
Parsing

Outline

1 Parsing a Program

2 Context-free Grammars and Languages

3 Top-down Deterministic Parsing

4 Recursive Descent Parsing

5 LL(1) Parsing

6 Bottom-up Deterministic Parsing

7 LR(1) Parsing

8 JavaCC

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

The process of parsing a program is to determine its syntactic structure

A parser should:

• Make sure the program is syntactically valid, ie, conforms to the grammar describing the program’s syntax

• Identify syntax errors and report them along with the line numbers they appear on

• Not stop on the first error, but report the error, and gracefully recover and look for additional errors

• Produce a representation of the parsed program that is suitable for semantic analysis; in j--, the representation is an
abstract syntax tree (AST)

Parsing a Program

L HelloWorld.java

1 // Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

2 //

3 // Writes to standard output the message "Hello , World".

4

5 import java.lang.System;

6

7 public class HelloWorld {

8 // Entry point.

9 public static void main(String [] args) {

10 System.out.println("Hello , World");

11 }

12 }

Parsing a Program

L HelloWorld.java

1 // Copyright 2012- Bill Campbell , Swami Iyer and Bahar Akbal -Delibas

2 //

3 // Writes to standard output the message "Hello , World".

4

5 import java.lang.System;

6

7 public class HelloWorld {

8 // Entry point.

9 public static void main(String [] args) {

10 System.out.println("Hello , World");

11 }

12 }

Parsing a Program

{

"JCompilationUnit :5":

{

"source": "tests/jvm/HelloWorld.java",

"imports": ["java.lang.System"],

"JClassDeclaration :7":

{

"modifiers": ["public"],

"name": "HelloWorld",

"super": "java.lang.Object",

"JMethodDeclaration :9":

{

"name": "main",

"returnType": "void",

"modifiers": ["public", "static"],

"parameters": [["args", "String []"]],

"JBlock :9":

{

"JStatementExpression :10":

{

"JMessageExpression :10":

{

"ambiguousPart": "System.out", "name": "println",

"Argument":

{

"JLiteralString :10":

{

"type": "", "value": "Hello , World"

}

}

}

}

}

}

}

}

}

Parsing a Program

{

"JCompilationUnit :5":

{

"source": "tests/jvm/HelloWorld.java",

"imports": ["java.lang.System"],

"JClassDeclaration :7":

{

"modifiers": ["public"],

"name": "HelloWorld",

"super": "java.lang.Object",

"JMethodDeclaration :9":

{

"name": "main",

"returnType": "void",

"modifiers": ["public", "static"],

"parameters": [["args", "String []"]],

"JBlock :9":

{

"JStatementExpression :10":

{

"JMessageExpression :10":

{

"ambiguousPart": "System.out", "name": "println",

"Argument":

{

"JLiteralString :10":

{

"type": "", "value": "Hello , World"

}

}

}

}

}

}

}

}

}

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Parsing a Program

The nodes in the AST represent syntactic objects

The AST is rooted at a JCompilationUnit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JCompilationUnit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The AST makes the syntax implicit in the program text, explicit

Context-free Grammars and Languages

Inherently recursive programming languages such as j-- are best described by context-free grammar rules, using a
notation called Backus-Naur Form (BNF)

For example, the rule

S ::= if (E) S

says that, if E is an expression and S is a statement, then

if (E) S

is also a statement

Context-free Grammars and Languages

Inherently recursive programming languages such as j-- are best described by context-free grammar rules, using a
notation called Backus-Naur Form (BNF)

For example, the rule

S ::= if (E) S

says that, if E is an expression and S is a statement, then

if (E) S

is also a statement

Context-free Grammars and Languages

Inherently recursive programming languages such as j-- are best described by context-free grammar rules, using a
notation called Backus-Naur Form (BNF)

For example, the rule

S ::= if (E) S

says that, if E is an expression and S is a statement, then

if (E) S

is also a statement

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

S ::= if (E) S
| if (E) S else S

is shorthand for

S ::= if (E) S
S ::= if (E) S else S

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

S ::= if (E) S [else S]

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

S ::= if (E) S
| if (E) S else S

is shorthand for

S ::= if (E) S
S ::= if (E) S else S

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

S ::= if (E) S [else S]

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

S ::= if (E) S
| if (E) S else S

is shorthand for

S ::= if (E) S
S ::= if (E) S else S

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

S ::= if (E) S [else S]

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

S ::= if (E) S
| if (E) S else S

is shorthand for

S ::= if (E) S
S ::= if (E) S else S

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

S ::= if (E) S [else S]

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

S ::= if (E) S
| if (E) S else S

is shorthand for

S ::= if (E) S
S ::= if (E) S else S

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

S ::= if (E) S [else S]

Context-free Grammars and Languages

Curly braces denote the Kleene closure, indicating that the phrase may appear zero or more times

For example, the rule

E ::= T {+ T}

says that an expression E may be written as a term T , followed by zero or more occurrences of + followed by a term T ,
such as

T + T + T + T

Context-free Grammars and Languages

Curly braces denote the Kleene closure, indicating that the phrase may appear zero or more times

For example, the rule

E ::= T {+ T}

says that an expression E may be written as a term T , followed by zero or more occurrences of + followed by a term T ,
such as

T + T + T + T

Context-free Grammars and Languages

Curly braces denote the Kleene closure, indicating that the phrase may appear zero or more times

For example, the rule

E ::= T {+ T}

says that an expression E may be written as a term T , followed by zero or more occurrences of + followed by a term T ,
such as

T + T + T + T

Context-free Grammars and Languages

One may use the alternation sign | to denote a choice, and parentheses for grouping

For example, the rule

E ::= T {(+ | -) T}

says that the additive operator may be either + or -, such as

T + T - T + T

Context-free Grammars and Languages

One may use the alternation sign | to denote a choice, and parentheses for grouping

For example, the rule

E ::= T {(+ | -) T}

says that the additive operator may be either + or -, such as

T + T - T + T

Context-free Grammars and Languages

One may use the alternation sign | to denote a choice, and parentheses for grouping

For example, the rule

E ::= T {(+ | -) T}

says that the additive operator may be either + or -, such as

T + T - T + T

Context-free Grammars and Languages

Example (BNF rules in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

typeDeclaration ::= modifiers classDeclaration

modifiers ::= { ABSTRACT | PRIVATE | PROTECTED | PUBLIC | STATIC }

classDeclaration ::= CLASS IDENTIFIER [EXTENDS qualifiedIdentifier] classBody

classBody ::= LCURLY { modifiers memberDecl } RCURLY

Context-free Grammars and Languages

Example (BNF rules in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

typeDeclaration ::= modifiers classDeclaration

modifiers ::= { ABSTRACT | PRIVATE | PROTECTED | PUBLIC | STATIC }

classDeclaration ::= CLASS IDENTIFIER [EXTENDS qualifiedIdentifier] classBody

classBody ::= LCURLY { modifiers memberDecl } RCURLY

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

A context-free grammar is a tuple G = (N,T , S ,P), where

• N is a set non-terminals

• T is a set of terminals

• S ∈ N is the start symbol

• P is a set of productions or rules

Example (arithmetic expression grammar)

G = (N,T , S ,P) where N = {E ,T ,F}, T = {+, *, (,), id}, S = E , and P = {E ::= E + T ,
E ::= T ,T ::= T * F ,T ::= F ,F ::= (E),F ::= id}

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the

first string derives (
∗⇒) the second string

Example

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the

first string derives (
∗⇒) the second string

Example

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the

first string derives (
∗⇒) the second string

Example

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the

first string derives (
∗⇒) the second string

Example

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the

first string derives (
∗⇒) the second string

Example

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

Context-free Grammars and Languages

The language L(G) described by a grammar G consists of all the strings comprised of only terminal symbols, ie,

