Parsing

1 Parsing a Program

2 Context-free Grammars and Languages

3 Top-down Deterministic Parsing

4 Recursive Descent Parsing

5 LL(1) Parsing

6 Bottom-up Deterministic Parsing
(7) LR(1) Parsing

8 JavaCC

Parsing a Program
 Pars

The process of parsing a program is to determine its syntactic structure

The process of parsing a program is to determine its syntactic structure

A parser should:

The process of parsing a program is to determine its syntactic structure

A parser should:

- Make sure the program is syntactically valid, ie, conforms to the grammar describing the program's syntax

The process of parsing a program is to determine its syntactic structure

A parser should:

- Make sure the program is syntactically valid, ie, conforms to the grammar describing the program's syntax
- Identify syntax errors and report them along with the line numbers they appear on

The process of parsing a program is to determine its syntactic structure

A parser should:

- Make sure the program is syntactically valid, ie, conforms to the grammar describing the program's syntax
- Identify syntax errors and report them along with the line numbers they appear on
- Not stop on the first error, but report the error, and gracefully recover and look for additional errors

The process of parsing a program is to determine its syntactic structure

A parser should:

- Make sure the program is syntactically valid, ie, conforms to the grammar describing the program's syntax
- Identify syntax errors and report them along with the line numbers they appear on
- Not stop on the first error, but report the error, and gracefully recover and look for additional errors
- Produce a representation of the parsed program that is suitable for semantic analysis; in $j-$-, the representation is an abstract syntax tree (AST)

Parsing a Program
 Pars

Parsing a Program

```
[% HelloWorld.java
// Copyright 2012- Bill Campbell, Swami Iyer and Bahar Akbal-Delibas
//
// Writes to standard output the message "Hello, World".
import java.lang.System;
public class HelloWorld {
    // Entry point.
    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
```


Parsing a Program
 Pars

Parsing a Program

```
"JCompilationUnit:5":
{
"source": "tests/jvm/HelloWorld.java",
    "imports": ["java.lang.System"],
    "JClassDeclaration:7"
{
"modifiers": ["public"],
"name": "HelloWorld",
"super": "java.lang.Object",
"JMethodDeclaration:9":
{
"name": "main",
returnType": "void",
"modifiers": ["public", "static"],
"parameters": [["args", "String[]"]],
JBlock:9":
{
" JStatementExpression:10":
{
"JMessageExpression:10":
{
"ambiguousPart": "System.out", "name": "println",
Argument":
{
" JLiteralString:10":
{
"type": "", "value": "Hello, World"
}
}
    }
}
}
        }
    }
```

\}
\}

Parsing a Program
 Pars

The AST is rooted at a JcompilationUnit, the syntactic object representing the program that we are compiling

The nodes in the AST represent syntactic objects
The AST is rooted at a Jcompilationunit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

The nodes in the AST represent syntactic objects
The AST is rooted at a Jcompilationunit, the syntactic object representing the program that we are compiling

The directed edges are labeled by the names of the fields they represent

For example, JcompilationUnit has a package name, a list of imported types, and a list of type declarations

The nodes in the AST represent syntactic objects

The AST is rooted at a Jcompilationunit, the syntactic object representing the program that we are compiling
The directed edges are labeled by the names of the fields they represent
For example, Jcompilationunit has a package name, a list of imported types, and a list of type declarations

The tree representation for a program is easier to analyze and decorate (with type information) than text

The nodes in the AST represent syntactic objects

The AST is rooted at a Jcompilationunit, the syntactic object representing the program that we are compiling
The directed edges are labeled by the names of the fields they represent
For example, Jcompilationunit has a package name, a list of imported types, and a list of type declarations
The tree representation for a program is easier to analyze and decorate (with type information) than text
The AST makes the syntax implicit in the program text, explicit

Context-free Grammars and Languages

Inherently recursive programming languages such as j-- are best described by context-free grammar rules, using a notation called Backus-Naur Form (BNF)

Inherently recursive programming languages such as j-- are best described by context-free grammar rules, using a notation called Backus-Naur Form (BNF)

For example, the rule
$S::=$ if $(E) S$
says that, if E is an expression and S is a statement, then
if (E) S
is also a statement

Context-free Grammars and Languages

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

$$
\begin{aligned}
S::= & \text { if }(E) S \\
& \mid \text { if }(E) S_{\text {else }} S
\end{aligned}
$$

is shorthand for

$$
\begin{aligned}
& S::=\mathrm{if}(E) S^{2} \\
& S::=\text { if }(E) S_{\text {else }} S
\end{aligned}
$$

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

$$
\begin{aligned}
S::= & \text { if }(E) S \\
& \mid \text { if }(E) S_{\text {else }} S
\end{aligned}
$$

is shorthand for

$$
\begin{aligned}
& S::=\mathrm{if}(E) S^{2} \\
& S::=\text { if }(E) S_{\text {else }} S
\end{aligned}
$$

Square brackets indicate that a phrase is optional

Context-free Grammars and Languages

There are abbreviations possible in the BNF notation

For example, the rule

$$
\begin{aligned}
S::= & \text { if }(E) S \\
& \mid \text { if }(E) S \text { else } S
\end{aligned}
$$

is shorthand for

$$
\begin{aligned}
& S::=\mathrm{if}(E) S^{2} \\
& S::=\text { if }(E) S_{\text {else }} S
\end{aligned}
$$

Square brackets indicate that a phrase is optional

For example, the two rules from above can be written as

$$
S::=\text { if }(E) S[\text { else } S]
$$

Context-free Grammars and Languages

Context-free Grammars and Languages

Curly braces denote the Kleene closure, indicating that the phrase may appear zero or more times

Curly braces denote the Kleene closure, indicating that the phrase may appear zero or more times

For example, the rule

$$
E::=T\{+T\}
$$

says that an expression E may be written as a term T, followed by zero or more occurrences of + followed by a term T, such as

$$
T+T+T+T
$$

Context-free Grammars and Languages

Context-free Grammars and Languages

One may use the alternation sign | to denote a choice, and parentheses for grouping

One may use the alternation sign | to denote a choice, and parentheses for grouping

For example, the rule

$$
E::=T\{(+\mid-) T\}
$$

says that the additive operator may be either + or -, such as
$T+T-T+T$

Context-free Grammars and Languages

Context-free Grammars and Languages

Example (BNF rules in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }
typeDeclaration ::= modifiers classDeclaration
modifiers ::= { ABSTRACT | PRIVATE | PROTECTED | PUBLIC | STATIC }
classDeclaration ::= CLASS IDENTIFIER [ EXTENDS qualifiedIdentifier ] classBody
classBody ::= LCURLY { modifiers memberDecl } RCURLY
```


Context-free Grammars and Languages

Context-free Grammars and Languages

A context-free grammar is a tuple $G=(N, T, S, P)$, where

Context-free Grammars and Languages

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals
- T is a set of terminals

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals
- T is a set of terminals
- $S \in N$ is the start symbol

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals
- T is a set of terminals
- $S \in N$ is the start symbol
- P is a set of productions or rules

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals
- T is a set of terminals
- $S \in N$ is the start symbol
- P is a set of productions or rules

Example (arithmetic expression grammar)
$G=(N, T, S, P)$ where $N=\{E, T, F\}, T=\{+, *,(), \mathrm{id}\},, S=E$, and $P=\{E::=E+T$, $E::=T, T::=T * F, T::=F, F::=(E), F::=\mathrm{id}\}$

A context-free grammar is a tuple $G=(N, T, S, P)$, where

- N is a set non-terminals
- T is a set of terminals
- $S \in N$ is the start symbol
- P is a set of productions or rules

Example (arithmetic expression grammar)
$G=(N, T, S, P)$ where $N=\{E, T, F\}, T=\{+, *,(), \mathrm{id}\},, S=E$, and $P=\{E::=E+T$, $E::=T, T::=T * F, T::=F, F::=(E), F::=\mathrm{id}\}$

A grammar can be specified informally as a sequence of productions

Context-free Grammars and Languages

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

$$
\begin{aligned}
E & \Rightarrow E+T \\
& \Rightarrow T+T \\
& \Rightarrow F+T \\
& \Rightarrow \mathrm{id}+T \\
& \Rightarrow \mathrm{id}+T * F \\
& \Rightarrow \mathrm{id}+F * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

$$
\begin{aligned}
E & \Rightarrow E+T \\
& \Rightarrow T+T \\
& \Rightarrow F+T \\
& \Rightarrow \mathrm{id}+T \\
& \Rightarrow \mathrm{id}+T * F \\
& \Rightarrow \mathrm{id}+F * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the first string derives $(\stackrel{*}{\Rightarrow})$ the second string

Context-free Grammars and Languages

From the start symbol, using productions, we can generate strings in a language

Example

$$
\begin{aligned}
E & \Rightarrow E+T \\
& \Rightarrow T+T \\
& \Rightarrow F+T \\
& \Rightarrow \mathrm{id}+T \\
& \Rightarrow \mathrm{id}+T * F \\
& \Rightarrow \mathrm{id}+F * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

When one string can be re-written as another string, using zero or more production rules from the grammar, we say the first string derives $(\stackrel{*}{\Rightarrow})$ the second string

Example

$$
\begin{aligned}
& E \stackrel{*}{\Rightarrow} E(\text { in zero steps }) \\
& E \stackrel{*}{\Rightarrow} \text { id }+F * F \\
& T+T \stackrel{*}{\Rightarrow} \text { id }+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Context-free Grammars and Languages

The language $L(G)$ described by a grammar G consists of all the strings comprised of only terminal symbols, ie, $L(G)=\{w \mid S \stackrel{*}{\Rightarrow} w$ and $w \in T *\}$

The language $L(G)$ described by a grammar G consists of all the strings comprised of only terminal symbols, ie, $L(G)=\{w \mid S \stackrel{*}{\Rightarrow} w$ and $w \in T *\}$

For example, in the arithmetic expression grammar G
$E \stackrel{*}{\Rightarrow}{ }_{i d}$
$E \xrightarrow{*} \mathrm{id}+\mathrm{id} * \mathrm{id}$
$E \xrightarrow{*}(\mathrm{id}+\mathrm{id}) * \mathrm{id}$
so, $L(G)$ includes each of

```
id
id + id * id
(id + id) * id
```

and infinitely more finite strings

Context-free Grammars and Languages

A left-most derivation is a derivation in which at each step, the next string is derived by applying a production for rewriting the left-most non-terminal

A left-most derivation is a derivation in which at each step, the next string is derived by applying a production for rewriting the left-most non-terminal

Example

$$
\begin{aligned}
\underline{E} & \Rightarrow \underline{E}+T \\
& \Rightarrow \underline{T}+T \\
& \Rightarrow \underline{F}+T \\
& \Rightarrow \mathrm{id}+\frac{T}{T} \\
& \Rightarrow \mathrm{id}+\bar{T} * F \\
& \Rightarrow \mathrm{id}+\underline{F} * F \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \underline{F} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Context-free Grammars and Languages

A right-most derivation is a derivation in which at each step, the next string is derived by applying a production for rewriting the right-most non-terminal

A right-most derivation is a derivation in which at each step, the next string is derived by applying a production for rewriting the right-most non-terminal

Example

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\frac{T}{T} \\
& \Rightarrow E+\bar{T} * \underline{F} \\
& \Rightarrow E+\underline{T} * \mathrm{id} \\
& \Rightarrow E+\underline{E} * \mathrm{id} \\
& \Rightarrow \underline{E}+\mathrm{id} * \mathrm{id} \\
& \Rightarrow \underline{T}+\mathrm{id} * \mathrm{id} \\
& \Rightarrow \underline{F}+\mathrm{id} * \mathrm{id} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Context-free Grammars and Languages

A sentential form refers to any string of terminal and non-terminal symbols that can be derived from the start symbol, and a sentence is a string with only terminal symbols

A sentential form refers to any string of terminal and non-terminal symbols that can be derived from the start symbol, and a sentence is a string with only terminal symbols

For example,

