifiers and integers

start

id

int

idEnd

intEnd

le
tt
er
,
_,

$

digit

letter, digit, _, $

digit



Scanning Tokens

State transition diagrams can be used for describing scanners

A state transition diagram for recognizing identifiers and integers
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Scanning Tokens

L Scanner.java

if (isLetter(ch) || ch == ’_’ || ch == ’$’) {

buffer = new StringBuffer ();

do {

buffer.append(ch);

nextCh ();

} while (isLetter(ch) || isDigit(ch) || ch == ’_’ || ch == ’$’);

return new TokenInfo(IDENTIFIER , buffer.toString(), line);

} else if (isDigit(ch)){

buffer = new StringBuffer ();

do {

buffer.append(ch);

nextCh ();

} while (isDigit(ch));

return new TokenInfo(INT_LITERAL , buffer.toString(), line);

}
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Scanning Tokens

A state transition diagram for recognizing keywords
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A state transition diagram for recognizing keywords
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Scanning Tokens

L Scanner.java

reserved = new Hashtable <String , Integer >();

reserved.put("abstract", ABSTRACT );

reserved.put("boolean", BOOLEAN );

reserved.put("char", CHAR);

...

reserved.put("while", WHILE );

...

if (isLetter(ch) || ch == ’_’ || ch == ’$’) {

buffer = new StringBuffer ();

do {

buffer.append(ch);

nextCh ();

} while (isLetter(ch) || isDigit(ch) || ch == ’_’ || ch == ’$’);

String identifier = buffer.toString ();

if (reserved.containsKey(identifier )) {

return new TokenInfo(reserved.get(identifier), line);

} else {

return new TokenInfo(IDENTIFIER , identifier , line);

}

}
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Scanning Tokens

A state transition diagram for recognizing separators and operators
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Scanning Tokens

A state transition diagram for recognizing separators and operators
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Scanning Tokens

L Scanner.java

switch (ch) {

case ’;’:

nextCh ();

return new TokenInfo(SEMI , line);

case ’=’:

nextCh ();

if (ch == ’=’) {

nextCh ();

return new TokenInfo(EQUAL , line);

} else {

return new TokenInfo(ASSIGN , line);

}

case ’!’:

nextCh ();

return new TokenInfo(LNOT , line);

case ’*’:

nextCh ();

return new TokenInfo(STAR , line);

...

}
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Scanning Tokens

A state transition diagram for recognizing whitespace
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’ ’, ’\t’, ’\f’, ’\b’, ’\r’, ’\n’

L Scanner.java

while (isWhitespace(ch)) {

nextCh ();

}
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A state transition diagram for recognizing whitespace
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Scanning Tokens

A state transition diagram for recognizing whitespace
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Scanning Tokens

A state transition diagram for recognizing comments
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A state transition diagram for recognizing comments
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Scanning Tokens

L Scanner.java

boolean moreWhiteSpace = true;

while (moreWhiteSpace) {

while (isWhitespace(ch)) {

nextCh ();

}

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

} else {

reportScannerError("Operator / is not supported in j--.");

}

} else {

moreWhiteSpace = false;

}

}
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Regular Expressions

A regular expression describes a language of strings over an alphabet Σ

ε (epsilon) describes the language consisting of only the empty string

If a ∈ Σ, then a describes the language L(a) consisting of the string a

If r and s are regular expressions, then their concatenation rs describes the language L(rs) consisting of strings obtained
by concatenating a string from L(r) to a string from L(s)

If r and s are regular expressions, then their alternation r |s describes the language L(r |s) consisting of strings from L(r)
or L(s)

If r is a regular expression, then the Kleene closure r∗ describes the language L(r∗) consisting of strings obtained by
concatenating zero or more instances of strings from L(r)

Both r and (r) describe the same language, ie, L(r) = L((r))
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Regular Expressions

For example, given an alphabet Σ = {a, b}:
• a(a|b)∗ describes the language of non-empty strings of a’s and b’s beginning with an a

• aa|ab|ba|bb describes the language of all two-symbol strings over the alphabet

• (a|b)∗ab describes the language of all strings of a’s and b’s ending in ab

As another example, in a programming language such as j--:

• Reserved words may be described as
"abstract" | "boolean" | "char" | ...

• Separators and operators may be described as
"," | "." | "[" | ... | "=" | "==" | ">" | ...

• Identifiers may be described as
( "a"..."z" | "A"..."Z" | "_" | "$" ) ( "a"..."z" | "A"..."Z" | "_" | "0"..."9" | "$" )*

• Integer literals may be described as
( "0"..."9" ) ( "0"..."9" )*
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"abstract" | "boolean" | "char" | ...

• Separators and operators may be described as
"," | "." | "[" | ... | "=" | "==" | ">" | ...