L(G) = {w |S ∗⇒ w and w ∈ T∗}

For example, in the arithmetic expression grammar G

E
∗⇒ id

E
∗⇒ id + id * id

E
∗⇒ (id + id) * id

so, L(G) includes each of

id

id + id * id

(id + id) * id

and infinitely more finite strings

Context-free Grammars and Languages

The language L(G) described by a grammar G consists of all the strings comprised of only terminal symbols, ie,

L(G) = {w |S ∗⇒ w and w ∈ T∗}

For example, in the arithmetic expression grammar G

E
∗⇒ id

E
∗⇒ id + id * id

E
∗⇒ (id + id) * id

so, L(G) includes each of

id

id + id * id

(id + id) * id

and infinitely more finite strings

Context-free Grammars and Languages

The language L(G) described by a grammar G consists of all the strings comprised of only terminal symbols, ie,

L(G) = {w |S ∗⇒ w and w ∈ T∗}

For example, in the arithmetic expression grammar G

E
∗⇒ id

E
∗⇒ id + id * id

E
∗⇒ (id + id) * id

so, L(G) includes each of

id

id + id * id

(id + id) * id

and infinitely more finite strings

Context-free Grammars and Languages

A left-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the left-most non-terminal

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

Context-free Grammars and Languages

A left-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the left-most non-terminal

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

Context-free Grammars and Languages

A left-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the left-most non-terminal

Example

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

Context-free Grammars and Languages

A right-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the right-most non-terminal

Example

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

Context-free Grammars and Languages

A right-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the right-most non-terminal

Example

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

Context-free Grammars and Languages

A right-most derivation is a derivation in which at each step, the next string is derived by applying a production for
rewriting the right-most non-terminal

Example

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

Context-free Grammars and Languages

A sentential form refers to any string of terminal and non-terminal symbols that can be derived from the start symbol,
and a sentence is a string with only terminal symbols

For example,

E
E + T
E + T * F
...
F + id * id

id + id * id

are all sentential forms, and id + id * id is a sentence

Context-free Grammars and Languages

A sentential form refers to any string of terminal and non-terminal symbols that can be derived from the start symbol,
and a sentence is a string with only terminal symbols

For example,

E
E + T
E + T * F
...
F + id * id

id + id * id

are all sentential forms, and id + id * id is a sentence

Context-free Grammars and Languages

A sentential form refers to any string of terminal and non-terminal symbols that can be derived from the start symbol,
and a sentence is a string with only terminal symbols

For example,

E
E + T
E + T * F
...
F + id * id

id + id * id

are all sentential forms, and id + id * id is a sentence

Context-free Grammars and Languages

A parse tree illustrates the derivation and the structure of an input string (at the leaves) from a start symbol (at the
root)

Example (parse tree for id + id * id)

E

E

T

F

id

+ T

T

F

id

* F

id

Context-free Grammars and Languages

A parse tree illustrates the derivation and the structure of an input string (at the leaves) from a start symbol (at the
root)

Example (parse tree for id + id * id)

E

E

T

F

id

+ T

T

F

id

* F

id

Context-free Grammars and Languages

A parse tree illustrates the derivation and the structure of an input string (at the leaves) from a start symbol (at the
root)

Example (parse tree for id + id * id)

E

E

T

F

id

+ T

T

F

id

* F

id

Context-free Grammars and Languages

Given a grammar G , if there exists a sentence s ∈ L(G) for which there are more than one left(right)-most derivations
or parse trees, we say the sentence s is ambiguous

If a grammar G derives at least one ambiguous sentence, we say the grammar G is ambiguous; if there is no such
sentence, we say the grammar is unambiguous

Context-free Grammars and Languages

Given a grammar G , if there exists a sentence s ∈ L(G) for which there are more than one left(right)-most derivations
or parse trees, we say the sentence s is ambiguous

If a grammar G derives at least one ambiguous sentence, we say the grammar G is ambiguous; if there is no such
sentence, we say the grammar is unambiguous

Context-free Grammars and Languages

Given a grammar G , if there exists a sentence s ∈ L(G) for which there are more than one left(right)-most derivations
or parse trees, we say the sentence s is ambiguous

If a grammar G derives at least one ambiguous sentence, we say the grammar G is ambiguous; if there is no such
sentence, we say the grammar is unambiguous

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

E ::= E + E | E * E | (E) | id

A left-most derivation and corresponding parse tree for the sentence id + id * id

E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

id

+ E

E

id

* E

id

Another left-most derivation and corresponding parse tree for id + id * id

E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

E

id

+ E

id

* E

id

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

E ::= E + E | E * E | (E) | id

A left-most derivation and corresponding parse tree for the sentence id + id * id

E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

id

+ E

E

id

* E

id

Another left-most derivation and corresponding parse tree for id + id * id

E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

E

id

+ E

id

* E

id

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

E ::= E + E | E * E | (E) | id

A left-most derivation and corresponding parse tree for the sentence id + id * id

E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

id

+ E

E

id

* E

id

Another left-most derivation and corresponding parse tree for id + id * id

E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

E

id

+ E

id

* E

id

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

E ::= E + E | E * E | (E) | id

A left-most derivation and corresponding parse tree for the sentence id + id * id

E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

id

+ E

E

id

* E

id

Another left-most derivation and corresponding parse tree for id + id * id

E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E

E

id

+ E

id

* E

id

Context-free Grammars and Languages

Example (dangling-else problem)

S ::= if (E) S
| if (E) S else S
| s

E ::= e

Two left-most derivations and corresponding parse trees for the sentence if (e) if (e) s else s

S ⇒ if (E) S else S
⇒ if (e) S else S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

S

if (E

e

) S

if (E

e

) S

s

else S

s

S ⇒ if (E) S
⇒ if (e) S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

S

if (E

e

) S

if (E

e

) S

s

else S

s

Context-free Grammars and Languages

Example (dangling-else problem)

S ::= if (E) S
| if (E) S else S
| s

E ::= e

Two left-most derivations and corresponding parse trees for the sentence if (e) if (e) s else s

S ⇒ if (E) S else S
⇒ if (e) S else S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

S

if (E

e

) S

if (E

e

) S

s

else S

s

S ⇒ if (E) S
⇒ if (e) S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

S

if (E

e

) S

if (E

e

) S

s

else S

s

Context-free Grammars and Languages

Resolving the dangling-else problem

S ::= if E do S
| if E then S else S
| s

E ::= e

But programmers have become both accustomed to and fond of the ambiguous conditional

Compiler writers handle the rule as a special case in the parser such that an else is grouped along with the closest
preceding if

Context-free Grammars and Languages

Resolving the dangling-else problem

S ::= if E do S
| if E then S else S
| s

E ::= e

But programmers have become both accustomed to and fond of the ambiguous conditional

Compiler writers handle the rule as a special case in the parser such that an else is grouped along with the closest
preceding if

Context-free Grammars and Languages

Resolving the dangling-else problem

S ::= if E do S
| if E then S else S
| s

E ::= e

But programmers have become both accustomed to and fond of the ambiguous conditional

Compiler writers handle the rule as a special case in the parser such that an else is grouped along with the closest
preceding if

Context-free Grammars and Languages

Resolving the dangling-else problem

S ::= if E do S
| if E then S else S
| s

E ::= e

But programmers have become both accustomed to and fond of the ambiguous conditional

Compiler writers handle the rule as a special case in the parser such that an else is grouped along with the closest
preceding if

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?

x might refer to an object with a field y, referring to another object with a field z, referring to the field w

x.y might be a package in which the class z is defined, and w a static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis

The parser represents x.y.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

The parser starts with the grammar’s start symbol as an initial goal, which is then rewritten using a rule replacing the
symbol with the right-hand-side sequence of symbols

Example (compilation unit in j--)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

1 If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

3 If there are any type declarations, then parse them

4 Finally, parse the terminating EOF token

Top-down Deterministic Parsing

Parsing a token, like PACKAGE, is simple; if we see it, we simply scan it

Parsing a non-terminal is treated as another parsing (sub-)goal

For example, in a package statement, once we scan the PACKAGE token, we are left with parsing a qualifiedIdentifier

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

We scan an IDENTIFIER and so long as we see a DOT in the input, we scan the DOT and scan another IDENTIFIER

Top-down Deterministic Parsing

Parsing a token, like PACKAGE, is simple; if we see it, we simply scan it

Parsing a non-terminal is treated as another parsing (sub-)goal

For example, in a package statement, once we scan the PACKAGE token, we are left with parsing a qualifiedIdentifier

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

We scan an IDENTIFIER and so long as we see a DOT in the input, we scan the DOT and scan another IDENTIFIER

Top-down Deterministic Parsing

Parsing a token, like PACKAGE, is simple; if we see it, we simply scan it

Parsing a non-terminal is treated as another parsing (sub-)goal

For example, in a package statement, once we scan the PACKAGE token, we are left with parsing a qualifiedIdentifier

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

We scan an IDENTIFIER and so long as we see a DOT in the input, we scan the DOT and scan another IDENTIFIER

Top-down Deterministic Parsing

Parsing a token, like PACKAGE, is simple; if we see it, we simply scan it

Parsing a non-terminal is treated as another parsing (sub-)goal

For example, in a package statement, once we scan the PACKAGE token, we are left with parsing a qualifiedIdentifier

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

We scan an IDENTIFIER and so long as we see a DOT in the input, we scan the DOT and scan another IDENTIFIER

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in j--)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

1 If the next token is a {, then parse a block

2 If the next token is an IF, then parse an if statement

3 If the next token is a WHILE, then parse a while statement

4 If the next token is a RETURN, then parse a return statement

5 If the next token is a semicolon, then parse an empty statement

6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie,
tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a
goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive
parsing technique

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie,
tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a
goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive
parsing technique

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie,
tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a
goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive
parsing technique

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie,
tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a
goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive
parsing technique

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie,
tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a
goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive
parsing technique

Recursive Descent Parsing

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define
that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals
by recursively invoking the corresponding methods

This is the strategy we use in the hand-crafted parser (Parser.java) for j--

Recursive Descent Parsing

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define
that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals
by recursively invoking the corresponding methods

This is the strategy we use in the hand-crafted parser (Parser.java) for j--

Recursive Descent Parsing

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define
that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals
by recursively invoking the corresponding methods

This is the strategy we use in the hand-crafted parser (Parser.java) for j--

Recursive Descent Parsing

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define
that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals
by recursively invoking the corresponding methods

This is the strategy we use in the hand-crafted parser (Parser.java) for j--

Recursive Descent Parsing

Example (parsing a compilation unit)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

L Parser.java

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

String fileName = scanner.fileName ();

TypeName packageName = null;

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations);

}

Recursive Descent Parsing

Example (parsing a compilation unit)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

L Parser.java

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

String fileName = scanner.fileName ();

TypeName packageName = null;

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations);

}

Recursive Descent Parsing

Example (parsing a compilation unit)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

L Parser.java

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

String fileName = scanner.fileName ();

TypeName packageName = null;

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations);

}

Recursive Descent Parsing

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L Parser.java

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "." + scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

Recursive Descent Parsing

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L Parser.java

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "." + scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

Recursive Descent Parsing

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L Parser.java

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "." + scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true;
otherwise, it scans nothing and returns false

see() looks at the next input token and returns true if that token matches its argument, and false otherwise

mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error
otherwise

mustBe() also implements error recovery

Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true;
otherwise, it scans nothing and returns false

see() looks at the next input token and returns true if that token matches its argument, and false otherwise

mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error
otherwise

mustBe() also implements error recovery

Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true;
otherwise, it scans nothing and returns false

see() looks at the next input token and returns true if that token matches its argument, and false otherwise

mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error
otherwise

mustBe() also implements error recovery

Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true;
otherwise, it scans nothing and returns false

see() looks at the next input token and returns true if that token matches its argument, and false otherwise

mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error
otherwise

mustBe() also implements error recovery

Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true;
otherwise, it scans nothing and returns false

see() looks at the next input token and returns true if that token matches its argument, and false otherwise

mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error
otherwise

mustBe() also implements error recovery

Recursive Descent Parsing

Example (parsing a statement)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

Recursive Descent Parsing

Example (parsing a statement)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

Recursive Descent Parsing

L Parser.java

private JStatement statement () {

int line = scanner.token (). line ();

if (see(LCURLY)) {

return block ();

} else if (have(IF)) {

JExpression test = parExpression ();

JStatement consequent = statement ();

JStatement alternate = have(ELSE) ? statement () : null;

return new JIfStatement(line , test , consequent , alternate);

} else if (have(WHILE)) {

JExpression test = parExpression ();

JStatement statement = statement ();

return new JWhileStatement(line , test , statement);

} else if (have(RETURN)) {

if (have(SEMI)) {

return new JReturnStatement(line , null);

} else {

JExpression expr = expression ();

mustBe(SEMI);

return new JReturnStatement(line , expr);

}

} else if (have(SEMI)) {

return new JEmptyStatement(line);

} else {

JStatement statement = statementExpression ();

mustBe(SEMI);

return statement;

}

}

Recursive Descent Parsing

L Parser.java

private JStatement statement () {

int line = scanner.token (). line ();

if (see(LCURLY)) {

return block ();

} else if (have(IF)) {

JExpression test = parExpression ();

JStatement consequent = statement ();

JStatement alternate = have(ELSE) ? statement () : null;

return new JIfStatement(line , test , consequent , alternate);

} else if (have(WHILE)) {

JExpression test = parExpression ();

JStatement statement = statement ();

return new JWhileStatement(line , test , statement);

} else if (have(RETURN)) {

if (have(SEMI)) {

return new JReturnStatement(line , null);

} else {

JExpression expr = expression ();

mustBe(SEMI);

return new JReturnStatement(line , expr);

}

} else if (have(SEMI)) {

return new JEmptyStatement(line);

} else {

JStatement statement = statementExpression ();

mustBe(SEMI);

return statement;

}

}

Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

L Parser.java

private JExpression simpleUnaryExpression () {

int line = scanner.token (). line ();

if (have(LNOT)) {

return new JLogicalNotOp(line , unaryExpression ());

} else if (seeCast ()) {

mustBe(LPAREN);

boolean isBasicType = seeBasicType ();

Type type = type ();

mustBe(RPAREN);

JExpression expr = isBasicType ? unaryExpression () : simpleUnaryExpression ();

return new JCastOp(line , type , expr);

} else {

return postfixExpression ();

}

}

private boolean seeBasicType () {

return (see(BOOLEAN) || see(CHAR) || see(INT));

}

Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

L Parser.java

private JExpression simpleUnaryExpression () {

int line = scanner.token (). line ();

if (have(LNOT)) {

return new JLogicalNotOp(line , unaryExpression ());

} else if (seeCast ()) {

mustBe(LPAREN);

boolean isBasicType = seeBasicType ();

Type type = type ();

mustBe(RPAREN);

JExpression expr = isBasicType ? unaryExpression () : simpleUnaryExpression ();

return new JCastOp(line , type , expr);

} else {

return postfixExpression ();