```
E
E + T
E+T*F
F+id*id
id + id * id
```

are all sentential forms, and $\mathrm{id}+\mathrm{id} *$ id is a sentence

Context-free Grammars and Languages

A parse tree illustrates the derivation and the structure of an input string (at the leaves) from a start symbol (at the root)

A parse tree illustrates the derivation and the structure of an input string (at the leaves) from a start symbol (at the root)

Example (parse tree for id $+\mathrm{id} * \mathrm{id}$)

Context-free Grammars and Languages

Given a grammar G, if there exists a sentence $s \in L(G)$ for which there are more than one left(right)-most derivations or parse trees, we say the sentence s is ambiguous

Given a grammar G, if there exists a sentence $s \in L(G)$ for which there are more than one left(right)-most derivations or parse trees, we say the sentence s is ambiguous

If a grammar G derives at least one ambiguous sentence, we say the grammar G is ambiguous; if there is no such sentence, we say the grammar is unambiguous

Context-free Grammars and Languages

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

$$
E::=E+E|E * E|(E) \mid \mathrm{id}
$$

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

$$
E::=E+E|E * E|(E) \mid \mathrm{id}
$$

A left-most derivation and corresponding parse tree for the sentence id + id $*$ id

$$
\begin{aligned}
\underline{E} & \Rightarrow \underline{E}+E \\
& \Rightarrow \mathrm{id}+\underline{E} \\
& \Rightarrow \mathrm{id}+\underline{E} * E \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \underline{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * i d
\end{aligned}
$$

Context-free Grammars and Languages

Example (ambiguous arithmetic expression grammar)

$$
E::=E+E|E * E|(E) \mid \mathrm{id}
$$

A left-most derivation and corresponding parse tree for the sentence id + id $*$ id

$$
\begin{aligned}
\underline{E} & \Rightarrow \underline{E}+E \\
& \Rightarrow \mathrm{id}+\underline{E} \\
& \Rightarrow \mathrm{id}+\underline{E} * E \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \underline{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Another left-most derivation and corresponding parse tree for id + id *id

$$
\begin{aligned}
\underline{E} & \Rightarrow \underline{E} * E \\
& \Rightarrow \underline{E}+E * E \\
& \Rightarrow \mathrm{id}+\underline{E} * E \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \underline{E} \\
& \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

Context-free Grammars and Languages

Context-free Grammars and Languages

Example (dangling-else problem)

```
\(S::=\) if ( \(E\) ) \(S\)
    \(\left\lvert\, \begin{aligned} & \text { if }(E) S \text { else } S \\ & \mid \mathrm{s}\end{aligned}\right.\)
\(E::=\) e
```

Two left-most derivations and corresponding parse trees for the sentence if (e) if (e) s else s

$$
\begin{aligned}
\underline{S} & \Rightarrow \text { if (E) } S \text { else } S \\
& \Rightarrow \text { if (e) } \underline{S} \text { else } S \\
& \Rightarrow \text { if (e) if (E) } S \text { else } S \\
& \Rightarrow \text { if (e) if (e) } \underline{S} \text { else } S \\
& \Rightarrow \text { if (e) if (e) s else } \underline{S} \\
& \Rightarrow \text { if (e) if (e) selse s }
\end{aligned}
$$

$$
\begin{aligned}
\underline{S} & \Rightarrow \text { if (E) } S \\
& \Rightarrow \text { if (e) } S \\
& \Rightarrow \text { if (e) if (E) } S \text { else } S \\
& \Rightarrow \text { if (e) if (e) } S \text { else } S \\
& \Rightarrow \text { if (e) if (e) selse } S \\
& \Rightarrow \text { if (e) if (e) selse s }
\end{aligned}
$$

Context-free Grammars and Languages

Resolving the dangling-else problem
$\begin{aligned} & S:=\text { if } E \text { do } S \\ & \mid \text { if } E \text { then } S \text { else } S \\ & \mid \text { s } \\ & E:=\end{aligned}$

Resolving the dangling-else problem

```
S::= if E do S
    | if E then S else S
    |s
E ::= e
```

But programmers have become both accustomed to and fond of the ambiguous conditional

Resolving the dangling-else problem

```
S ::= if E dо S
    |if}E\mathrm{ then S else S
    |
E ::= e
```

But programmers have become both accustomed to and fond of the ambiguous conditional

Compiler writers handle the rule as a special case in the parser such that an else is grouped along with the closest preceding if

Context-free Grammars and Languages

Context-free Grammars and Languages

j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w
j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w
Clearly w is a field, but what about x.y.z?
j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w
Clearly w is a field, but what about x.y.z?
x might refer to an object with a field y , referring to another object with a field z , referring to the field w
j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w

Clearly w is a field, but what about x.y.z?
x might refer to an object with a field y , referring to another object with a field z , referring to the field w
x.y might be a package in which the class z is defined, and wa static field in that class
j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w
Clearly w is a field, but what about x.y.z?
x might refer to an object with a field y, referring to another object with a field z, referring to the field w
x.y might be a package in which the class z is defined, and wa static field in that class

The parser cannot determine how the expression $\mathrm{x} \cdot \mathrm{y} . \mathrm{z}$ is parsed because types are not decided until semantic analysis
j-- has another ambiguity, which is the problem of parsing the expression x.y.z.w
Clearly w is a field, but what about x.y.z?
x might refer to an object with a field y, referring to another object with a field z, referring to the field w
x.y might be a package in which the class z is defined, and wa static field in that class

The parser cannot determine how the expression x.y.z is parsed because types are not decided until semantic analysis
The parser represents $x . y$.z in the AST as an AmbiguousName node, which gets reclassified during semantic analysis

Top-down Deterministic Parsing

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

The goal of parsing a compilationunit can be rewritten as a number of sub-goals:
(1) If there is a package statement in the input sentence, then parse that

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time
The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

The goal of parsing a compilationUnit can be rewritten as a number of sub-goals:
(1) If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time
The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

The goal of parsing a compilationunit can be rewritten as a number of sub-goals:
(1) If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them
3 If there are any type declarations, then parse them

Top-down parsing algorithms scan the input from left to right, looking at and scanning just one symbol at a time
The parser starts with the grammar's start symbol as an initial goal, which is then rewritten using a rule replacing the symbol with the right-hand-side sequence of symbols

Example (compilation unit in $j--$)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

The goal of parsing a compilationunit can be rewritten as a number of sub-goals:
(1) If there is a package statement in the input sentence, then parse that

2 If there are import statements in the input, then parse them
3 If there are any type declarations, then parse them
4. Finally, parse the terminating eof token

Top-down Deterministic Parsing

Parsing a token, like package, is simple; if we see it, we simply scan it

Parsing a token, like package, is simple; if we see it, we simply scan it
Parsing a non-terminal is treated as another parsing (sub-)goal

Parsing a token, like package, is simple; if we see it, we simply scan it
Parsing a non-terminal is treated as another parsing (sub-)goal

For example, in a package statement, once we scan the package token, we are left with parsing a qualifiedidentifier

```
qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }
```

We scan an identifier and so long as we see a dot in the input, we scan the dot and scan another identifier

Top-down Deterministic Parsing

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in $j--$)

```
statement ::= block
    IF parExpression statement [ ELSE statement ]
    WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    statementExpression SEMI
```


Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token
Example (statements in $j--$)

```
statement ::= block
    | IF parExpression statement [ ELSE statement ]
    | WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a ε, then parse a block

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token

Example (statements in $j-$-)

```
statement ::= block
    | IF parExpression statement [ ELSE statement ]
    | WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a $\{$, then parse a block

2 If the next token is an if, then parse an if statement

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token
Example (statements in $j--$)

```
statement ::= block
    | IF parExpression statement [ ELSE statement ]
    | WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a f , then parse a block

2 If the next token is an if, then parse an if statement
3 If the next token is a while, then parse a while statement

We decide which rule to apply by looking at the next un-scanned input token
Example (statements in $j--$)

```
statement ::= block
            IF parExpression statement [ ELSE statement ]
            | WHILE parExpression statement
            | RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a ε, then parse a block
2. If the next token is an IF, then parse an if statement

3 If the next token is a mhile, then parse a while statement
4 If the next token is a return, then parse a return statement

We decide which rule to apply by looking at the next un-scanned input token
Example (statements in $j--$)

```
statement ::= block
    | IF parExpression statement [ ELSE statement ]
    | WHILE parExpression statement
    | RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a ε, then parse a block
2) If the next token is an If, then parse an if statement

3 If the next token is a mhile, then parse a while statement
4 If the next token is a return, then parse a return statement
5 If the next token is a semicolon, then parse an empty statement

Top-down Deterministic Parsing

We decide which rule to apply by looking at the next un-scanned input token
Example (statements in $j--$)

```
statement ::= block
    IF parExpression statement [ ELSE statement ]
    | WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```

(1) If the next token is a ε, then parse a block

2 If the next token is an if, then parse an if statement
3 If the next token is a mhile, then parse a while statement
4 If the next token is a return, then parse a return statement
5 If the next token is a semicolon, then parse an empty statement
6 Otherwise, parse a statementExpression

Top-down Deterministic Parsing

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie, tokens) makes this a top-down parsing technique

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie, tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a goal-oriented parsing technique

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie, tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

That we start at the start symbol, and continually rewrite non-terminals using rules until we eventually reach leaves (ie, tokens) makes this a top-down parsing technique

Since at each step in parsing a non-terminal, we replace a parsing goal with a sequence of sub-goals, we call this a goal-oriented parsing technique

In some cases, one must lookahead several tokens in the input to decide which rule to apply

In all cases, since we can predict which rule to apply, based on the next input token(s), we say this is a predictive parsing technique

Recursive Descent Parsing

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define that non-terminal

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals by recursively invoking the corresponding methods

Parsing by recursive descent involves writing a method for parsing each non-terminal according to the rules that define that non-terminal

Based on the next input token, the method chooses a rule to apply, scans any terminals, and parses any non-terminals by recursively invoking the corresponding methods

This is the strategy we use in the hand-crafted parser (Parser.java) for j--

Recursive Descent Parsing

Recursive Descent Parsing

Example (parsing a compilation unit)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```


Recursive Descent Parsing

Example (parsing a compilation unit)

```
compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
    { IMPORT qualifiedIdentifier SEMI }
    { typeDeclaration }
    EOF
```

© Parser.java
public JCompilationUnit compilationUnit() \{
int line $=$ scanner. token(). line();
String fileName = scanner.fileName();
TypeName packageName = null;
if (have (PACKAGE)) \{
packageName = qualifiedIdentifier();
mustBe(SEMI);
\}
ArrayList<TypeName> imports = new ArrayList<TypeName>();
while (have(IMPORT)) \{
imports.add(qualifiedIdentifier()); mustBe(SEMI);
\}
ArrayList<JAST> typeDeclarations = new ArrayList<JAST>();
while (!see(EOF)) \{
JAST typeDeclaration = typeDeclaration();
if (typeDeclaration ! = null) \{
typeDeclarations.add(typeDeclaration); \}
\}
mustBe(EOF);
return new JCompilationUnit(fileName, line, packageName, imports, typeDeclarations);
\}

Recursive Descent Parsing

```
qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }
```


Recursive Descent Parsing

Example (parsing a qualified identifier)

```
qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }
```

```
CParser.java
    private TypeName qualifiedIdentifier() {
        int line = scanner.token().line();
        mustBe(IDENTIFIER);
        String qualifiedIdentifier = scanner.previousToken().image();
        while (have(DOT)) {
            mustBe(IDENTIFIER);
            qualifiedIdentifier += "." + scanner.previousToken().image();
        }
        return new TypeName(line, qualifiedIdentifier);
}
```


Recursive Descent Parsing

have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true; otherwise, it scans nothing and returns false
have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true; otherwise, it scans nothing and returns false
see() looks at the next input token and returns true if that token matches its argument, and false otherwise
have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true; otherwise, it scans nothing and returns false
see() looks at the next input token and returns true if that token matches its argument, and false otherwise
mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error otherwise
have() looks at the next input token, and if that token matches its argument, then it scans the token and returns true; otherwise, it scans nothing and returns false
see() looks at the next input token and returns true if that token matches its argument, and false otherwise
mustBe() requires that the next input token match its argument; on a match, it scans the token, and raises an error otherwise
mustBe() also implements error recovery

Recursive Descent Parsing

Recursive Descent Parsing

Example (parsing a statement)

```
statement ::= block
    | IF parExpression statement [ ELSE statement ]
    WHILE parExpression statement
    RETURN [ expression ] SEMI
    | SEMI
    | statementExpression SEMI
```


Recursive Descent Parsing

Recursive Descent Parsing

```
[% Parser.java
private JStatement statement() {
    int line = scanner.token().line();
    if (see(LCURLY)) {
        return block()
    } else if (have(IF)) {
            JExpression test = parExpression();
            JStatement consequent = statement();
            JStatement alternate = have(ELSE) ? statement() : null;
            return new JIfStatement(line, test, consequent, alternate);
    } else if (have(WHILE)) {
            JExpression test = parExpression();
            JStatement statement = statement();
            return new JWhileStatement(line, test, statement);
    } else if (have(RETURN)) {
            if (have(SEMI)) {
                return new JReturnStatement(line, null);
            } else {
                JExpression expr = expression();
            mustBe(SEMI);
            return new JReturnStatement(line, expr);
        }
    } else if (have(SEMI)) {
        return new JEmptyStatement(line);
    } else {
            JStatement statement = statementExpression();
            mustBe(SEMI);
            return statement;
        }
}
```


Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply
Example (parsing a simple unary expression)