• Identifiers may be described as
( "a"..."z" | "A"..."Z" | "_" | "$" ) ( "a"..."z" | "A"..."Z" | "_" | "0"..."9" | "$" )*

• Integer literals may be described as
( "0"..."9" ) ( "0"..."9" )*



Regular Expressions

For example, given an alphabet Σ = {a, b}:
• a(a|b)∗ describes the language of non-empty strings of a’s and b’s beginning with an a

• aa|ab|ba|bb describes the language of all two-symbol strings over the alphabet

• (a|b)∗ab describes the language of all strings of a’s and b’s ending in ab

As another example, in a programming language such as j--:

• Reserved words may be described as
"abstract" | "boolean" | "char" | ...

• Separators and operators may be described as
"," | "." | "[" | ... | "=" | "==" | ">" | ...

• Identifiers may be described as
( "a"..."z" | "A"..."Z" | "_" | "$" ) ( "a"..."z" | "A"..."Z" | "_" | "0"..."9" | "$" )*

• Integer literals may be described as
( "0"..."9" ) ( "0"..."9" )*



Finite State Automata

For any language described by a regular expression, there is a state transition diagram called Finite State Automaton
that can recognize strings in the language

A finite state automaton (FSA) F is a quintuple F = (Σ, S , s0,F ,M), where:

1 Σ is the input alphabet

2 S is a set of states

3 s0 ∈ S is a special start state

4 F ∈ S is a set of final states

5 M is a set of moves (aka transitions) of the form m(r , a) = s, where r , s ∈ S and a ∈ Σ
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Finite State Automata

For example, consider the regular expression (a|b)a∗b over the alphabet {a, b}

An FSA F that recognizes the language described by the regular expression
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a

b
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Formally, F = (Σ, S , s0,F ,M), where Σ = {a, b}, S = {0, 1, 2}, s0 = 0, F = {2}, and M is

r a m(r , a)

0 a 1
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Non-deterministic Versus Deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is one that allows:

• An ε-move defined on the empty string ε, ie, m(r , ε) = s

• More than one move from a state r on an input symbol a, ie, m(r , a) = s and m(r , a) = t, where s 6= t

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input
that takes us into one of the final states

A deterministic finite state automaton (DFA) is one in which:

• There are no ε-moves

• There is a unique move from any state r on an input symbol a, ie, if m(r , a) = s and m(r , a) = t, then s = t
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And a DFA D that recognizes the same language
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Regular Expressions to NFA

Given any regular expression r , we can construct (using Thompson’s construction procedure) an NFA N that recognizes
the same language; ie, L(N) = L(r)

(Rule 1) NFA Nr for recognizing L(r = ε)

start final
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(Rule 2) NFA Nr for recognizing L(r = a)

start final
a
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NFA to DFA

For any NFA, there is an equivalent DFA that can be constructed using the powerset (or subset) construction procedure

The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the
same portion of the input

The computation of all states reachable from a given state s based on ε-moves alone is called taking the ε-closure of
that state

The ε-closure(s) for a state s includes s and all states reachable from s using ε-moves alone, ie,
ε-closure(s) = {s} ∪ {r ∈ S | there is a path of only ε-moves from s to r}

The ε-closure(S) for a set of states S includes S and all states reachable from any state s ∈ S using ε-moves alone
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NFA to DFA

Algorithm ε-closure(S) for a set of states S

Input: a set of states S
Output: ε-closure(S)

1: P ← Stack(S)
2: C ← Set(S)
3: while not P.isEmpty() do
4: r ← P.pop()
5: for s ∈ m(r , ε) do
6: if s /∈ C then
7: P.push(s)
8: C .add(s)
9: end if

10: end for
11: end while
12: return C
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NFA to DFA

Algorithm ε-closure(s) for a state s

Input: a state s
Output: ε-closure(s)

1: S ← Set(s)
2: return ε-closure(S)



NFA to DFA

Algorithm ε-closure(s) for a state s

Input: a state s
Output: ε-closure(s)

1: S ← Set(s)
2: return ε-closure(S)



NFA to DFA

As an example, let’s convert the NFA N(a|b)a∗b to a DFA
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NFA to DFA

The DFA for recognizing (a|b)a∗b
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NFA to DFA

The DFA for recognizing (a|b)a∗b
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NFA to DFA

Algorithm NFA to DFA construction
Input: an NFA N = (Σ, S, s0,M, F )
Output: an equivalent DFA D = (Σ, SD , sD0,MD , FD )
1: sD0 ← ε-closure(s0)
2: SD ← Set(sD0)
3: MD ← Moves()
4: stk ← Stack(sD0)
5: i ← 0
6: while not stk.isEmpty() do
7: r ← stk.pop()
8: for a ∈ Σ do
9: sDi+1 ← ε-closure(m(r, a))

10: if sDi+1 6= {} then

11: if sDi+1 /∈ SD then

12: SD .add(sDi+1)

13: stk.push(sDi+1)