}

}

private boolean seeBasicType () {

return (see(BOOLEAN) || see(CHAR) || see(INT));

}

Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

L Parser.java

private JExpression simpleUnaryExpression () {

int line = scanner.token (). line ();

if (have(LNOT)) {

return new JLogicalNotOp(line , unaryExpression ());

} else if (seeCast ()) {

mustBe(LPAREN);

boolean isBasicType = seeBasicType ();

Type type = type ();

mustBe(RPAREN);

JExpression expr = isBasicType ? unaryExpression () : simpleUnaryExpression ();

return new JCastOp(line , type , expr);

} else {

return postfixExpression ();

}

}

private boolean seeBasicType () {

return (see(BOOLEAN) || see(CHAR) || see(INT));

}

Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

L Parser.java

private JExpression simpleUnaryExpression () {

int line = scanner.token (). line ();

if (have(LNOT)) {

return new JLogicalNotOp(line , unaryExpression ());

} else if (seeCast ()) {

mustBe(LPAREN);

boolean isBasicType = seeBasicType ();

Type type = type ();

mustBe(RPAREN);

JExpression expr = isBasicType ? unaryExpression () : simpleUnaryExpression ();

return new JCastOp(line , type , expr);

} else {

return postfixExpression ();

}

}

private boolean seeBasicType () {

return (see(BOOLEAN) || see(CHAR) || see(INT));

}

Recursive Descent Parsing

L Parser.java

private boolean seeCast () {

scanner.recordPosition ();

if (!have(LPAREN)) {

scanner.returnToPosition ();

return false;

}

if (seeBasicType ()) {

scanner.returnToPosition ();

return true;

}

if (!see(IDENTIFIER)) {

scanner.returnToPosition ();

return false;

} else {

scanner.next ();

while (have(DOT)) {

if (!have(IDENTIFIER)) {

scanner.returnToPosition ();

return false;

}

}

}

while (have(LBRACK)) {

if (!have(RBRACK)) {

scanner.returnToPosition ();

return false;

}

}

if (!have(RPAREN)) {

scanner.returnToPosition ();

return false;

}

scanner.returnToPosition ();

return true;

}

Recursive Descent Parsing

The parser scans using LookaheadScanner which encapsulates Scanner

LookaheadScanner defines recordPosition() for marking a position in the input stream, and returnToPosition() for returning the scanner
to that recorded position (ie, for backtracking)

Recursive Descent Parsing

The parser scans using LookaheadScanner which encapsulates Scanner

LookaheadScanner defines recordPosition() for marking a position in the input stream, and returnToPosition() for returning the scanner
to that recorded position (ie, for backtracking)

Recursive Descent Parsing

The parser scans using LookaheadScanner which encapsulates Scanner

LookaheadScanner defines recordPosition() for marking a position in the input stream, and returnToPosition() for returning the scanner
to that recorded position (ie, for backtracking)

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

L Parser.java

private boolean isRecovered = true;

private void mustBe(TokenKind sought) {

if (scanner.token (). kind() == sought) {

scanner.next ();

isRecovered = true;

} else if (isRecovered) {

isRecovered = false;

reportParserError("%s found where %s sought", scanner.token (). image(), sought.image ());

} else {

while (!see(sought) && !see(EOF)) {

scanner.next ();

}

if (see(sought)) {

scanner.next ();

isRecovered = true;

}

}

}

private boolean see(TokenKind sought) {

return (sought == scanner.token (). kind ());

}

private boolean have(TokenKind sought) {

if (see(sought)) {

scanner.next ();

return true;

} else {

return false;

}

}

Recursive Descent Parsing

L Parser.java

private boolean isRecovered = true;

private void mustBe(TokenKind sought) {

if (scanner.token (). kind() == sought) {

scanner.next ();

isRecovered = true;

} else if (isRecovered) {

isRecovered = false;

reportParserError("%s found where %s sought", scanner.token (). image(), sought.image ());

} else {

while (!see(sought) && !see(EOF)) {

scanner.next ();

}

if (see(sought)) {

scanner.next ();

isRecovered = true;

}

}

}

private boolean see(TokenKind sought) {

return (sought == scanner.token (). kind ());

}

private boolean have(TokenKind sought) {

if (see(sought)) {

scanner.next ();

return true;

} else {

return false;

}

}

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L indicates a left-to-right scan of the input; the second L signifies that it produces a left-most derivation; and
the 1 indicates a single lookahead

At the start, the start symbol S is pushed onto a stack, and based on the first input symbol, S is replaced by the
right-hand-side of a rule defining S

The parser continues by parsing each symbol as it is removed from the top of the stack:

• If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

• If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

Example (arithmetic expression grammar redux)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Example (arithmetic expression grammar redux)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Example (arithmetic expression grammar redux)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Algorithm LL(1) parsing algorithm

Input: LL(1) parse table table, productions rules, and a sentence w followed by #

Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym ← first symbol in w#

3: while true do
4: top ← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#

10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index ← table[Y , sym]
15: if index 6= err then
16: rule ← rules[index]
17: If Y ::= X1X2 . . .Xn−1Xn, then stk.push(Xn,Xn−1, . . . ,X2,X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while

LL(1) Parsing

Algorithm LL(1) parsing algorithm

Input: LL(1) parse table table, productions rules, and a sentence w followed by #

Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym ← first symbol in w#

3: while true do
4: top ← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#

10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index ← table[Y , sym]
15: if index 6= err then
16: rule ← rules[index]
17: If Y ::= X1X2 . . .Xn−1Xn, then stk.push(Xn,Xn−1, . . . ,X2,X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while

LL(1) Parsing

Example (parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id#

#E′T id+id*id# 1

#E′T ′F id+id*id# 4

#E′T ′id id+id*id# 8

#E′T ′ +id*id#

#E′ +id*id# 6

#E′T+ +id*id# 2

#E′T id*id#

#E′T ′F id*id# 4

#E′T ′id id*id# 8

#E′T ′ *id#

#E′T ′F* *id# 5

#E′T ′F id#

#E′T ′id id# 8

#E′T ′ # 6

#E′ # 3

3

LL(1) Parsing

Example (parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id#

#E′T id+id*id# 1

#E′T ′F id+id*id# 4

#E′T ′id id+id*id# 8

#E′T ′ +id*id#

#E′ +id*id# 6

#E′T+ +id*id# 2

#E′T id*id#

#E′T ′F id*id# 4

#E′T ′id id*id# 8

#E′T ′ *id#

#E′T ′F* *id# 5

#E′T ′F id#

#E′T ′id id# 8

#E′T ′ # 6

#E′ # 3

3

LL(1) Parsing

Example (parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id#

#E′T id+id*id# 1

#E′T ′F id+id*id# 4

#E′T ′id id+id*id# 8

#E′T ′ +id*id#

#E′ +id*id# 6

#E′T+ +id*id# 2

#E′T id*id#

#E′T ′F id*id# 4

#E′T ′id id*id# 8

#E′T ′ *id#

#E′T ′F* *id# 5

#E′T ′F id#

#E′T ′id id# 8

#E′T ′ # 6

#E′ # 3

3

LL(1) Parsing

Example (parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id#

#E′T id+id*id# 1

#E′T ′F id+id*id# 4

#E′T ′id id+id*id# 8

#E′T ′ +id*id#

#E′ +id*id# 6

#E′T+ +id*id# 2

#E′T id*id#

#E′T ′F id*id# 4

#E′T ′id id*id# 8

#E′T ′ *id#

#E′T ′F* *id# 5

#E′T ′F id#

#E′T ′id id# 8

#E′T ′ # 6

#E′ # 3

3

LL(1) Parsing

Example (parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id#

#E′T id+id*id# 1

#E′T ′F id+id*id# 4

#E′T ′id id+id*id# 8

#E′T ′ +id*id#

#E′ +id*id# 6

#E′T+ +id*id# 2

#E′T id*id#

#E′T ′F id*id# 4

#E′T ′id id*id# 8

#E′T ′ *id#

#E′T ′F* *id# 5

#E′T ′F id#

#E′T ′id id# 8

#E′T ′ # 6

#E′ # 3

3

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either:

1 X1X2 . . .Xn
∗⇒ aα, or

2 X1X2 . . .Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αYaβ, ie, a can follow Y in a derivation

For this we need two helper functions, first and follow

first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}, ie, the set of all terminals that can start strings derivable from

X1X2 . . .Xn

If X1X2 . . .Xn
∗⇒ ε, then we say that first(X1X2 . . .Xn) includes ε

LL(1) Parsing

Algorithm first(X) for all symbols X in a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: first(X) for all symbols X ∈ T ∪ N

1: for X ∈ T do
2: first(X)← {X}
3: end for
4: for X ∈ N do
5: first(X)← {}
6: end for
7: if X ::= ε ∈ P then
8: Add ε to first(X)
9: end if

10: repeat
11: for Y ::= X1X2 . . .Xn ∈ P do
12: Add first(X1X2 . . .Xn) to first(Y)
13: end for
14: until no new symbols are added to any set

LL(1) Parsing

Algorithm first(X) for all symbols X in a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: first(X) for all symbols X ∈ T ∪ N

1: for X ∈ T do
2: first(X)← {X}
3: end for
4: for X ∈ N do
5: first(X)← {}
6: end for
7: if X ::= ε ∈ P then
8: Add ε to first(X)
9: end if

10: repeat
11: for Y ::= X1X2 . . .Xn ∈ P do
12: Add first(X1X2 . . .Xn) to first(Y)
13: end for
14: until no new symbols are added to any set

LL(1) Parsing

Algorithm first(X1X2 . . .Xn) for a sequence of symbols X1X2 . . .Xn in a grammar G

Input: a context-free grammar G = (N,T ,S ,P) and a sequence of symbols X1X2 . . .Xn

Output: first(X1X2 . . .Xn)
1: F ← first(X1)
2: i ← 2
3: while ε ∈ F and i ≤ n do
4: F ← F − ε
5: Add first(Xi) to F
6: i ← i + 1
7: end while
8: return F

LL(1) Parsing

Algorithm first(X1X2 . . .Xn) for a sequence of symbols X1X2 . . .Xn in a grammar G

Input: a context-free grammar G = (N,T ,S ,P) and a sequence of symbols X1X2 . . .Xn

Output: first(X1X2 . . .Xn)
1: F ← first(X1)
2: i ← 2
3: while ε ∈ F and i ≤ n do
4: F ← F − ε
5: Add first(Xi) to F
6: i ← i + 1
7: end while
8: return F

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

To determine when the rule X ::= ε is applicable, we need the notion of follow

follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, ie, all terminal symbols that start terminal strings derivable from what can

follow X in a derivation

Alternate definition:

1 follow(S) contains #, ie, the terminator follows the start symbol

2 If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ε}
3 If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X) contains follow(Y)

LL(1) Parsing

Algorithm follow(X) for all non-terminals X in a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X) for all symbols X ∈ N

1: follow(S)← {#}
2: for X ∈ N do
3: follow(X)← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ε} to follow(Xi)
9: If Xi is the last symbol or ε ∈ first(Xi+1 . . .Xn), add follow(Y) to follow(Xi)

10: end for
11: end for
12: until no new symbols are added to any set

LL(1) Parsing

Algorithm follow(X) for all non-terminals X in a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X) for all symbols X ∈ N

1: follow(S)← {#}
2: for X ∈ N do
3: follow(X)← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ε} to follow(Xi)
9: If Xi is the last symbol or ε ∈ first(Xi+1 . . .Xn), add follow(Y) to follow(Xi)

10: end for
11: end for
12: until no new symbols are added to any set

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

LL(1) Parsing

Algorithm LL(1) parse table for a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: LL(1) parse table for G

1: for Y ∈ N do
2: for Y ::= X1X2 . . .Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . .Xn)− {ε} do
4: table[Y , a]← i
5: if ε ∈ first(X1X2 . . .Xn) then
6: for a ∈ follow(Y) do
7: table[Y , a]← i
8: end for
9: end if

10: end for
11: end for
12: end for

LL(1) Parsing

Algorithm LL(1) parse table for a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: LL(1) parse table for G

1: for Y ∈ N do
2: for Y ::= X1X2 . . .Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . .Xn)− {ε} do
4: table[Y , a]← i
5: if ε ∈ first(X1X2 . . .Xn) then
6: for a ∈ follow(Y) do
7: table[Y , a]← i
8: end for
9: end if

10: end for
11: end for
12: end for

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Example

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1; in principle, this would mean a table having
columns for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, one may define equivalent grammars that are LL(1)

LL(1) Parsing

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1; in principle, this would mean a table having
columns for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, one may define equivalent grammars that are LL(1)

LL(1) Parsing

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1; in principle, this would mean a table having
columns for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, one may define equivalent grammars that are LL(1)

LL(1) Parsing

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1; in principle, this would mean a table having
columns for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, one may define equivalent grammars that are LL(1)

LL(1) Parsing

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1; in principle, this would mean a table having
columns for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, one may define equivalent grammars that are LL(1)

LL(1) Parsing

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Removing direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ε

LL(1) Parsing

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Removing direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ε

LL(1) Parsing

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Removing direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ε

LL(1) Parsing

Example (a non LL(1) grammar with direct left recursion)

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ε
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ε
F ::= (E)

F ::= id

LL(1) Parsing

Example (a non LL(1) grammar with direct left recursion)

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ε
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ε
F ::= (E)

F ::= id

LL(1) Parsing

Example (a non LL(1) grammar with direct left recursion)

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ε
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ε
F ::= (E)

F ::= id

LL(1) Parsing

Algorithm Remove left recursion for a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: G with left recursion eliminated

1: Arbitrarily enumerate the non-terminals of G
2: for i := 1 to n do
3: for j := 1 to i − 1 do
4: Replace pairs of rules of the form Xi ::= Xjα and Xj ::= β1|β2| . . . |βk by the rules Xi ::= β1α|β2α| . . . |βkα
5: Eliminate any direct left recursion
6: end for
7: end for

LL(1) Parsing

Algorithm Remove left recursion for a grammar G

Input: a context-free grammar G = (N,T ,S ,P)
Output: G with left recursion eliminated

1: Arbitrarily enumerate the non-terminals of G
2: for i := 1 to n do
3: for j := 1 to i − 1 do
4: Replace pairs of rules of the form Xi ::= Xjα and Xj ::= β1|β2| . . . |βk by the rules Xi ::= β1α|β2α| . . . |βkα
5: Eliminate any direct left recursion
6: end for
7: end for

Bottom-up Deterministic Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # 3

Bottom-up Deterministic Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # 3

Bottom-up Deterministic Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # 3

Bottom-up Deterministic Parsing

The following questions arise:

• How does the parser know when to shift and when to reduce?

• When reducing, how many symbols on top of the stack play a role in the reduction?

• Also, when reducing, by which rule does it make the reduction?

Bottom-up Deterministic Parsing

The following questions arise:

• How does the parser know when to shift and when to reduce?

• When reducing, how many symbols on top of the stack play a role in the reduction?

• Also, when reducing, by which rule does it make the reduction?

Bottom-up Deterministic Parsing

The following questions arise:

• How does the parser know when to shift and when to reduce?