```
simpleUnaryExpression ::= LNOT unaryExpression
LPAREN basicType RPAREN unaryExpression
| LPAREN referenceType RPAREN simpleUnaryExpression
postfixExpression
```


Recursive Descent Parsing

Sometimes we must look ahead in the input stream of tokens to decide which rule to apply

Example (parsing a simple unary expression)

```
simpleUnaryExpression ::= LNOT unaryExpression
    | LPAREN basicType RPAREN unaryExpression
    | LPAREN referenceType RPAREN simpleUnaryExpression
    | postfixExpression
```

© Parser.java

```
private JExpression simpleUnaryExpression() {
    int line = scanner.token().line();
    if (have(LNOT)) {
            return new JLogicalNotOp(line, unaryExpression())
    } else if (seeCast()) {
            mustBe(LPAREN);
            boolean isBasicType = seeBasicType();
            Type type = type();
            mustBe(RPAREN);
            JExpression expr = isBasicType ? unaryExpression() : simpleUnaryExpression();
            return new JCastOp(line, type, expr);
        } else {
            return postfixExpression();
        }
}
private boolean seeBasicType() {
        return (see(BOOLEAN) || see(CHAR) || see(INT));
}
```


Recursive Descent Parsing

© Parser.java

private boolean seeCast() \{
scanner.recordPosition();
if (! have(LPAREN)) \{
scanner.returnToPosition () ;
return false;
\}
if (seeBasicType ()) \{ scanner.returnToPosition (); return true;
\}
if (!see(IDENTIFIER))
scanner.returnToPosition(); return false;
\} else \{
scanner. next ();
while (have (DOT)) \{
if (!have(IDENTIFIER)) \{
scanner.returnToPosition ();
return false;
\}
\}
while (have(LBRACK)) \{
if (!have(RBRACK)) \{
scanner.returnToPosition ();
return false;
\}
\}
if (!have(RPAREN)) \{
scanner.returnToPosition ();
return false
\}
scanner.returnToPosition();
return true.
\}

Recursive Descent Parsing

The parser scans using Lookaheadscanner which encapsulates scanner

LookaheadScanner defines recordPosition() for marking a position in the input stream, and returnToposition() for returning the scanner to that recorded position (ie, for backtracking)

Recursive Descent Parsing

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors
The facility for continuing after an error is detected is called error recovery

When mustBe() comes across a token that it is not expecting, we have a syntax error

The parser should report the error and continue parsing so that it might detect any additional syntax errors
The facility for continuing after an error is detected is called error recovery

In the j-- parser, we implement limited error recovery in mustBe()

Recursive Descent Parsing

Recursive Descent Parsing

```
[/ Parser.java
    private boolean isRecovered = true;
    private void mustBe(TokenKind sought) {
        if (scanner.token().kind() == sought) {
        scanner.next();
        isRecovered = true
        } else if (isRecovered) {
            isRecovered = false;
            reportParserError("%s found where %s sought", scanner.token().image(), sought.image());
        } else {
            while (!see(sought) && !see(EOF)) {
            scanner.next();
            }
            if (see(sought)) {
                scanner.next();
                isRecovered = true;
            }
        }
    }
    private boolean see(TokenKind sought) {
        return (sought == scanner.token().kind());
    }
    private boolean have(TokenKind sought) {
        if (see(sought)) {
            scanner.next();
            return true;
        } else {
            return false;
        }
}
``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

The first \(L\) indicates a left-to-right scan of the input; the second \(L\) signifies that it produces a left-most derivation; and the 1 indicates a single lookahead

The first \(L\) indicates a left-to-right scan of the input; the second \(L\) signifies that it produces a left-most derivation; and the 1 indicates a single lookahead

At the start, the start symbol \(S\) is pushed onto a stack, and based on the first input symbol, \(S\) is replaced by the right-hand-side of a rule defining \(S\)

The first \(L\) indicates a left-to-right scan of the input; the second \(L\) signifies that it produces a left-most derivation; and the 1 indicates a single lookahead

At the start, the start symbol \(S\) is pushed onto a stack, and based on the first input symbol, \(S\) is replaced by the right-hand-side of a rule defining \(S\)

The parser continues by parsing each symbol as it is removed from the top of the stack:

The first \(L\) indicates a left-to-right scan of the input; the second \(L\) signifies that it produces a left-most derivation; and the 1 indicates a single lookahead

At the start, the start symbol \(S\) is pushed onto a stack, and based on the first input symbol, \(S\) is replaced by the right-hand-side of a rule defining \(S\)

The parser continues by parsing each symbol as it is removed from the top of the stack:
- If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised

The first \(L\) indicates a left-to-right scan of the input; the second \(L\) signifies that it produces a left-most derivation; and the 1 indicates a single lookahead

At the start, the start symbol \(S\) is pushed onto a stack, and based on the first input symbol, \(S\) is replaced by the right-hand-side of a rule defining \(S\)

The parser continues by parsing each symbol as it is removed from the top of the stack:
- If the symbol is a terminal, it scans a terminal from the input; if they do not match, an error is raised
- If the symbol is a non-terminal, the input symbol is used to decide which rule to apply to replace that non-terminal \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
\(\mathrm{LL}(1)\) parsing technique is table-driven, with a unique parse table produced for each grammar
\(\mathrm{LL}(1)\) parsing technique is table-driven, with a unique parse table produced for each grammar
The parse table has a row for each non-terminal and a column for each terminal, including a special terminator \# to mark the end of the sentence
\(\mathrm{LL}(1)\) parsing technique is table-driven, with a unique parse table produced for each grammar
The parse table has a row for each non-terminal and a column for each terminal, including a special terminator \# to mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which rule to use in replacing the non-terminal
\(\mathrm{LL}(1)\) parsing technique is table-driven, with a unique parse table produced for each grammar
The parse table has a row for each non-terminal and a column for each terminal, including a special terminator \# to mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which rule to use in replacing the non-terminal

No table entry may contain more than one rule \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

Example (arithmetic expression grammar redux)
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+T E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\mathrm{id}\)

\section*{LL(1) Parsing}

Example (arithmetic expression grammar redux)
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+T E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\mathrm{id}\)
\(\mathrm{LL}(1)\) parse table for the grammar
\begin{tabular}{|c|cccccc|}
\hline & + & \(*\) & \((\) & \()\) & id & \(\#\) \\
\hline\(E\) & & & 1 & & 1 & \\
\hline\(E^{\prime}\) & 2 & & & 3 & & 3 \\
\hline\(T\) & & & 4 & & 4 & \\
\hline\(T^{\prime}\) & 6 & 5 & & 6 & & 6 \\
\hline\(F\) & & & 7 & & 8 & \\
\hline
\end{tabular} \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{LL(1) Parsing}
```

Algorithm LL(1) parsing algorithm
Input: $\mathrm{LL}(1)$ parse table table, productions rules, and a sentence $w$ followed by \#
Output: a left-most derivation for $w$
stk $\leftarrow$ Stack (\#, S)
sym $\leftarrow$ first symbol in w\#
while true do
top $\leftarrow$ stk.pop()
if top $=\operatorname{sym}=\#$ then
Halt successfully
else if top is a terminal then
if top $=$ sym then
Advance sym to be the next symbol in w\#
else
Halt with an error: sym found where top was expected
end if
else if top is a non-terminal $Y$ then
index $\leftarrow$ table $[Y$, sym $]$
if index $\neq$ err then
rule $\leftarrow$ rules[index]
If $Y::=X_{1} X_{2} \ldots X_{n-1} X_{n}$, then stk.push $\left(X_{n}, X_{n-1}, \ldots, X_{2}, X_{1}\right)$
else
Halt with an error: no rule to follow
end if
end if
end while

``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{LL(1) Parsing}

\section*{Example (parsing id+id*id)}

\section*{LL(1) Parsing}

Example (parsing id+id*id)
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\) id

\section*{LL(1) Parsing}

Example (parsing id+id*id)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
1. \(E::=T E^{\prime}\) \\
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\) \\
3. \(E^{\prime}::=\epsilon\) \\
4. \(T::=F T^{\prime}\) \\
5. \(T^{\prime}::=* F T^{\prime}\) \\
6. \(T^{\prime}::=\epsilon\) \\
7. \(F::=(E)\) \\
8. \(F::=\) id
\end{tabular}} \\
\hline & + & * & (& , & id & \# \\
\hline E & & & 1 & & 1 & \\
\hline \(E^{\prime}\) & 2 & & & 3 & & 3 \\
\hline \(T\) & & & 4 & & 4 & \\
\hline \(T^{\prime}\) & 6 & 5 & & 6 & & 6 \\
\hline \(F\) & & & 7 & & 8 & \\
\hline
\end{tabular}

\section*{LL(1) Parsing}

Example (parsing id+id*id)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
1. \(E::=T E^{\prime}\) \\
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\) \\
3. \(E^{\prime}::=\epsilon\) \\
4. \(T::=F T^{\prime}\) \\
5. \(T^{\prime}::=* F T^{\prime}\) \\
6. \(T^{\prime}::=\epsilon\) \\
7. \(F::=(E)\) \\
8. \(F::=\) id
\end{tabular}} \\
\hline & + & * & (&) & i & \# \\
\hline E & & & 1 & & 1 & \\
\hline \(E^{\prime}\) & 2 & & & 3 & & 3 \\
\hline \(T\) & & & 4 & & 4 & \\
\hline \(T^{\prime}\) & 6 & 5 & & 6 & & 6 \\
\hline \(F\) & & & 7 & & 8 & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Stack & Input & Output \\
\hline\(\# E\) & id+id*id\# & \\
\hline\(\# E^{\prime} T\) & id+id*id\# & 1 \\
\hline\(\# E^{\prime} T^{\prime} F\) & id+id*id\# & 4 \\
\hline\(\# E^{\prime} T^{\prime}\) id & id+id*id\# & 8 \\
\hline\(\# E^{\prime} T^{\prime}\) & +id*id\# & \\
\hline\(\# E^{\prime}\) & +id*id\# & 6 \\
\hline\(\# E^{\prime} T+\) & +id*id\# & 2 \\
\hline\(\# E^{\prime} T\) & id*id\# & \\
\hline\(\# E^{\prime} T^{\prime} F\) & id*id\# & 4 \\
\hline\(\# E^{\prime} T^{\prime}{ }^{\prime}\) id & id*id\# & 8 \\
\hline\(\# E^{\prime} T^{\prime}\) & *id\# & \\
\hline\(\# E^{\prime} T^{\prime} F *\) & *id\# & 5 \\
\hline\(\# E^{\prime} T^{\prime} F\) & id\# & \\
\hline\(\# E^{\prime} T^{\prime}{ }^{\prime}\) id & id\# & 8 \\
\hline\(\# E^{\prime} T^{\prime}\) & \(\#\) & 6 \\
\hline\(\# E^{\prime}\) & \(\#\) & 3 \\
\hline\(\#\) & \(\#\) & \(\checkmark\) \\
\hline
\end{tabular} \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:
(1) \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha\), or

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:
(1) \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha\), or

2 \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} \epsilon\), and there is a derivation \(S_{\#} \stackrel{*}{\Rightarrow} \alpha Y a \beta\), ie, a can follow \(Y\) in a derivation

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:
(1) \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha\), or

2 \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} \epsilon\), and there is a derivation \(S_{\#} \stackrel{*}{\Rightarrow} \alpha Y a \beta\), ie, a can follow \(Y\) in a derivation

For this we need two helper functions, first and follow

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:
(1) \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha\), or

2 \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} \epsilon\), and there is a derivation \(S_{\#} \stackrel{*}{\Rightarrow} \alpha Y a \beta\), ie, a can follow \(Y\) in a derivation

For this we need two helper functions, first and follow
first \(\left(X_{1} X_{2} \ldots X_{n}\right)=\left\{a \mid X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha, a \in T\right\}\), ie, the set of all terminals that can start strings derivable from \(X_{1} X_{2} \ldots X_{n}\)

Assuming both \(\alpha\) and \(\beta\) are (possibly empty) strings of terminals and non-terminals, table[\(Y, a]=i\), where \(i\) is the number of the rule \(Y::=X_{1} X_{2} \ldots X_{n}\), if either:
(1) \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha\), or

2 \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} \epsilon\), and there is a derivation \(S_{\#} \stackrel{*}{\Rightarrow} \alpha Y a \beta\), ie, a can follow \(Y\) in a derivation

For this we need two helper functions, first and follow
first \(\left(X_{1} X_{2} \ldots X_{n}\right)=\left\{a \mid X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} a \alpha, a \in T\right\}\), ie, the set of all terminals that can start strings derivable from \(X_{1} X_{2} \ldots X_{n}\)

If \(X_{1} X_{2} \ldots X_{n} \stackrel{*}{\Rightarrow} \epsilon\), then we say that \(\operatorname{first}\left(X_{1} X_{2} \ldots X_{n}\right)\) includes \(\epsilon\) \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
```