14: i ← i + 1
15: MD .add((r, a) → sDi+1)

16: else if ∃sj ∈ SD such that sDi+1 = sj then

17: MD .add((r, a) → sj )

18: end if
19: end if
20: end for
21: end while
22: FD ← Set()
23: for sD ∈ SD do
24: for s ∈ sD do
25: if s ∈ F then
26: FD .add(sD )
27: end if
28: end for
29: end for
30: return D = (Σ, SD , sD0,MD , FD )
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DFA to Minimal DFA

To obtain a smaller but equivalent DFA, partition the states such that the states in the new DFA are subsets of the
states in the original (perhaps larger) DFA

The initial partition contains two subsets: the non-final states and the final states

For example, consider the DFA for (a|b)a∗b
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The initial partition contains the subsets {0, 1, 2, 3, φ} and {4}
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DFA to Minimal DFA

Make sure that from a particular subset, on each input symbol, you transition into an identical subset; if not, split the
subset

The symbol a does not split the subset {0, 1, 2, 3, φ}, since

m(0, a) = 1

m(1, a) = 3

m(2, a) = 3

m(3, a) = 3

m(φ, a) = φ

The symbol b splits the subset {0, 1, 2, 3, φ} into subsets {0, φ} and {1, 2, 3}, since

m(0, b) = 2

m(1, b) = 4

m(2, b) = 4

m(3, b) = 4

m(φ, b) = φ
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DFA to Minimal DFA

The symbol a splits the subset {0, φ} into subsets {0} and {φ}

Neither a nor b splits the subset {1, 2, 3}

The final partition is therefore {{0}, {1, 2, 3}, {4}, {φ}}
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DFA to Minimal DFA
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DFA to Minimal DFA

Minimal DFA for recognizing (a|b)a∗b
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DFA to Minimal DFA

Algorithm Minimizing a DFA

Input: a DFA D = (Σ, S , s0,M,F )
Output: a partition of S

1: partition← {S − F ,F}
2: while splitting occurs do
3: for subset ∈ partition do
4: if subset.size() > 1 then
5: for a ∈ Σ do
6: r ← a state chosen from subset
7: targetSet ← the subset in the partition containing m(r , a)
8: set1← {s ∈ subset|m(s, a) ∈ targetSet}
9: set2← {s ∈ subset|m(s, a) /∈ targetSet}

10: if set2 6= {} then
11: replace subset in partition by set1 and set2
12: break
13: end if
14: end for
15: end if
16: end for
17: end while
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JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

JavaCC is a tool for generating scanners from regular expressions and parsers from context-free grammars

A lexical grammar consists a set of regular expressions and a set of lexical states

From a particular state, only certain regular expressions may be matched by the input

There is a DEFAULT state in which scanning begins; one may specify additional states as required

Scanning proceeds by considering all regular expressions in the current state and choosing the one which consumes the
greatest number of input characters

After a match, the scanner goes into a specified state or stays in the current state



JavaCC

There are four kinds of regular expressions that determine what happens when the regular expression has been matched:

1 SKIP: throws away the matched string

2 MORE: continues to the next state, taking the matched string along

3 TOKEN: creates a token from the matched string and returns it to the parser

4 SPECIAL_TOKEN: creates a special token that does not participate in the parsing

JavaCC generates a scanner for j-- from regular expressions defined in $j/j--/src/jminusminus/j--.jj

j--.jj JavaCC TokenManager.java
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JavaCC

Scanning whitespace

SKIP: { " " | "\t" | "\n" | "\r" | "\f" }

Scanning single-line comments

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <COMMENT: ~[]> }

Alternative way of scanning single-line comments

SPECIAL_TOKEN: {

<SINGLE_LINE_COMMENT: "//" ( ~[ "\n", "\r" ] )* ( "\n" | "\r" | "\r\n" )>

}

Scanning reserved words, separators, and operators

TOKEN: {

<ABSTRACT: "abstract">

| <BOOLEAN: "boolean">

...

| <COMMA: ",">

| <DOT: "." >

...

| <ASSIGN: "=">

| <DEC: "--">

...

}
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JavaCC

Scanning identifiers

TOKEN: {

<IDENTIFIER: ( <LETTER > | "_" | "$" ) ( <LETTER > | <DIGIT > | "_" | "$" )*>

| <#LETTER: [ "a"-"z", "A"-"Z" ]>

| <#DIGIT: [ "0" -"9" ]>

}

Scanning literals

TOKEN: {

<INT_LITERAL: <DIGIT > ( <DIGIT > )*>

| <CHAR_LITERAL: "’" ( <ESC > | ~[ "’", "\\" ]) "’">

| <STRING_LITERAL: "\"" ( <ESC > | ~[ "\"", "\\" ] )* "\"">

| <#ESC: "\\" [ "n", "t", "b", "r", "f", "\\", "’", "\"" ]>

}
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