• When reducing, how many symbols on top of the stack play a role in the reduction?

• Also, when reducing, by which rule does it make the reduction?

Bottom-up Deterministic Parsing

The following questions arise:

• How does the parser know when to shift and when to reduce?

• When reducing, how many symbols on top of the stack play a role in the reduction?

• Also, when reducing, by which rule does it make the reduction?

Bottom-up Deterministic Parsing

The following questions arise:

• How does the parser know when to shift and when to reduce?

• When reducing, how many symbols on top of the stack play a role in the reduction?

• Also, when reducing, by which rule does it make the reduction?

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Deterministic Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

So, when a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are (terminal or non-terminal) symbols, and akak+1 . . . an are the un-scanned input
symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are (terminal or non-terminal) symbols, and akak+1 . . . an are the un-scanned input
symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are (terminal or non-terminal) symbols, and akak+1 . . . an are the un-scanned input
symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are (terminal or non-terminal) symbols, and akak+1 . . . an are the un-scanned input
symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

Algorithm LR(1) parsing algorithm

Input: Action and Goto tables and the input sentence w followed by the terminator #

Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
2: repeat
3: If Action[sm, ak] = ssi , the parser executes a shift (the s stands for “shift”) and goes into state si

Stack Input

s0X1s1X2s2 . . .Xmsmak si ak+1 . . . an#

4: Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where i is the index of the rule Y ::= XjXj+1 . . .Xm, the parser
replaces the symbols and states Xj sjXj+1sj+1 . . .Xmsm by Ys, where s = Goto[sj−1,Y], and outputs i

Stack Input

s0X1s1X2s2 . . .Xj−1sj−1Ys ak+1 . . . an#

5: Otherwise, if Action[sm, ak] = accept, the parser halts successfully
6: Otherwise, if Action[sm, ak] = error, the parser raises an error
7: until either the sentence is parsed or an error is raised

LR(1) Parsing

Algorithm LR(1) parsing algorithm

Input: Action and Goto tables and the input sentence w followed by the terminator #

Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
2: repeat
3: If Action[sm, ak] = ssi , the parser executes a shift (the s stands for “shift”) and goes into state si

Stack Input

s0X1s1X2s2 . . .Xmsmak si ak+1 . . . an#

4: Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where i is the index of the rule Y ::= XjXj+1 . . .Xm, the parser
replaces the symbols and states Xj sjXj+1sj+1 . . .Xmsm by Ys, where s = Goto[sj−1,Y], and outputs i

Stack Input

s0X1s1X2s2 . . .Xj−1sj−1Ys ak+1 . . . an#

5: Otherwise, if Action[sm, ak] = accept, the parser halts successfully
6: Otherwise, if Action[sm, ak] = error, the parser raises an error
7: until either the sentence is parsed or an error is raised

LR(1) Parsing

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 3

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

0E1+6T13 # r1

0E1 # 3

LR(1) Parsing

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 3

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

0E1+6T13 # r1

0E1 # 3

LR(1) Parsing

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 3

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

0E1+6T13 # r1

0E1 # 3

LR(1) Parsing

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parsing

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parsing

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parsing

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parsing

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parsing

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y , and so αβ is a

[Y ::= α β ·, a]

LR(1) Parsing

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y , and so αβ is a

[Y ::= α β ·, a]

LR(1) Parsing

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y , and so αβ is a

[Y ::= α β ·, a]

LR(1) Parsing

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y , and so αβ is a

[Y ::= α β ·, a]

LR(1) Parsing

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parsing

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parsing

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parsing

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parsing

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parsing

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parsing

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parsing

Algorithm Computing the closure of a set of items

Input: a set of items s
Output: closure(s)

1: C ← Set(s)
2: repeat
3: If C contains an item of the form

[Y ::= α · X β, a],

then add the item

[X ::= · γ, b]

to C for every rule X ::= γ in P and for every token b in first(βa)
4: until no new items may be added
5: return C

LR(1) Parsing

Algorithm Computing the closure of a set of items

Input: a set of items s
Output: closure(s)

1: C ← Set(s)
2: repeat
3: If C contains an item of the form

[Y ::= α · X β, a],

then add the item

[X ::= · γ, b]

to C for every rule X ::= γ in P and for every token b in first(βa)
4: until no new items may be added
5: return C

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parsing

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}, ie, to compute goto(s,X), take all items from s with a · before the X
and move it after the X , and hence take the closure of that

Algorithm Computing goto

Input: a state s, and a symbol X ∈ T ∪ N
Output: the state goto(s,X)

1: r ← Set()
2: for [Y ::= α · Xβ, a] ∈ s do
3: r .add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parsing

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}, ie, to compute goto(s,X), take all items from s with a · before the X
and move it after the X , and hence take the closure of that

Algorithm Computing goto

Input: a state s, and a symbol X ∈ T ∪ N
Output: the state goto(s,X)

1: r ← Set()
2: for [Y ::= α · Xβ, a] ∈ s do
3: r .add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parsing

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}, ie, to compute goto(s,X), take all items from s with a · before the X
and move it after the X , and hence take the closure of that

Algorithm Computing goto

Input: a state s, and a symbol X ∈ T ∪ N
Output: the state goto(s,X)

1: r ← Set()
2: for [Y ::= α · Xβ, a] ∈ s do
3: r .add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parsing

Algorithm Computing the LR(1) collection

Input: a context-free grammar G = (N,T ,S ,P)
Output: the canonical LR(1) collection of states C = {s0, s1, . . . , sn}

1: Define an augmented grammar G ′ which is G with the added non-terminal S ′ and added production rule S ′ ::= S
2: s0 ← closure({[S ′ ::= ·S, #]})
3: C ← Set(s0)
4: repeat
5: for s ∈ C do
6: for X ∈ T ∪ N do
7: if goto(s,X) 6= ∅ and goto(s,X) /∈ C then
8: C.add(goto(s,X))
9: end if

10: end for
11: end for
12: until no new states are added to C

LR(1) Parsing

Algorithm Computing the LR(1) collection

Input: a context-free grammar G = (N,T ,S ,P)
Output: the canonical LR(1) collection of states C = {s0, s1, . . . , sn}

1: Define an augmented grammar G ′ which is G with the added non-terminal S ′ and added production rule S ′ ::= S
2: s0 ← closure({[S ′ ::= ·S, #]})
3: C ← Set(s0)
4: repeat
5: for s ∈ C do
6: for X ∈ T ∪ N do
7: if goto(s,X) 6= ∅ and goto(s,X) /∈ C then
8: C.add(goto(s,X))
9: end if