Algorithm first( $X$ ) for all symbols $X$ in a grammar $G$
Input: a context-free grammar $G=(N, T, S, P)$
Output: first $(X)$ for all symbols $X \in T \cup N$
for $X \in T$ do
first $(X) \leftarrow\{X\}$
end for
for $X \in N$ do
first $(X) \leftarrow\}$
end for
if $X::=\epsilon \in P$ then
Add $\epsilon$ to first $(X)$
end if
repeat
for $Y::=X_{1} X_{2} \ldots X_{n} \in P$ do
Add first $\left(X_{1} X_{2} \ldots X_{n}\right)$ to $\operatorname{first}(Y)$
end for
until no new symbols are added to any set

``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
```

Algorithm first $\left(X_{1} X_{2} \ldots X_{n}\right)$ for a sequence of symbols $X_{1} X_{2} \ldots X_{n}$ in a grammar $G$
Input: a context-free grammar $G=(N, T, S, P)$ and a sequence of symbols $X_{1} X_{2} \ldots X_{n}$
Output: $\operatorname{first}\left(X_{1} X_{2} \ldots X_{n}\right)$
1: $F \leftarrow \operatorname{first}\left(X_{1}\right)$
2: $i \leftarrow 2$
3: while $\epsilon \in F$ and $i \leq n$ do
4: $F \leftarrow F-\epsilon$
5: $\quad$ Add first $\left(X_{i}\right)$ to $F$
$i \leftarrow i+1$
end while
return $F$

``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\mathrm{id}\)

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::={ }_{i d}\)
first \((E)=\{c\), id \(\}\)
\(\operatorname{first}\left(E^{\prime}\right)=\{+, \epsilon\}\)
\(\operatorname{first}(T)=\{(\), id \(\}\)
\(\operatorname{first}\left(T^{\prime}\right)=\{*, \epsilon\}\)
first \((F)=\{c\), id \(\}\) \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{LL(1) Parsing}

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow
follow \((X)=\{a \mid S \stackrel{*}{\Rightarrow} w X \alpha\) and \(\alpha \stackrel{*}{\Rightarrow} a \ldots\}\), ie, all terminal symbols that start terminal strings derivable from what can follow \(X\) in a derivation

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow
follow \((X)=\{a \mid S \stackrel{*}{\Rightarrow} w X \alpha\) and \(\alpha \stackrel{*}{\Rightarrow} a \ldots\}\), ie, all terminal symbols that start terminal strings derivable from what can follow \(X\) in a derivation

Alternate definition:

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow
follow \((X)=\{a \mid S \stackrel{*}{\Rightarrow} w X \alpha\) and \(\alpha \stackrel{*}{\Rightarrow} a \ldots\}\), ie, all terminal symbols that start terminal strings derivable from what can follow \(X\) in a derivation

Alternate definition:
(1) follow(S) contains \#, ie, the terminator follows the start symbol

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow
follow \((X)=\{a \mid S \stackrel{*}{\Rightarrow} w X \alpha\) and \(\alpha \stackrel{*}{\Rightarrow} a \ldots\}\), ie, all terminal symbols that start terminal strings derivable from what can follow \(X\) in a derivation

Alternate definition:
(1) follow \((S)\) contains \#, ie, the terminator follows the start symbol
2. If there is a rule \(Y::=\alpha X \beta\) in \(P\), follow \((X)\) contains first \((\beta)-\{\epsilon\}\)

To determine when the rule \(X::=\epsilon\) is applicable, we need the notion of follow
follow \((X)=\{a \mid S \stackrel{*}{\Rightarrow} w X \alpha\) and \(\alpha \stackrel{*}{\Rightarrow} a \ldots\}\), ie, all terminal symbols that start terminal strings derivable from what can follow \(X\) in a derivation

Alternate definition:
(1) follow \((S)\) contains \#, ie, the terminator follows the start symbol
2. If there is a rule \(Y::=\alpha X \beta\) in \(P\), follow \((X)\) contains first \((\beta)-\{\epsilon\}\)
3. If there is a rule \(Y::=\alpha X \beta\) in \(P\) and either \(\beta=\epsilon\) or first \((\beta)\) contains \(\epsilon\), follow \((X)\) contains follow \((Y)\) \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
```

Algorithm follow $(X)$ for all non-terminals $X$ in a grammar $G$
Input: a context-free grammar $G=(N, T, S, P)$
Output: follow $(X)$ for all symbols $X \in N$
follow $(S) \leftarrow\{\#\}$
for $X \in N$ do
follow $(X) \leftarrow\}$
end for
repeat
for $Y::=X_{1} X_{2} \ldots X_{n} \in P$ do
for $X_{i} \in X_{1} X_{2} \ldots X_{n}$ do
Add first $\left(X_{i+1} X_{i+2} \ldots X_{n}\right)-\{\epsilon\}$ to follow $\left(X_{i}\right)$
If $X_{i}$ is the last symbol or $\epsilon \in \operatorname{first}\left(X_{i+1} \ldots X_{n}\right)$, add follow $(Y)$ to follow $\left(X_{i}\right)$
end for
end for
until no new symbols are added to any set

``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
first \((E)=\{c\), id \(\}\)
5. \(T^{\prime}::=* F T^{\prime}\)
\(\operatorname{first}\left(E^{\prime}\right)=\{+, \epsilon\}\)
first \((T)=\{,, \mathrm{id}\}\)
6. \(T^{\prime}::=\epsilon\)
first \(\left(T^{\prime}\right)=\{*, \epsilon\}\)
7. \(F::=(E)\)
\(\operatorname{first}(F)=\{(\), id \(\}\)
8. \(F::=\mathrm{id}\)

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
\[
\operatorname{first}(E)=\{,, \mathrm{id}\}
\]
\(\operatorname{first}\left(E^{\prime}\right)=\{+, \epsilon\}\)
5. \(T^{\prime}::=* F T^{\prime}\)
\(\operatorname{first}(T)=\{(, \mathrm{id}\}\)
6. \(T^{\prime}::=\epsilon\)
\(\operatorname{first}\left(T^{\prime}\right)=\{*, \epsilon\}\)
7. \(F::=(E)\)
\(\operatorname{first}(F)=\{(\), id \(\}\)
8. \(F::=\mathrm{id}\)
follow \((E)=\{\nu, \#\}\)
follow \(\left(E^{\prime}\right)=\{2, \#\}\)
follow \((T)=\{+),, \#\}\)
follow \(\left(T^{\prime}\right)=\{+\), , , \# \(\}\)
follow \((F)=\{+, *),, \#\}\) \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
```

Algorithm LL(1) parse table for a grammar $G$
Input: a context-free grammar $G=(N, T, S, P)$
Output: LL(1) parse table for $G$
for $Y \in N$ do
for $Y::=X_{1} X_{2} \ldots X_{n} \in P$ with index $i$ do
for $a \in \operatorname{first}\left(X_{1} X_{2} \ldots X_{n}\right)-\{\epsilon\}$ do
table $[Y, a] \leftarrow i$
if $\epsilon \in \operatorname{first}\left(X_{1} X_{2} \ldots X_{n}\right)$ then
for $a \in \operatorname{follow}(Y)$ do
table $[Y, a] \leftarrow i$
end for
end if
end for
end for
end for

``` \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\) id
first \((E)=\{(\), id \(\} \quad\) follow \((E)=\{), \#\}\)
first \(\left(E^{\prime}\right)=\{+, \epsilon\} \quad\) follow \(\left(E^{\prime}\right)=\{,, \#\}\)
first \((T)=\{(\), id \(\} \quad\) follow \((T)=\{+\),), \#\}
first \(\left(T^{\prime}\right)=\{*, \epsilon\} \quad\) follow \(\left(T^{\prime}\right)=\{+\), , \# \# \(\}\)
first \((F)=\{(\), id \(\} \quad\) follow \((F)=\{+, *),, \#\}\)

\section*{LL(1) Parsing}

\section*{Example}
1. \(E::=T E^{\prime}\)
2. \(E^{\prime}::=+\mathrm{T} E^{\prime}\)
3. \(E^{\prime}::=\epsilon\)
4. \(T::=F T^{\prime}\)
5. \(T^{\prime}::=* F T^{\prime}\)
6. \(T^{\prime}::=\epsilon\)
7. \(F::=(E)\)
8. \(F::=\mathrm{id}\)
first \((E)=\{\) (, id \(\} \quad\) follow \((E)=\{,, \#\}\)
first \(\left(E^{\prime}\right)=\{+, \epsilon\} \quad\) follow \(\left(E^{\prime}\right)=\{,, \#\}\)
first \((T)=\{(\), id \(\} \quad\) follow \((T)=\{+),, \#\}\)
first \(\left(T^{\prime}\right)=\{*, \epsilon\} \quad\) follow \(\left(T^{\prime}\right)=\{+\), , , \#\}
first \((F)=\{(\), id \(\} \quad\) follow \((F)=\{+, *),, \#\}\)
\begin{tabular}{|c|cccccc|}
\hline & + & \(*\) & \((\) & \()\) & id & \(\#\) \\
\hline\(E\) & & & 1 & & 1 & \\
\hline\(E^{\prime}\) & 2 & & & 3 & & 3 \\
\hline\(T\) & & & 4 & & 4 & \\
\hline\(T^{\prime}\) & 6 & 5 & & 6 & & 6 \\
\hline\(F\) & & & 7 & & 8 & \\
\hline
\end{tabular} \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

We say a grammar is \(\operatorname{LL}(1)\) if the parse table has no conflicts, ie, no entries with more than one rule

We say a grammar is \(\operatorname{LL}(1)\) if the parse table has no conflicts, ie, no entries with more than one rule If a grammar is \(\operatorname{LL}(1)\), then it is unambiguous

We say a grammar is \(\operatorname{LL}(1)\) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is \(\operatorname{LL}(1)\), then it is unambiguous
It is possible for a grammar not to be \(\operatorname{LL}(1)\) but \(\operatorname{LL}(k)\) for some \(k>1\); in principle, this would mean a table having columns for each combination of \(k\) symbols

We say a grammar is \(\operatorname{LL}(1)\) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is \(\operatorname{LL}(1)\), then it is unambiguous
It is possible for a grammar not to be \(\operatorname{LL}(1)\) but \(\operatorname{LL}(k)\) for some \(k>1\); in principle, this would mean a table having columns for each combination of \(k\) symbols

Not all context-free grammars are \(\operatorname{LL}(1)\), but for many that are not, one may define equivalent grammars that are \(\operatorname{LL}(1)\) \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

One type of grammar that is not \(\operatorname{LL}(1)\) is a grammar having a rule with direct left recursion
\[
\begin{aligned}
& \mathrm{Y}::=\mathrm{Y} \alpha \\
& \mathrm{Y}::=\beta
\end{aligned}
\]

LL(1) Parsing

One type of grammar that is not \(\operatorname{LL}(1)\) is a grammar having a rule with direct left recursion
\[
\begin{aligned}
& \mathrm{Y}::=\mathrm{Y} \alpha \\
& \mathrm{Y}::=\beta
\end{aligned}
\]

Removing direct left recursion
\[
\begin{aligned}
& \mathrm{Y}::=\beta Y^{\prime} \\
& Y^{\prime}::=\alpha Y^{\prime} \\
& Y^{\prime}::=\epsilon
\end{aligned}
\] \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都

LL(1) Parsing

Example (a non \(\operatorname{LL}(1)\) grammar with direct left recursion)
\[
\begin{aligned}
& E::=E+T \\
& E::=T \\
& T::=T * F \\
& T::=F \\
& F::=(E) \\
& F::=\text { id }
\end{aligned}
\]

\section*{LL(1) Parsing}

Example (a non \(\operatorname{LL}(1)\) grammar with direct left recursion)
\[
\begin{aligned}
& E::=E+T \\
& E::=T \\
& T::=T * F \\
& T::=F \\
& F::=(E) \\
& F::=\text { id }
\end{aligned}
\]

Equivalent LL(1) grammar
\[
\begin{aligned}
& E::=T E^{\prime} \\
& E^{\prime}::=+T E^{\prime} \\
& E^{\prime}::=\epsilon \\
& T::=F T^{\prime} \\
& T^{\prime}::=* F T^{\prime} \\
& T^{\prime}::=\epsilon \\
& F::=(E) \\
& F::=\text { id }
\end{aligned}
\] \\ \section*{\section*{LL（1）Parsing \\ \section*{\section*{LL（1）Parsing \\ \\ \[
\operatorname{LL}(1)
\] \\ \\ （1）Pars} \\ \\ LL（1）} \\ \\ LL（1）}
\(\square\)都
```

Algorithm Remove left recursion for a grammar $G$
Input: a context-free grammar $G=(N, T, S, P)$
Output: $G$ with left recursion eliminated
: Arbitrarily enumerate the non-terminals of $G$
for $i:=1$ to $n$ do
for $j:=1$ to $i-1$ do
Replace pairs of rules of the form $X_{i}::=X_{j} \alpha$ and $X_{j}::=\beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{k}$ by the rules $X_{i}::=\beta_{1} \alpha\left|\beta_{2} \alpha\right| \ldots \mid \beta_{k} \alpha$
Eliminate any direct left recursion
end for
end for

```

\section*{Bottom-up Deterministic Parsing}

\section*{Bottom-up Deterministic Parsing}

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and the input is just the terminator symbol \#

\section*{Bottom-up Deterministic Parsing}

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and the input is just the terminator symbol \#

Example (parsing id+id*id)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * \mathrm{~F}\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\begin{tabular}{lll}
\hline Stack & Input & Action \\
\hline & id+id*id\# & shift \\
\hline id & \({ }^{+i d * i d \#}\) & reduce 6 \\
\hline\(F\) & +id*id\# & reduce 4 \\
\hline\(T\) & +id*id\# & reduce 2 \\
\hline\(E\) & +id*id\# & shift \\
\hline\(E_{+}\) & id*id\# & shift \\
\hline\(E_{+i d}\) & *id\# & reduce 6 \\
\hline\(E_{+} F\) & *id\# & reduce 4 \\
\hline\(E_{+} T\) & *id\# \(^{\text {id\# }}\) & shift \\
\hline\(E_{+} T_{*}\) & shift \\
\hline\(E_{+} T_{* i d}\) & \(\#\) & reduce 6 \\
\hline\(E_{+} T_{*} F\) & \(\#\) & reduce 3 \\
\hline\(E_{+} T\) & \(\#\) & reduce 1 \\
\hline\(E\) & \(\#\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Bottom-up Deterministic Parsing}

\section*{Bottom-up Deterministic Parsing}

The following questions arise:

\section*{Bottom-up Deterministic Parsing}

The following questions arise:
- How does the parser know when to shift and when to reduce?

The following questions arise:
- How does the parser know when to shift and when to reduce?
- When reducing, how many symbols on top of the stack play a role in the reduction?

The following questions arise:
- How does the parser know when to shift and when to reduce?
- When reducing, how many symbols on top of the stack play a role in the reduction?
- Also, when reducing, by which rule does it make the reduction?

\section*{Bottom-up Deterministic Parsing}

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step the handle

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step the handle

Formally, in a right-most derivation, \(S \stackrel{*}{\Rightarrow} \alpha Y w \Rightarrow \alpha \beta w \stackrel{*}{\Rightarrow} u w\), a handle is a rule \(Y::=\beta\) and a position in \(\alpha \beta w\) where \(\beta\) may be replaced by \(Y\)

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step the handle

Formally, in a right-most derivation, \(S \stackrel{*}{\Rightarrow} \alpha Y w \Rightarrow \alpha \beta w \stackrel{*}{\Rightarrow} u w\), a handle is a rule \(Y::=\beta\) and a position in \(\alpha \beta w\) where \(\beta\) may be replaced by \(Y\)

So, when a handle appears on top of the stack
\[
\begin{array}{ll}
\text { Stack } & \text { Input } \\
\hline \alpha \beta & w
\end{array}
\]
we reduce that handle (\(\beta\) to \(Y\) in this case)

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step the handle

Formally, in a right-most derivation, \(S \stackrel{*}{\Rightarrow} \alpha Y w \Rightarrow \alpha \beta w \stackrel{*}{\Rightarrow} u w\), a handle is a rule \(Y::=\beta\) and a position in \(\alpha \beta w\) where \(\beta\) may be replaced by \(Y\)

So, when a handle appears on top of the stack
\[
\begin{array}{ll}
\text { Stack } & \text { Input } \\
\hline \alpha \beta & W
\end{array}
\]
we reduce that handle (\(\beta\) to \(Y\) in this case)

If \(\beta\) is the sequence \(X_{1}, X_{2}, \ldots, X_{n}\), then we call any subsequence, \(X_{1}, X_{2}, \ldots, X_{i}\), for \(i \leq n\) a viable prefix

\section*{Bottom-up Deterministic Parsing}

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most derivation of the input

We call the sequence of terminals on top of the stack that are reduced to a single non-terminal at each reduction step the handle

Formally, in a right-most derivation, \(S \stackrel{*}{\Rightarrow} \alpha Y w \Rightarrow \alpha \beta w \stackrel{*}{\Rightarrow} u w\), a handle is a rule \(Y::=\beta\) and a position in \(\alpha \beta w\) where \(\beta\) may be replaced by \(Y\)

So, when a handle appears on top of the stack
\[
\begin{array}{ll}
\text { Stack } & \text { Input } \\
\hline \alpha \beta & w
\end{array}
\]
we reduce that handle (\(\beta\) to \(Y\) in this case)

If \(\beta\) is the sequence \(X_{1}, X_{2}, \ldots, X_{n}\), then we call any subsequence, \(X_{1}, X_{2}, \ldots, X_{i}\), for \(i \leq n\) a viable prefix
If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is called for

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

The \(\operatorname{LR}(1)\) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

The \(\operatorname{LR}(1)\) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto A configuration of the parser is a pair, consisting of the state of the stack and the state of the input
\[
\begin{array}{ll}
\text { Stack } & \text { Input } \\
\hline s_{0} X_{1} s_{1} X_{2} s_{2} \ldots X_{m} s_{m} & a_{k} a_{k+1} \ldots a_{n}
\end{array}
\]
where the \(s_{i}\) are states, the \(X_{i}\) are (terminal or non-terminal) symbols, and \(a_{k} a_{k+1} \ldots a_{n}\) are the un-scanned input symbols

\section*{LR(1) Parsing}

The \(\operatorname{LR}(1)\) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto A configuration of the parser is a pair, consisting of the state of the stack and the state of the input
\begin{tabular}{ll}
Stack & Input \\
\hline\(s_{0} X_{1} s_{1} X_{2} s_{2} \ldots X_{m} s_{m}\) & \(a_{k} a_{k+1} \ldots a_{n}\)
\end{tabular}
where the \(s_{i}\) are states, the \(X_{i}\) are (terminal or non-terminal) symbols, and \(a_{k} a_{k+1} \ldots a_{n}\) are the un-scanned input symbols

The configuration represents a right sentential form in a right-most derivation of the sequence \(X_{1} X_{2} \ldots X_{m} a_{k} a_{k+1} \ldots a_{n}\)

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

\section*{Algorithm LR(1) parsing algorithm}

Input: Action and Goto tables and the input sentence \(w\) followed by the terminator \#
Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,
\begin{tabular}{ll}
Stack & Input \\
\hline\(s_{0}\) & \(a_{1} a_{2} \ldots a_{n} \#\)
\end{tabular}
where \(a_{1} a_{2} \ldots a_{n}\) is the input sentence
2: repeat
If Action \(\left[s_{m}, a_{k}\right]=s s_{i}\), the parser executes a shift (the \(s\) stands for "shift") and goes into state \(s_{i}\)
\begin{tabular}{ll}
Stack & Input \\
\hline\(s_{0} X_{1} s_{1} X_{2} s_{2} \ldots X_{m} s_{m} a_{k} s_{i}\) & \(a_{k+1} \ldots a_{n} \#\)
\end{tabular}

4: Otherwise, if Action \(\left[s_{m}, a_{k}\right]=r i\) (the \(r\) stands for "reduce"), where \(i\) is the index of the rule \(Y::=X_{j} X_{j+1} \ldots X_{m}\), the parser replaces the symbols and states \(X_{j} s_{j} X_{j+1} s_{j+1} \ldots X_{m} s_{m}\) by \(Y s\), where \(s=\operatorname{Goto}\left[s_{j-1}, Y\right]\), and outputs \(i\)
\[
\begin{array}{ll}
\text { Stack } & \text { Input } \\
\hline s_{0} X_{1} s_{1} X_{2} s_{2} \ldots X_{j-1} s_{j-1} Y_{s} & a_{k+1} \ldots a_{n} \#
\end{array}
\]

Otherwise, if Action \(\left[s_{m}, a_{k}\right]=\) accept, the parser halts successfully
Otherwise, if Action \(\left[s_{m}, a_{k}\right]=\) error, the parser raises an error
until either the sentence is parsed or an error is raised

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

Example (parsing id+id*id)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * \mathrm{~F}\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Action} & \multicolumn{3}{|c|}{Goto} \\
\hline & + & * & (&) & id & \# & \(E\) & T & F \\
\hline 0 & & & s4 & & s5 & & 1 & 2 & 3 \\
\hline 1 & s6 & & & & & \(\checkmark\) & & & \\
\hline 2 & r2 & s7 & & & & r2 & & & \\
\hline 3 & r4 & r4 & & & & r4 & & & \\
\hline 4 & & & s11 & & s12 & & 8 & 9 & 10 \\
\hline 5 & r6 & r6 & & & & r6 & & & \\
\hline 6 & & & s4 & & s5 & & & 13 & 3 \\
\hline 7 & & & s4 & & s5 & & & & 14 \\
\hline 8 & s16 & & & s15 & & & & & \\
\hline 9 & r2 & s17 & & r2 & & & & & \\
\hline 10 & r4 & r4 & & r4 & & & & & \\
\hline 11 & & & s11 & & s12 & & 18 & 9 & 10 \\
\hline 12 & r6 & r6 & & r6 & & & & & \\
\hline 13 & r1 & s7 & & & & r1 & & & \\
\hline 14 & r3 & r3 & & & & r3 & & & \\
\hline 15 & r5 & r5 & & & & r5 & & & \\
\hline 16 & & & s11 & & s12 & & & 19 & 10 \\
\hline 17 & & & s11 & & s12 & & & & 20 \\
\hline 18 & s16 & & & s21 & & & & & \\
\hline 19 & r1 & s17 & & r1 & & & & & \\
\hline 20 & r3 & r3 & & r3 & & & & & \\
\hline 21 & r5 & r5 & & r5 & & & & & \\
\hline
\end{tabular}

\section*{LR(1) Parsing}

Example (parsing id+id*id)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * \mathrm{~F}\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Action} & \multicolumn{3}{|c|}{Goto} \\
\hline & + & * & (&) & id & \# & \(E\) & \(T\) & F \\
\hline 0 & & & s4 & & s5 & & 1 & 2 & 3 \\
\hline 1 & s6 & & & & & \(\checkmark\) & & & \\
\hline 2 & r2 & s7 & & & & r2 & & & \\
\hline 3 & r4 & r4 & & & & r4 & & & \\
\hline 4 & & & s11 & & s12 & & 8 & 9 & 10 \\
\hline 5 & r6 & r6 & & & & r6 & & & \\
\hline 6 & & & s4 & & s5 & & & 13 & 3 \\
\hline 7 & & & s4 & & s5 & & & & 14 \\
\hline 8 & s16 & & & s15 & & & & & \\
\hline 9 & r2 & s17 & & r2 & & & & & \\
\hline 10 & r4 & r4 & & r4 & & & & & \\
\hline 11 & & & s11 & & s12 & & 18 & 9 & 10 \\
\hline 12 & r6 & r6 & & r6 & & & & & \\
\hline 13 & r1 & s7 & & & & r1 & & & \\
\hline 14 & r3 & r3 & & & & r3 & & & \\
\hline 15 & r5 & r5 & & & & r5 & & & \\
\hline 16 & & & s11 & & s12 & & & 19 & 10 \\
\hline 17 & & & s11 & & s12 & & & & 20 \\
\hline 18 & s16 & & & s21 & & & & & \\
\hline 19 & r1 & s17 & & r1 & & & & & \\
\hline 20 & r3 & r3 & & r3 & & & & & \\
\hline 21 & r5 & r5 & & r5 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|llc|}
\hline Stack & Input & Action \\
\hline 0 & id+id*id\# & s5 \\
\hline 0id5 & +id*id\# & r6 \\
\hline \(0 F 3\) & +id*id\# & r 4 \\
\hline \(0 T 2\) & +id*id\# & r 2 \\
\hline \(0 E 1\) & +id*id\# & s 6 \\
\hline \(0 E 1+6\) & id*id\# & s 5 \\
\hline \(0 E 1+6 i d 5\) & *id\# & r 6 \\
\hline \(0 E 1+6 F 3\) & *id\# & r 4 \\
\hline \(0 E 1+6 T 13\) & *id\# & s 7 \\
\hline \(0 E 1+6 T 13 * 7\) & id\# & s 5 \\
\hline \(0 E 1+6 T 13 * 7 i d 5\) & \(\#\) & r 6 \\
\hline \(0 E 1+6 T 13 * 7 F 14\) & \(\#\) & r 3 \\
\hline \(0 E 1+6 T 13\) & \(\#\) & r 1 \\
\hline \(0 E 1\) & \(\#\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