10: end for
11: end for
12: until no new states are added to C

LR(1) Parsing

Example (the LR(1) canonical collection for the arithmetic expression grammar)

s0 = {[E′ ::= ·E, #], [E ::= ·E+T, +/#], [E ::= ·T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]}

goto(s0, E) = {[E′ ::= E·, #], [E ::= E · +T, +/#]} = s1
goto(s0, T) = {[E ::= T·, +/#], [T ::= T · *F, +/*/#], } = s2
goto(s0, F) = {[T ::= F·, +/*/#]} = s3
goto(s0, () = {[F ::= (· E), +/*/#], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s4
goto(s0, id) = {[F ::= id·, +/*/#]} = s5

goto(s1, +) = {[E ::= E+ · T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s6

goto(s2, *) = {[T ::= T* · F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s7

goto(s4, E) = {[F ::= (E ·), +/*/#], [E ::= E · +T, +/)]} = s8
goto(s4, T) = {[E ::= T·, +/)], [T ::= T · *F, +/*/)]} = s9
goto(s4, F) = {[T ::= F·, +/*/)]} = s10
goto(s4, () = {[F ::= (· E), +/*/)], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s11
goto(s4, id) = {[F ::= id·, +/*/)]} = s12

goto(s6, T) = {[E ::= E+T·, +/#], [T ::= T · *F, +/*/#]} = s13
goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

goto(s7, F) = {[T ::= T*F·, +/*/#]} = s14
goto(s7, () = s4
goto(s7, id) = s5

LR(1) Parsing

goto(s8,)) = {[F ::= (E)·, +/*/#]} = s15
goto(s8, +) = {[E ::= E+ · T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s16

goto(s9, *) = {[T ::= T* · F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s17

goto(s11, E) = {[F ::= (E ·), +/*/)], [E ::= E · +T, +/)]} = s18
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

goto(s13, *) = s7

goto(s16, T) = {[E ::= E+T·, +/)][T ::= T · *F, +/*/)]} = s19
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12

goto(s17, F) = {[T ::= T*F·, +/*/)]} = s20
goto(s17, () = s11
goto(s17, id) = s12

goto(s18, () = {[F ::= (E)·, +/*/)], } = s21
goto(s18, +) = s16

goto(s19, *) = s17

LR(1) Parsing

Algorithm Constructing the LR(1) parse tables for a context-free grammar

Input: a context-free grammar G = (N,T ,S ,P)
Output: the LR(1) tables Action and Goto

1 Compute the LR(1) canonical collection C = {s0, s1, . . . , sn}
2 The Action table is constructed as follows:

a For each transition, goto(si , a) = sj , where a is a terminal, set Action[i , a] = sj

b If the item set sk contains the item [S′ ::= S·, #], set Action[k, #] = accept

c For all item sets si , if si contains an item of the form [Y ::= α·, a], set Action[i , a] = rp, where p is the number of the
rule Y ::= α

d All undefined entries in Action are set to error

3 The Goto table is constructed as follows:

a For each transition, goto(si , Y) = sj , where Y is a non-terminal, set Goto[i , Y] = j

b All undefined entries in Goto are set to error

LR(1) Parsing

Algorithm Constructing the LR(1) parse tables for a context-free grammar

Input: a context-free grammar G = (N,T ,S ,P)
Output: the LR(1) tables Action and Goto

1 Compute the LR(1) canonical collection C = {s0, s1, . . . , sn}
2 The Action table is constructed as follows:

a For each transition, goto(si , a) = sj , where a is a terminal, set Action[i , a] = sj

b If the item set sk contains the item [S′ ::= S·, #], set Action[k, #] = accept

c For all item sets si , if si contains an item of the form [Y ::= α·, a], set Action[i , a] = rp, where p is the number of the
rule Y ::= α

d All undefined entries in Action are set to error

3 The Goto table is constructed as follows:

a For each transition, goto(si , Y) = sj , where Y is a non-terminal, set Goto[i , Y] = j

b All undefined entries in Goto are set to error

LR(1) Parsing

Example (Action and Goto tables for the arithmetic expression grammar)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 3

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing

Example (Action and Goto tables for the arithmetic expression grammar)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 3

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

LR(1) Parsing

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

LR(1) Parsing

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

LR(1) Parsing

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

LR(1) Parsing

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

Besides containing the regular expressions for the lexical structure for j--, the j--.jj file also contains the syntactic rules
for the language

The Java code between the PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block is copied verbatim to the generated
JavaCCParser.java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser;
some of the helpers include

Following the block is the specification for the scanner for j--, and following that is the specification for the parser for j--

We define a start symbol, which is a high level non-terminal (compilationUnit in case of j--) that references other lower level
non-terminals, which in turn reference the tokens

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

BNF syntax is allowed in the syntactic specification:

• [a] for an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for either a or b

• () for grouping

JavaCC

Syntax for a non-terminal declaration

L j--.jj

private|public <type > <name >(<parameter1 >, <parameter2 >, ...):

{

// Local variables.

...

}

{

try {

// BNF rules along with any syntactic actions that must be taken as the rules are parsed.

...

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{

return <expression >;

}

}

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces

JavaCC turns the specification for each non-terminal into a Java method within the generated parser

JavaCC

Syntax for a non-terminal declaration

L j--.jj

private|public <type > <name >(<parameter1 >, <parameter2 >, ...):

{

// Local variables.

...

}

{

try {

// BNF rules along with any syntactic actions that must be taken as the rules are parsed.

...

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{

return <expression >;

}

}

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces

JavaCC turns the specification for each non-terminal into a Java method within the generated parser

JavaCC

Syntax for a non-terminal declaration

L j--.jj

private|public <type > <name >(<parameter1 >, <parameter2 >, ...):

{

// Local variables.

...

}

{

try {

// BNF rules along with any syntactic actions that must be taken as the rules are parsed.

...

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{

return <expression >;

}

}

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces

JavaCC turns the specification for each non-terminal into a Java method within the generated parser

JavaCC

Syntax for a non-terminal declaration

L j--.jj

private|public <type > <name >(<parameter1 >, <parameter2 >, ...):

{

// Local variables.

...

}

{

try {

// BNF rules along with any syntactic actions that must be taken as the rules are parsed.

...

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{

return <expression >;

}

}

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces

JavaCC turns the specification for each non-terminal into a Java method within the generated parser

JavaCC

Example (parsing a compilation unit)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

JavaCC

Example (parsing a compilation unit)

compilationUnit ::= [PACKAGE qualifiedIdentifier SEMI]

{ IMPORT qualifiedIdentifier SEMI }

{ typeDeclaration }

EOF

JavaCC

L j--.jj

public JCompilationUnit compilationUnit ():

{

int line = 0;

TypeName packageName = null , anImport = null;

ArrayList <TypeName > imports = new ArrayList <TypeName >();

JAST aTypeDeclaration = null;

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

}

{

try {

[

<PACKAGE > { line = token.beginLine; }

packageName = qualifiedIdentifier ()

<SEMI >

]

(

<IMPORT > { line = line == 0 ? token.beginLine : line; }

anImport = qualifiedIdentifier ()

{ imports.add(anImport); }

<SEMI >

)*

(

aTypeDeclaration = typeDeclaration ()

{

line = line == 0 ? aTypeDeclaration.line() : line;

typeDeclarations.add(aTypeDeclaration);

}

)*

<EOF > { line = line == 0 ? token.beginLine : line; }

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations); }

}

JavaCC

L j--.jj

public JCompilationUnit compilationUnit ():

{

int line = 0;

TypeName packageName = null , anImport = null;

ArrayList <TypeName > imports = new ArrayList <TypeName >();

JAST aTypeDeclaration = null;

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

}

{

try {

[

<PACKAGE > { line = token.beginLine; }

packageName = qualifiedIdentifier ()

<SEMI >

]

(

<IMPORT > { line = line == 0 ? token.beginLine : line; }

anImport = qualifiedIdentifier ()

{ imports.add(anImport); }

<SEMI >

)*

(

aTypeDeclaration = typeDeclaration ()

{

line = line == 0 ? aTypeDeclaration.line() : line;

typeDeclarations.add(aTypeDeclaration);

}

)*

<EOF > { line = line == 0 ? token.beginLine : line; }

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return new JCompilationUnit(fileName , line , packageName , imports , typeDeclarations); }

}

JavaCC

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L j--.jj

private TypeName qualifiedIdentifier ():

{

int line = 0;

String qualifiedIdentifier = "";

}

{

try {

<IDENTIFIER >

{

line = token.beginLine;

qualifiedIdentifier = token.image;

}

(

LOOKAHEAD(<DOT > <IDENTIFIER >)

<DOT > <IDENTIFIER >

{ qualifiedIdentifier += "." + token.image; }

)*

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return new TypeName(line , qualifiedIdentifier); }