The LR(1) parsing tables, Action and Goto, for a grammar \(G\) are derived from a DFA for recognizing the possible handles for a parse in \(G\)

The LR(1) parsing tables, Action and Goto, for a grammar \(G\) are derived from a DFA for recognizing the possible handles for a parse in \(G\)

The DFA is constructed from the \(\operatorname{LR}(1)\) canonical collection, a collection of sets of items (representing potential handles) of the form
\[
[\mathrm{Y}::=\alpha \cdot \beta, \mathrm{a}]
\]
where \(Y::=\alpha \beta\) is a rule in \(P, \alpha\) and \(\beta\) are (possibly empty) strings of symbols, and a is a lookahead symbol

The LR(1) parsing tables, Action and Goto, for a grammar \(G\) are derived from a DFA for recognizing the possible handles for a parse in \(G\)

The DFA is constructed from the \(\operatorname{LR}(1)\) canonical collection, a collection of sets of items (representing potential handles) of the form
\[
[\mathrm{Y}::=\alpha \cdot \beta, \mathrm{a}]
\]
where \(Y::=\alpha \beta\) is a rule in \(P, \alpha\) and \(\beta\) are (possibly empty) strings of symbols, and a is a lookahead symbol

The \(\cdot\) is a position marker that marks the top of the stack, indicating that we have parsed the \(\alpha\) and still have the \(\beta\) ahead of us in satisfying the \(Y\)

The LR(1) parsing tables, Action and Goto, for a grammar \(G\) are derived from a DFA for recognizing the possible handles for a parse in \(G\)

The DFA is constructed from the \(\operatorname{LR}(1)\) canonical collection, a collection of sets of items (representing potential handles) of the form
\[
[\mathrm{Y}::=\alpha \cdot \beta, \mathrm{a}]
\]
where \(Y::=\alpha \beta\) is a rule in \(P, \alpha\) and \(\beta\) are (possibly empty) strings of symbols, and a is a lookahead symbol

The \(\cdot\) is a position marker that marks the top of the stack, indicating that we have parsed the \(\alpha\) and still have the \(\beta\) ahead of us in satisfying the \(Y\)

The lookahead symbol a is a token that can follow \(Y\) (and so, \(\alpha \beta\)) in a legal right-most derivation of some sentence

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

The following item is called a possibility
\[
[\mathrm{Y}::=\cdot \alpha \beta, \mathrm{a}]
\]

\section*{LR(1) Parsing}

The following item is called a possibility
\[
[\mathrm{Y}::=\cdot \alpha \beta, \mathrm{a}]
\]

The following item indicates that \(\alpha\) has been parsed (and so is on the stack) but that there is still \(\beta\) to parse from the input
\[
[\mathrm{Y}::=\alpha \cdot \beta, \mathrm{a}]
\]

\section*{LR(1) Parsing}

The following item is called a possibility
\[
[\mathrm{Y}::=\cdot \alpha \beta, \mathrm{a}]
\]

The following item indicates that \(\alpha\) has been parsed (and so is on the stack) but that there is still \(\beta\) to parse from the input
\[
[\mathrm{Y}::=\alpha \cdot \beta, \mathrm{a}]
\]

The following item indicates that the parser has successfully parsed \(\alpha \beta\) in a context where \(Y_{\text {a }}\) would be valid, and that the \(\alpha \beta\) can be reduced to a \(Y\), and so \(\alpha \beta\) is a
\[
[\mathrm{Y}::=\alpha \beta \cdot, \mathrm{a}]
\]

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

LR(1) Parsing

The states in the DFA for recognizing viable prefixes and handles are constructed from items

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar \(G\) with an additional start symbol \(S^{\prime}\) and an additional rule so as to yield an equivalent grammar \(G^{\prime}\)
\[
S^{\prime}::=S
\]

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar \(G\) with an additional start symbol \(S^{\prime}\) and an additional rule so as to yield an equivalent grammar \(G^{\prime}\)
\[
S^{\prime}::=S
\]

Example (augmented arithmetic expression grammar)
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

The initial set, called kernel, representing the initial state in the DFA, will contain the \(\operatorname{LR}(1)\) item
\[
\left\{\left[S^{\prime}::=\cdot S, \#\right]\right\}
\]
which says that parsing an \(S^{\prime}\) means parsing an \(S\) from the input, after which point the next (and last) remaining token is the terminator \#

The initial set, called kernel, representing the initial state in the DFA, will contain the \(\operatorname{LR}(1)\) item
\[
\left\{\left[S^{\prime}::=\cdot S, \#\right]\right\}
\]
which says that parsing an \(S^{\prime}\) means parsing an \(S\) from the input, after which point the next (and last) remaining token is the terminator \#

The kernel may imply additional items, which are computed as the closure of the set

\section*{LR(1) Parsing}
\(\square\)
\(\square\)
```

Algorithm Computing the closure of a set of items
Input: a set of items $s$
Output: closure(s)
1: $C \leftarrow \operatorname{Set}(s)$
2: repeat
3: If $C$ contains an item of the form
$[Y::=\alpha \cdot X \beta$, a $]$,
then add the item
[ $X::=\cdot \gamma, \mathrm{b}]$
to $C$ for every rule $X::=\gamma$ in $P$ and for every token $b$ in first $\left(\beta_{\mathrm{a}}\right)$
4: until no new items may be added
5: return C

```

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
closure \(\left(\left\{\left[E^{\prime}::=\cdot E, \#\right]\right\}\right)\) yields
\[
\begin{aligned}
& \left\{\left[E^{\prime}::=\cdot E, \#\right],\right. \\
& {[E::=\cdot+T,+/ \#],} \\
& {[E::=T,+/ \#],} \\
& {[T::=\cdot * F,+/ * / \#],} \\
& {[T::=\cdot F,+/ * / \#],} \\
& {[F::=\cdot(E),+/ * / \#],} \\
& [F::=\cdot i d,+/ * / \#]\}
\end{aligned}
\]
which represents the initial state \(s_{0}\) in the \(\operatorname{LR}(1)\) canonical collection

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

For any item set \(s\), and any symbol \(X \in(T \cup N)\)
\[
\operatorname{goto}(s, X)=\operatorname{closure}(r),
\]
where \(r=\{[Y::=\alpha X \cdot \beta, a] \mid[Y::=\alpha \cdot X \beta, a]\}\), ie, to compute goto \((s, X)\), take all items from \(s\) with a before the \(X\) and move it after the \(X\), and hence take the closure of that

\section*{LR(1) Parsing}

For any item set \(s\), and any symbol \(X \in(T \cup N)\)
\[
\operatorname{goto}(s, X)=\operatorname{closure}(r),
\]
where \(r=\{[Y::=\alpha X \cdot \beta, a] \mid[Y::=\alpha \cdot X \beta, a]\}\), ie, to compute goto \((s, X)\), take all items from \(s\) with a before the \(X\) and move it after the \(X\), and hence take the closure of that
```

Algorithm Computing goto
Input: a state $s$, and a symbol $X \in T \cup N$
Output: the state goto( $s, X$ )
$r \leftarrow \operatorname{Set}()$
for $[Y::=\alpha \cdot X \beta$, a] $\in s$ do
$r \cdot \operatorname{add}([Y::=\alpha X \cdot \beta, \mathrm{a}])$
end for
return closure( $r$ )

```

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
s_{0}=\{ & {\left[E^{\prime}::=\cdot E, \#\right], } \\
& {[E::=E+T,+/ / \pi], } \\
& {[E:=\cdot T,+/ \#], } \\
& {[T::=\cdot T * F,+/ * / \#], } \\
& {[T::=\cdot F,++* / \#], } \\
& {[F::=\cdot(E),+/ * / \#], } \\
& {[F::=\cdot \text { id },+/ * / \#]\} }
\end{aligned}
\]

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
s_{0}=\{ & {\left[E^{\prime}::=\cdot E, \#\right], } \\
& {[E::=\cdot E+T,+/ \#], } \\
& {[E::=T,+/ \#], } \\
& {[T::=\cdot T * F,+/ * / \#], } \\
& {[T::=\cdot F,+/ * /[],} \\
& {[F::=\cdot(E),+/ * / \#], } \\
& {[F::=\cdot \mathrm{id},+/ * / \#]\} }
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{goto}\left(s_{0}, E\right)=s_{1}=\left\{\left[E^{\prime}::=E \cdot, \#\right],\right. \\
& {[E::=E \cdot+T,+/ \#]\} }
\end{aligned}
\]

Example
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
& s_{0}=\left\{\left[E^{\prime}::=\cdot E, \#\right],\right. \\
& {[E::=\cdot E+T,+/ / \pi,} \\
& {[E:=\cdot T,+/ / \#], } \\
& {[T::=\cdot T * F,+/ * / \#], } \\
& {[T::=\cdot F,+/ * / \#], } \\
& {[F::=\cdot(E),+/ * / \#], } \\
& {[F::=\cdot \text { id },+/ * / \#]\} }
\end{aligned}
\]

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
s_{0}=\{ & {\left[E^{\prime}::=\cdot E, \#\right], } \\
& {[E::=\cdot E+T,+/ \#], } \\
& {[E::=\cdot T,+/ \#], } \\
& {[T::=\cdot T * F,+/ * / \#], } \\
& {[T::=\cdot F,+/ * / \#], } \\
& {[F::=\cdot(E),+/ * / \#], } \\
& {[F::=\cdot \mathrm{id},+/ * / / \|]\} }
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{goto}\left(s_{0}, E\right)=s_{1}=\left\{\left[E^{\prime}::=E \cdot, \#\right],\right. \\
& {[E::=E \cdot+T,+/ \#]\} } \\
& \operatorname{goto}\left(s_{0}, T\right)=s_{2}=\{[E::=T \cdot,+/ / \#], \\
& {[T::=T \cdot * F,+/ * / \#]\} } \\
& \operatorname{goto}\left(s_{0}, F\right)=s_{3}=\{[T::=F \cdot,+/ * / \#]\}
\end{aligned}
\]

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
& s_{0}=\left\{\left[E^{\prime}::=E, \#\right],\right. \\
& {[E::=\cdot E+T,+/ / \pi,} \\
& {[E:=\cdot T,+/ / \#], } \\
& {[T::=\cdot T * F,+/ * / \#], } \\
& {[T::=\cdot F,+/ * / \#], } \\
& {[F::=\cdot(E),+/ * / /], }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{aligned}
& \operatorname{goto}\left(s_{0}, E\right)=s_{1}=\left\{\left[E^{\prime}::=E \cdot, \#\right],\right. \\
& {[E::=E \cdot+T,+/ \#]\} }
\end{aligned} \\
& \begin{aligned}
& \operatorname{goto}\left(s_{0}, T\right)=s_{2}=\{[E::=T \cdot,+/ /], \\
& {\left.\left[T::=T \cdot{ }^{*} F,+* / / \#\right]\right\} }
\end{aligned} \\
& \operatorname{goto}\left(s_{0}, F\right)=s_{3}=\{[T::=F \cdot,+/ * / \#]\} \\
& \operatorname{goto}\left(s_{0}, c\right)=s_{4}=\{[F::=(\cdot E),+/ * / / \|], \\
& {[E::=\cdot E+T,+\curlywedge] \text {, }} \\
& [E::=\cdot T,+/)] \text {, } \\
& [T::=\cdot T * F,+/ * /)] \text {, } \\
& \begin{array}{l}
[T::=\cdot F,+/ * /)], \\
[F::=\cdot(E),+/ * /)],
\end{array} \\
& \left.\left[\begin{array}{l}
F \\
F
\end{array}::=\cdot(\mathrm{id},+/ * /)\right]\right\}
\end{aligned}
\]