}

JavaCC

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L j--.jj

private TypeName qualifiedIdentifier ():

{

int line = 0;

String qualifiedIdentifier = "";

}

{

try {

<IDENTIFIER >

{

line = token.beginLine;

qualifiedIdentifier = token.image;

}

(

LOOKAHEAD(<DOT > <IDENTIFIER >)

<DOT > <IDENTIFIER >

{ qualifiedIdentifier += "." + token.image; }

)*

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return new TypeName(line , qualifiedIdentifier); }

}

JavaCC

Example (parsing a qualified identifier)

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

L j--.jj

private TypeName qualifiedIdentifier ():

{

int line = 0;

String qualifiedIdentifier = "";

}

{

try {

<IDENTIFIER >

{

line = token.beginLine;

qualifiedIdentifier = token.image;

}

(

LOOKAHEAD(<DOT > <IDENTIFIER >)

<DOT > <IDENTIFIER >

{ qualifiedIdentifier += "." + token.image; }

)*

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return new TypeName(line , qualifiedIdentifier); }

}

JavaCC

Example (parsing a statement)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

JavaCC

Example (parsing a statement)

statement ::= block

| IF parExpression statement [ELSE statement]

| WHILE parExpression statement

| RETURN [expression] SEMI

| SEMI

| statementExpression SEMI

JavaCC

L j--.jj

private JStatement statement ():

{

int line = 0;

JStatement statement = null;

JExpression test = null;

JStatement consequent = null;

JStatement alternate = null;

JStatement body = null;

JExpression expr = null;

}

{

try {

statement = block () |

<IF>

{ line = token.beginLine; }

test = parExpression ()

consequent = statement ()

[

LOOKAHEAD(<ELSE >)

<ELSE >

alternate = statement ()

]

{ statement = new JIfStatement(line , test , consequent , alternate); } |

<WHILE >

{ line = token.beginLine; }

test = parExpression ()

body = statement ()

{ statement = new JWhileStatement(line , test , body); } |

<RETURN >

{ line = token.beginLine; }

[

expr = expression ()

]

<SEMI >

{ statement = new JReturnStatement(line , expr); } |

JavaCC

L j--.jj

private JStatement statement ():

{

int line = 0;

JStatement statement = null;

JExpression test = null;

JStatement consequent = null;

JStatement alternate = null;

JStatement body = null;

JExpression expr = null;

}

{

try {

statement = block () |

<IF>

{ line = token.beginLine; }

test = parExpression ()

consequent = statement ()

[

LOOKAHEAD(<ELSE >)

<ELSE >

alternate = statement ()

]

{ statement = new JIfStatement(line , test , consequent , alternate); } |

<WHILE >

{ line = token.beginLine; }

test = parExpression ()

body = statement ()

{ statement = new JWhileStatement(line , test , body); } |

<RETURN >

{ line = token.beginLine; }

[

expr = expression ()

]

<SEMI >

{ statement = new JReturnStatement(line , expr); } |

JavaCC

L j--.jj

<SEMI >

{

line = token.beginLine;

statement = new JEmptyStatement(line);

} |

statement = statementExpression ()

<SEMI >

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return statement; }

}

JavaCC

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

JavaCC

Example (parsing a simple unary expression)

simpleUnaryExpression ::= LNOT unaryExpression

| LPAREN basicType RPAREN unaryExpression

| LPAREN referenceType RPAREN simpleUnaryExpression

| postfixExpression

JavaCC

L j--.jj

private JExpression simpleUnaryExpression ():

{

int line = 0;

Type type = null;

JExpression expr = null , unaryExpr = null , simpleUnaryExpr = null;

}

{

try {

<LNOT >

{ line = token.beginLine; }

unaryExpr = unaryExpression ()

{ expr = new JLogicalNotOp(line , unaryExpr); } |

LOOKAHEAD(<LPAREN > basicType () <RPAREN >)

<LPAREN >

{ line = token.beginLine; }

type = basicType ()

<RPAREN >

unaryExpr = unaryExpression ()

{ expr = new JCastOp(line , type , unaryExpr); } |

LOOKAHEAD(<LPAREN > referenceType () <RPAREN >)

<LPAREN >

{ line = token.beginLine; }

type = referenceType ()

<RPAREN >

simpleUnaryExpr = simpleUnaryExpression ()

{ expr = new JCastOp(line , type , simpleUnaryExpr); } |

expr = postfixExpression ()

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return expr ; }

}

JavaCC

L j--.jj

private JExpression simpleUnaryExpression ():

{

int line = 0;

Type type = null;

JExpression expr = null , unaryExpr = null , simpleUnaryExpr = null;

}

{

try {

<LNOT >

{ line = token.beginLine; }

unaryExpr = unaryExpression ()

{ expr = new JLogicalNotOp(line , unaryExpr); } |

LOOKAHEAD(<LPAREN > basicType () <RPAREN >)

<LPAREN >

{ line = token.beginLine; }

type = basicType ()

<RPAREN >

unaryExpr = unaryExpression ()

{ expr = new JCastOp(line , type , unaryExpr); } |

LOOKAHEAD(<LPAREN > referenceType () <RPAREN >)

<LPAREN >

{ line = token.beginLine; }

type = referenceType ()

<RPAREN >

simpleUnaryExpr = simpleUnaryExpression ()

{ expr = new JCastOp(line , type , simpleUnaryExpr); } |

expr = postfixExpression ()

} catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return expr ; }

}

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

The error recovery mechanism in the JavaCC parser for j-- involves catching within the body of a non-terminal, the
ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverFromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo

array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipTo always consists of the two tokens SEMI and EOF

When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within
higher non-terminals, the lower non-terminals go unparsed

JavaCC

L j--.jj

private void recoverFromError(int[] skipTo , ParseException e) {

StringBuffer expected = new StringBuffer ();

for (int i = 0; i < e.expectedTokenSequences.length; i++) {

for (int j = 0; j < e.expectedTokenSequences[i]. length; j++) {

expected.append("\n");

expected.append(" ");

expected.append(tokenImage[e.expectedTokenSequences[i][j]]);

expected.append("...");

}

}

if (e.expectedTokenSequences.length == 1) {

reportParserError("\"%s\" found where %s sought", getToken (1), expected);

} else {

reportParserError("\"%s\" found where one of %s sought", getToken (1), expected);

}

boolean loop = true;

do {

token = getNextToken ();

for (int i = 0; i < skipTo.length; i++) {

if (token.kind == skipTo[i]) {

loop = false;

break;

}

}

} while(loop);

}

JavaCC

L j--.jj

private void recoverFromError(int[] skipTo , ParseException e) {

StringBuffer expected = new StringBuffer ();

for (int i = 0; i < e.expectedTokenSequences.length; i++) {

for (int j = 0; j < e.expectedTokenSequences[i]. length; j++) {

expected.append("\n");

expected.append(" ");

expected.append(tokenImage[e.expectedTokenSequences[i][j]]);

expected.append("...");

}

}

if (e.expectedTokenSequences.length == 1) {

reportParserError("\"%s\" found where %s sought", getToken (1), expected);

} else {

reportParserError("\"%s\" found where one of %s sought", getToken (1), expected);

}

boolean loop = true;

do {

token = getNextToken ();

for (int i = 0; i < skipTo.length; i++) {

if (token.kind == skipTo[i]) {

loop = false;

break;

}

}

} while(loop);

}

	Outline
	Parsing a Program
	Context-free Grammars and Languages
	Top-down Deterministic Parsing
	Recursive Descent Parsing
	LL(1) Parsing
	Bottom-up Deterministic Parsing
	LR(1) Parsing
	JavaCC