\section*{Example}
0. \(E^{\prime}::=E\)
1. \(E::=E+T\)
2. \(E::=T\)
3. \(T::=T * F\)
4. \(T::=F\)
5. \(F::=(E)\)
6. \(F::=\) id
\[
\begin{aligned}
& s_{0}=\left\{\left[E^{\prime}::=\cdot E, \#\right],\right. \\
& {[E::=\cdot E+T,+/ \#] \text {, }} \\
& {[E::=\cdot T,+/ \#] \text {, }} \\
& {[T::=\cdot T * F,+/ * / \#] \text {, }} \\
& {[T::=F,+/ * / \#] \text {, }} \\
& {[F::=\cdot(E),+/ * / \#] \text {, }} \\
& [F::=\cdot \mathrm{id},+/ * / \#]\}
\end{aligned}
\]

\section*{LR(1) Parsing}
\(\square\)
\(\square\)
```

Algorithm Computing the LR(1) collection
Input: a context-free grammar $G=(N, T, S, P)$
Output: the canonical $\operatorname{LR}(1)$ collection of states $\mathcal{C}=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$
1: Define an augmented grammar $G^{\prime}$ which is $G$ with the added non-terminal $S^{\prime}$ and added production rule $S^{\prime}::=S$
$s_{0} \leftarrow \operatorname{closure}\left(\left\{\left[S^{\prime}::=\cdot S, \#\right]\right\}\right)$
$\mathcal{C} \leftarrow \operatorname{Set}\left(s_{0}\right)$
repeat
for $s \in \mathcal{C}$ do
for $X \in T \cup N$ do
if goto $(s, X) \neq \emptyset$ and $\operatorname{goto}(s, X) \notin \mathcal{C}$ then
$\mathcal{C} . \operatorname{add}(\operatorname{goto}(s, X))$
end if
end for
end for
until no new states are added to $\mathcal{C}$

```

\section*{LR(1) Parsing}

\section*{Example (the LR(1) canonical collection for the arithmetic expression grammar)}
```

$s_{0}=\left\{\left[E^{\prime}::=\cdot E, \#\right],[E::=\cdot E+T,+/ \#],[E::=\cdot T,+/ \#],[T::=\cdot T * F,+/ * / \#],[T::=\cdot F,+/ * / \#],[F::=\cdot(E),+/ * / \#],[F::=\cdot \mathrm{id},+/ * / \#]\right\}$
$\operatorname{goto}\left(s_{0}, E\right)=\left\{\left[E^{\prime}::=E \cdot \#\right],[E::=E \cdot+T,+/ \#]\right\}=s_{1}$
$\operatorname{goto}\left(s_{0}, T\right)=\{[E::=T \cdot,+/ \#],[T::=T \cdot * F,+/ * / \#]\}=,s_{2}$
$\operatorname{goto}\left(s_{0}, F\right)=\{[T::=F \cdot,+/ * / \#]\}=s_{3}$
$\left.\left.\left.\left.\left.\operatorname{goto}\left(s_{0},()=\{[F::=(\cdot E),+/ * / \#],[E::=\cdot E+T,+/)],[E::=\cdot T,+/)\right],[T::=\cdot T * F,+/ * /)\right],[T::=\cdot F,+/ * /)\right],[F::=\cdot(E),+/ * /)\right],[F::=\cdot \mathrm{id},+/ * /)\right]\right\}=s_{4}$
$\operatorname{goto}\left(s_{0}, i d\right)=\{[F::=$ id $\cdot,+/ * / \#]\}=s_{5}$
$\operatorname{goto}\left(s_{1},+\right)=\{[E::=E+\cdot T,+/ \#],[T::=\cdot T * F,+/ * / \#],[T::=\cdot F,+/ * / \#],[F::=\cdot(E),+/ * / \#],[F::=\cdot$ id,$+/ * / \#]\}=s_{6}$
$\operatorname{goto}\left(s_{2}, *\right)=\{[T::=T * \cdot F,+/ * / \#],[F::=\cdot(E),+/ * / \#],[F::=\cdot \mathrm{id},+/ * / \#]\}=s_{7}$
$\left.\operatorname{goto}\left(s_{4}, E\right)=\{[F::=(E \cdot),+/ * / \#],[E::=E \cdot+T,+/)]\right\}=s_{8}$
$\left.\left.\operatorname{goto}\left(s_{4}, T\right)=\{[E::=T \cdot,+/)],[T::=T \cdot * F,+/ * /)\right]\right\}=s_{9}$
$\left.\operatorname{goto}\left(s_{4}, F\right)=\{[T::=F \cdot,+/ * /)]\right\}=s_{10}$
$\left.\left.\left.\left.\left.\left.\operatorname{goto}\left(s_{4},()=\{[F::=(\cdot E),+/ * /)],[E::=\cdot E+T,+/)\right],[E::=\cdot T,+/)\right],[T::=\cdot T * F,+/ * /)\right],[T::=\cdot F,+/ * /)\right],[F::=\cdot(E),+/ * /)\right],[F::=\cdot \operatorname{id},+/ * /)\right]\right\}=s_{11}$
$\operatorname{goto}\left(s_{4}, \mathrm{id}\right)=\{[F::=$ id $\left.\cdot,+/ * /)]\right\}=s_{12}$
$\operatorname{goto}\left(s_{6}, T\right)=\{[E::=E+T \cdot,+/ \#],[T::=T \cdot * F,+/ * / \#]\}=s_{13}$
$\operatorname{goto}\left(s_{6}, F\right)=s_{3}$
goto $\left(s_{6},()=s_{4}\right.$
$\operatorname{goto}\left(s_{6}\right.$, id $)=s_{5}$
$\operatorname{goto}\left(s_{7}, F\right)=\{[T::=T * F \cdot,+/ * / \#]\}=s_{14}$
goto $\left(s_{7},()=s_{4}\right.$
$\operatorname{goto}\left(s_{7}\right.$, id $)=s_{5}$

```

\section*{LR(1) Parsing}
```

$\left.\operatorname{goto}\left(s_{8},\right)\right)=\{[F::=(E) \cdot,+/ * / \#]\}=s_{15}$
$\left.\left.\left.\operatorname{goto}^{\left(s_{8},+\right)}=\{[E::=E+\cdot T,+/ /]],[T:=\cdot T * F,+/ * / /],[T::=\cdot F,+/ * /)\right],[F::=\cdot(E),+/ * /)\right],[F::=\cdot \mathrm{id},+/ * / /]\right\}=s_{16}$
$\left.\left.\left.\operatorname{goto}\left(s_{9}, *\right)=\{[T::=T * \cdot F,+/ * /)],[F::=\cdot(E),+/ * /)\right],[F::=\cdot \mathrm{id},+/ * /)\right]\right\}=s_{17}$
$\left.\left.\operatorname{goto}\left(s_{11}, E\right)=\{[F::=(E \cdot),+/ * /)],[E::=E \cdot+T,+/)\right]\right\}=s_{18}$
$\operatorname{goto}\left(s_{11}, T\right)=s_{9}$
$\operatorname{goto}\left(s_{11}, F\right)=s_{10}$
goto $\left(s_{11},()=s_{11}\right.$
$\operatorname{goto}\left(s_{11}\right.$, id $)=s_{12}$
$\operatorname{goto}\left(s_{13}, *\right)=s_{7}$
$\left.\left.\operatorname{goto}\left(s_{16}, T\right)=\{[E::=E+T \cdot,+/)][T::=T \cdot * F,+/ * /)\right]\right\}=s_{19}$
goto $\left(s_{16}, F\right)=s_{10}$
goto $\left(s_{16},()=s_{11}\right.$
$\operatorname{goto}\left(s_{16}\right.$, id $)=s_{12}$
$\left.\operatorname{goto}\left(s_{17}, F\right)=\{[T::=T * F \cdot,+/ * /)]\right\}=s_{20}$
goto $\left(s_{17},()=s_{11}\right.$
$\operatorname{goto}\left(s_{17}\right.$, id $)=s_{12}$
$\operatorname{goto}\left(s_{18},()=\{[F::=(E) \cdot,+/ * /)],\right\}=s_{21}$
$\operatorname{goto}\left(s_{18},+\right)=s_{16}$
$\operatorname{goto}\left(s_{19}, *\right)=s_{17}$

```

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

Algorithm Constructing the LR(1) parse tables for a context-free grammar
Input: a context-free grammar \(G=(N, T, S, P)\)
Output: the \(\operatorname{LR}(1)\) tables Action and Goto
(1) Compute the \(\operatorname{LR}(1)\) canonical collection \(\mathcal{C}=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}\)
2) The Action table is constructed as follows:
a For each transition, \(\operatorname{goto}\left(s_{i}, \mathrm{a}\right)=s_{j}\), where \(a\) is a terminal, set Action \([i, \mathrm{a}]=s_{j}\)
b If the item set \(s_{k}\) contains the item [\(S^{\prime}::=S \cdot\), , \(\left.\#\right]\), set Action \([k, \#]=\) accept
c For all item sets \(s_{i}\), if \(s_{i}\) contains an item of the form [\(Y::=\alpha \cdot\), a], set Action \([i\), a] \(=r p\), where \(p\) is the number of the rule \(Y::=\alpha\)
d All undefined entries in Action are set to error
(3) The Goto table is constructed as follows:
a For each transition, \(\operatorname{goto}\left(s_{i}, Y\right)=s_{j}\), where \(Y\) is a non-terminal, set Goto \([i, Y]=j\)
b All undefined entries in Goto are set to error

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

Example (Action and Goto tables for the arithmetic expression grammar)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Action} & \multicolumn{3}{|c|}{Goto} \\
\hline & + & * & (&) & id & \# & \(E\) & T & \(F\) \\
\hline 0 & & & s4 & & s5 & & 1 & 2 & 3 \\
\hline 1 & s6 & & & & & \(\checkmark\) & & & \\
\hline 2 & r2 & s7 & & & & r2 & & & \\
\hline 3 & r4 & r4 & & & & r4 & & & \\
\hline 4 & & & s11 & & s12 & & 8 & 9 & 10 \\
\hline 5 & r6 & r6 & & & & r6 & & & \\
\hline 6 & & & s4 & & s5 & & & 13 & 3 \\
\hline 7 & & & s4 & & s5 & & & & 14 \\
\hline 8 & s16 & & & s15 & & & & & \\
\hline 9 & r2 & s17 & & r2 & & & & & \\
\hline 10 & r4 & r4 & & r4 & & & & & \\
\hline 11 & & & s11 & & s12 & & 18 & 9 & 10 \\
\hline 12 & r6 & r6 & & r6 & & & & & \\
\hline 13 & r1 & s7 & & & & r1 & & & \\
\hline 14 & r3 & r3 & & & & r3 & & & \\
\hline 15 & r5 & r5 & & & & r5 & & & \\
\hline 16 & & & s11 & & s12 & & & 19 & 10 \\
\hline 17 & & & s11 & & s12 & & & & 20 \\
\hline 18 & s16 & & & s21 & & & & & \\
\hline 19 & r1 & s17 & & r1 & & & & & \\
\hline 20 & r3 & r3 & & r3 & & & & & \\
\hline 21 & r5 & r5 & & r5 & & & & & \\
\hline
\end{tabular}

\section*{LR(1) Parsing}
\(\square\)
\(\square\)

\section*{LR(1) Parsing}

There are two different kinds of conflicts possible for an entry in the Action table

\section*{LR(1) Parsing}

There are two different kinds of conflicts possible for an entry in the Action table
The shift-reduce conflict can occur when there are items of the forms
\[
\begin{aligned}
& {[Y::=\alpha \cdot, \mathrm{a}] \text { and }} \\
& {[Y::=\alpha \cdot \mathrm{a} \beta, \mathrm{~b}]}
\end{aligned}
\]

\section*{LR(1) Parsing}

There are two different kinds of conflicts possible for an entry in the Action table
The shift-reduce conflict can occur when there are items of the forms
\[
\begin{aligned}
& {[Y::=\alpha \cdot, \mathrm{a}] \text { and }} \\
& {[Y::=\alpha \cdot \mathrm{a} \beta, \mathrm{~b}]}
\end{aligned}
\]

Example (the dangling else problem)
\[
\begin{aligned}
& S::=\text { if }(E) S^{\prime} \\
& S::=\text { if }(E) S_{\text {else }} S
\end{aligned}
\]

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (\(E\)) \(S\) to an \(S\)

\section*{LR(1) Parsing}

There are two different kinds of conflicts possible for an entry in the Action table
The shift-reduce conflict can occur when there are items of the forms
\[
\begin{aligned}
& {[Y::=\alpha \cdot, \mathrm{a}] \text { and }} \\
& {[Y::=\alpha \cdot \mathrm{a} \beta, \mathrm{~b}]}
\end{aligned}
\]

Example (the dangling else problem)
\[
\begin{aligned}
& S::=\text { if }(E) S^{\prime} \\
& S::=\text { if }(E) S_{\text {else }} S
\end{aligned}
\]

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (\(E\)) \(S\) to an \(S\)

The reduce-reduce conflict can happen when we have a state containing two items of the form
\[
\begin{aligned}
& {[X::=\alpha \cdot, \mathrm{a}]} \\
& {[Y::=\beta \cdot, \mathrm{a}]}
\end{aligned}
\]

\author{

}

\section*{\(\qquad\)
}

Besides containing the regular expressions for the lexical structure for \(j--\), the \({ }_{j--.}\) jj file also contains the syntactic rules for the language

Besides containing the regular expressions for the lexical structure for \(j--\), the \({ }_{j--.}\) jj file also contains the syntactic rules for the language

The Java code between the parser_begin (Javacciarser) and parser_end (JavacCParser) block is copied verbatim to the generated JavacCParser.java file in the \({ }_{\text {jminusminus }}\) package

Besides containing the regular expressions for the lexical structure for \(j--\), the \({ }_{j--. j j}\) file also contains the syntactic rules for the language

The Java code between the parser_begin (Javacciarser) and parser_end (JavacCParser) block is copied verbatim to the generated JavacCParser.java file in the \({ }_{\text {jminusminus }}\) package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser; some of the helpers include

Besides containing the regular expressions for the lexical structure for \(j--\), the \({ }_{j--. j j}\) file also contains the syntactic rules for the language

The Java code between the parser_begin (Javacciarser) and parser_end (JavacCParser) block is copied verbatim to the generated JavacCParser.java file in the \({ }_{\text {jminusminus }}\) package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser; some of the helpers include

Following the block is the specification for the scanner for \(j--\), and following that is the specification for the parser for \(j--\)

\section*{JavaCC}

Besides containing the regular expressions for the lexical structure for \(j--\), the \({ }_{j-- \text {. } j \mathrm{j}}\) file also contains the syntactic rules for the language

The Java code between the parser_begin(JavaCCParser) and parser_end (JavacCParser) block is copied verbatim to the generated JavacCParser. java file in the jminusminus package

The Java code defines helper functions (eg, reportParserError()), which are available for use within the generated parser; some of the helpers include

Following the block is the specification for the scanner for \(j--\), and following that is the specification for the parser for \(j\)--
We define a start symbol, which is a high level non-terminal (compilationUnit in case of \(j-\)-) that references other lower level non-terminals, which in turn reference the tokens

\author{

}

\section*{\(\qquad\)
}
- [a] for an "optional" occurrence of a

BNF syntax is allowed in the syntactic specification:
- [a] for an "optional" occurrence of a
- (a)* for "zero or more" occurrences of a

BNF syntax is allowed in the syntactic specification:
- [a] for an "optional" occurrence of a
- (a)* for "zero or more" occurrences of a
- \(a \mid b\) for either \(a\) or \(b\)

BNF syntax is allowed in the syntactic specification:
- [a] for an "optional" occurrence of a
- (a)* for "zero or more" occurrences of a
- \(a \mid b\) for either \(a\) or \(b\)
- () for grouping

\author{

}

\section*{\(\qquad\)
}

\section*{JavaCC}

\section*{Syntax for a non-terminal declaration}
```

< j--.jj
privatelpublic <type> <name>(<parameter1>, <parameter2>, ...):
{
// Local variables.
}
try {
// BNF rules along with any syntactic actions that must be taken as the rules are parsed.
} catch (ParseException e) {
recoverFromError(new int [] { SEMI, EOF }, e);
}
return <expression>;
}
}

```

\section*{JavaCC}

\section*{Syntax for a non-terminal declaration}
```

\widetilde{C}}\textrm{j--.jj
privatelpublic <type> <name>(<parameter1>, <parameter2>, ...):
{
// Local variables.
}
{
try {
// BNF rules along with any syntactic actions that must be taken as the rules are parsed.
} catch (ParseException e) {
recoverFromError(new int [] { SEMI, EOF }, e);
}
return <expression>;
}
}

```

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces

\section*{JavaCC}

Syntax for a non-terminal declaration
```

< j--.jj
privatelpublic <type> <name>(<parameter1>, <parameter2>, ...):
{
// Local variables.
}
{
try {
// BNF rules along with any syntactic actions that must be taken as the rules are parsed.
} catch (ParseException e) {
recoverFromError(new int [] { SEMI, EOF }, e);
}
return <expression>;
}
}

```

Syntactic actions, such as creating/returning an AST node, are Java statements embedded within curly braces JavaCC turns the specification for each non-terminal into a Java method within the generated parser

\author{

}

\section*{\(\qquad\)
}

\section*{Example (parsing a compilation unit)}
```

compilationUnit ::= [ PACKAGE qualifiedIdentifier SEMI ]
{ IMPORT qualifiedIdentifier SEMI }
{ typeDeclaration }
EOF

```

\author{

}

\section*{\(\qquad\)
}

\section*{JavaCC}
```

< j--.jj
public JCompilationUnit compilationUnit():
{
int line = 0;
TypeName packageName = null, anImport = null;
ArrayList<TypeName> imports = new ArrayList<TypeName>();
JAST aTypeDeclaration = null;
ArrayList<JAST> typeDeclarations = new ArrayList<JAST>();
}
{
try {
<PACKAGE> { line = token.beginLine; }
packageName = qualifiedIdentifier()
<SEMI>
]
(
<IMPORT> { line = line == 0 ? token.beginLine : line; }
anImport = qualifiedIdentifier()
{ imports.add(anImport); }
<SEMI>
)*
(
aTypeDeclaration = typeDeclaration()
{
line = line == 0 ? aTypeDeclaration.line() : line;
typeDeclarations.add(aTypeDeclaration);
}
)*
<EOF> { line = line == 0 ? token.beginLine : line; }
} catch (ParseException e) {
recoverFromError(new int [] { SEMI, EOF }, e);
}
{ return new JCompilationUnit(fileName, line, packageName, imports, typeDeclarations); }
}

```

\author{

}

\section*{\(\qquad\)
}

Example (parsing a qualified identifier)
qualifiedidentifier ::= IDentifier \{ Dot identifier \}

\section*{JavaCC}

\section*{Example (parsing a qualified identifier)}
```

qualifiedIdentifier ::= IDENTIFIER { DOT IDENTIFIER }

```

\section*{『 j--.jj}
```

private TypeName qualifiedIdentifier():

```
\{
 int line \(=0\);
 String qualifiedIdentifier \(=\) " ";
\}
\{
 try \{
 <IDENTIFIER >
 \{
 line = token.beginLine;
 qualifiedIdentifier = token.image;
 \}
 LOOKAHEAD (<DOT> <IDENTIFIER >)
 <DOT> <IDENTIFIER>
 \{ qualifiedIdentifier \(+=\) "." + token.image; \}
)*
 \} catch (ParseException e) \{
 recoverFromError (new int [] \{ SEMI, EOF \}, e);
 \}
 \{ return new TypeName(line, qualifiedIdentifier); \}
\}

\author{

}

\section*{\(\qquad\)
}

\section*{Example (parsing a statement)}
```

statement ::= block
| IF parExpression statement [ ELSE statement ]
WHILE parExpression statement
| RETURN [ expression ] SEMI
| SEMI
| statementExpression SEMI

```

\author{

}

\section*{\(\qquad\)
}

\section*{JavaCC}
```

『\mp@code{j--.jj}
private JStatement statement():
{
int line = 0;
JStatement statement = null;
JExpression test = null;
JStatement consequent = null;
JStatement alternate = null,
JStatement body = null;
JExpression expr = null;
}
try {
statement = block() |
<IF>
{ line = token.beginLine; }
test = parExpression()
consequent = statement()
[
LOOKAHEAD (<ELSE>)
<ELSE>
alternate = statement()
]
{ statement = new JIfStatement(line, test, consequent, alternate); } ।
<WHILE>
{ line = token.beginLine; }
test = parExpression()
body = statement()
{ statement = new JWhileStatement(line, test, body); } ।
<RETURN >
{ line = token.beginLine; }
[
expr = expression()
]
<SEMI>
{ statement = new JReturnStatement(line, expr); } |

```

\section*{JavaCC}

\section*{© \({ }^{j--. j j}\)}
<SEMI >
\{
line = token.beginLine;
statement \(=\) new JEmptyStatement (line); \} 1
statement = statementExpression()
<SEMI >
\} catch (ParseException e) \{
recoverFromError(new int [] \{ SEMI, EOF \}, e);
\}
\{ return statement; \}

\author{

}

\section*{\(\qquad\)
}

\section*{Example (parsing a simple unary expression)}
```

simpleUnaryExpression ::= LNOT unaryExpression
| LPAREN basicType RPAREN unaryExpression
| LPAREN referenceType RPAREN simpleUnaryExpression
| postfixExpression

```

\author{

}

\section*{\(\qquad\)
}

\section*{JavaCC}
```

\boxed{O}}\textrm{j--.jj
private JExpression simpleUnaryExpression():
{
int line = 0;
Type type = null;
JExpression expr = null, unaryExpr = null, simpleUnaryExpr = null;
}
try {
<LNOT>
{ line = token.beginLine; }
unaryExpr = unaryExpression()
{ expr = new JLogicalNotOp(line, unaryExpr); } ।
LOOKAHEAD(<LPAREN> basicType() <RPAREN>)
<LPAREN>
{ line = token.beginLine; }
type = basicType()
<RPAREN>
unaryExpr = unaryExpression()
{ expr = new JCastOp(line, type, unaryExpr); } }
LOOKAHEAD(<LPAREN > referenceType() <RPAREN >)
<LPAREN>
{ line = token.beginLine; }
type = referenceType()
<RPAREN>
simpleUnaryExpr = simpleUnaryExpression()
{ expr = new JCastOp(line, type, simpleUnaryExpr); } |
expr = postfixExpression()
} catch (ParseException e) {
recoverFromError(new int [] { SEMI, EOF }, e);
}
{ return expr ; }
}

```

\author{

}

\section*{\(\qquad\)
}

The error recovery mechanism in the JavaCC parser for \(j\)-- involves catching within the body of a non-terminal, the ParseException that is raised in the event of a parsing error

The error recovery mechanism in the JavaCC parser for \(j\)-- involves catching within the body of a non-terminal, the ParseException that is raised in the event of a parsing error

The exception instance e and the skipto array is passed to the recoverfromError() error recovery function

The error recovery mechanism in the JavaCC parser for \(j\)-- involves catching within the body of a non-terminal, the ParseException that is raised in the event of a parsing error

The exception instance e and the skipto array is passed to the recoverfromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo array has tokens to skip to in order to recover from the error

The error recovery mechanism in the JavaCC parser for \(j\)-- involves catching within the body of a non-terminal, the ParseException that is raised in the event of a parsing error

The exception instance e and the skipto array is passed to the recoverfromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipto always consists of the two tokens semi and eof

\section*{JavaCC}

The error recovery mechanism in the JavaCC parser for \(j\)-- involves catching within the body of a non-terminal, the ParseException that is raised in the event of a parsing error

The exception instance e and the skipTo array is passed to the recoverfromError() error recovery function

The exception instance has information about the token that was found and the token that was expected, and the skipTo array has tokens to skip to in order to recover from the error

In the current error recovery scheme, skipto always consists of the two tokens semi and eof
When ParseException is raised, control is transferred to the calling non-terminal, and thus when an error occurs within higher non-terminals, the lower non-terminals go unparsed

\author{

}

\section*{\(\qquad\)
}

\section*{JavaCC}
```

|--.jj
private void recoverFromError(int[] skipTo, ParseException e) {
StringBuffer expected = new StringBuffer();
for (int i = 0; i < e.expectedTokenSequences.length; i++) {
for (int j = 0; j < e.expectedTokenSequences[i].length; j++) {
expected.append("\n");
expected.append(" ");
expected.append(tokenImage[e.expectedTokenSequences[i][j]]);
expected.append("...");
}
}
if (e.expectedTokenSequences.length == 1) {
reportParserError("\"%s\" found where %s sought", getToken(1), expected);
} else {
reportParserError("\"%s\" found where one of %s sought", getToken(1), expected);
}
boolean loop = true;
do {
token = getNextToken();
for (int i = 0; i < skipTo.length; i++) {
if (token.kind == skipTo[i]) {
loop = false;
break;
}
}
} while(loop);
}

```
```

