Type Checking

QOutline

1 Introduction

2 The j-- Types

3 Jj-- Symbol Tables

4 Pre-analysis of j-- Programs

5 Analysis of j-- Programs

Introduction

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:

® Determining the types of all names and expressions

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:
® Determining the types of all names and expressions

® |nsuring that all expressions are properly typed, for example that the operands of an operator have the proper types

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:
® Determining the types of all names and expressions
® |nsuring that all expressions are properly typed, for example that the operands of an operator have the proper types

® A certain amount of storage analysis, for example determining the amount of storage that is required in the current
stack frame to store a local variable (one word for ints, two words for 10ngs); this information is used to allocate
locations (at offsets from the base of the current stack frame) for parameters and local variables

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:
® Determining the types of all names and expressions
® |nsuring that all expressions are properly typed, for example that the operands of an operator have the proper types

® A certain amount of storage analysis, for example determining the amount of storage that is required in the current
stack frame to store a local variable (one word for ints, two words for 10ngs); this information is used to allocate
locations (at offsets from the base of the current stack frame) for parameters and local variables

® A certain amount of AST tree rewriting, usually to make implicit constructs more explicit

Introduction

Type checking (aka semantic analysis) is the final step in the analysis phase, and includes the following:
® Determining the types of all names and expressions
® |nsuring that all expressions are properly typed, for example that the operands of an operator have the proper types

® A certain amount of storage analysis, for example determining the amount of storage that is required in the current
stack frame to store a local variable (one word for ints, two words for 10ngs); this information is used to allocate
locations (at offsets from the base of the current stack frame) for parameters and local variables

® A certain amount of AST tree rewriting, usually to make implicit constructs more explicit

Semantic analysis of j-- programs involves all of the above

The j-- Types

The j-- Types

A type in j-- is either a primitive type or a reference type

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:

® i - 32 bit two's complement integers

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers

® oolean - taking the value true OF faise

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:

® arrays

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:
® arrays

® objects of a type described by a class declaration

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:
® arrays
® objects of a type described by a class declaration

® built-in objects java.lang.0bject and java.lang.String

The j-- Types

A type in j-- is either a primitive type or a reference type

J-- primitive types:
® i - 32 bit two's complement integers
® oolean - taking the value true OF faise

® cuar - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:
® arrays
® objects of a type described by a class declaration

® built-in objects java.lang.0bject and java.lang.String

Jj-- code may interact with classes from the Java library but it must be able to do so using only these types

The j-- Types

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

We want a simple, but extensible representation; we want no more complexity than is necessary for representing all of
the types in j-- and for representing any (Java) types that we may add in exercises

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

We want a simple, but extensible representation; we want no more complexity than is necessary for representing all of
the types in j-- and for representing any (Java) types that we may add in exercises

We want the ability to interact with the existing Java class libraries

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

We want a simple, but extensible representation; we want no more complexity than is necessary for representing all of
the types in j-- and for representing any (Java) types that we may add in exercises

We want the ability to interact with the existing Java class libraries

Possible solutions:

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

We want a simple, but extensible representation; we want no more complexity than is necessary for representing all of
the types in j-- and for representing any (Java) types that we may add in exercises

We want the ability to interact with the existing Java class libraries
Possible solutions:

v Java types are represented by objects of (Java) type java.1ang.crass; since j-- is a subset of Java, why not use cass
objects to represent its types?

The j-- Types

How do we represent the types int, int(l, Factorial, String(1[]7

We want a simple, but extensible representation; we want no more complexity than is necessary for representing all of
the types in j-- and for representing any (Java) types that we may add in exercises

We want the ability to interact with the existing Java class libraries

Possible solutions:
v Java types are represented by objects of (Java) type java.1ang.crass; since j-- is a subset of Java, why not use cass
objects to represent its types?
2 Define an abstract class (or interface) 1ype, and concrete sub-classes (or implementations) primitiveType, ReterenceType, and

ArrayType

The j-- Types

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

During analysis, TypevaneS and arrayTypenanes are resolved to the types that they represent

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

During analysis, TypevaneS and arrayTypenanes are resolved to the types that they represent

More specifically:

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

During analysis, TypevaneS and arrayTypenanes are resolved to the types that they represent

More specifically:

® A 1ypenane is resolved by looking it up in the current context, our symbol table representation, and the 1ype found
replaces the typenane, and finally, the 1ype's accessibility from the place the typevane is encountered is checked

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

During analysis, TypevaneS and arrayTypenanes are resolved to the types that they represent

More specifically:

® A 1ypenane is resolved by looking it up in the current context, our symbol table representation, and the 1ype found
replaces the typenane, and finally, the 1ype's accessibility from the place the typevane is encountered is checked

® Since an arraytypenane has a base type, the base type is resolved to a type, whose ciass representation becomes the base
type for representing the array type

The j-- Types

Our solution is to define our own class 1ype for representing types, with a simple interface but also encapsulating the
java.lang.Class Object that corresponds to the Java representation for that same type

Since the parser does not know anything about types, we define two placeholder type representations:

1 TypeName - fOr representing named types recognized by the parser like user-defined classes or imported classes until
such time as they may be resolved to their proper type representation

2 ArrayTypeNane - TOF representing array types recognized by the parser like stringl1, until such time that they may resolved
to their proper type representation

During analysis, TypevaneS and arrayTypenanes are resolved to the types that they represent

More specifically:

® A 1ypenane is resolved by looking it up in the current context, our symbol table representation, and the 1ype found
replaces the typenane, and finally, the 1ype's accessibility from the place the typevane is encountered is checked

® Since an arraytypenane has a base type, the base type is resolved to a type, whose ciass representation becomes the base
type for representing the array type

® A 1y resolves to itself

j-- Symbol Tables

j-- Symbol Tables

A symbol table maps names to the things they name, for example, types, formal parameters and local variables; these
mappings are established in a declaration and consulted each time a declared name is encountered

j-- Symbol Tables

A symbol table maps names to the things they name, for example, types, formal parameters and local variables; these
mappings are established in a declaration and consulted each time a declared name is encountered

In the j-- compiler, the symbol table is a tree of context Objects, which spans the abstract syntax tree, with each context
corresponding to a region of scope in the j-- source program

j-- Symbol Tables
A symbol table maps names to the things they name, for example, types, formal parameters and local variables; these

mappings are established in a declaration and consulted each time a declared name is encountered

In the j-- compiler, the symbol table is a tree of context Objects, which spans the abstract syntax tree, with each context
corresponding to a region of scope in the j-- source program

For example, reconsider the simple ractoria1 program. In this version we mark two locations in the program using
comments: position 1 and position 2

package pass;
import java.lang.System;

public class Factorial {
public static int factorial(int n) {
// position 1:
if (n <= 0) {
return 1;
} else {
return n * factorial(n - 1);
}
¥

public static void main(String[] args) {
// position 2:
int x = n;
System.out.println(n + "! = " + factorial(x));

¥

static int n = 5;

j-- Symbol Tables

j-- Symbol Tables

The symbol table for the ractorial program, and its rela

JCompilationUnit

«_ context

String
javalang Object

tionship to the AST, is illustrated in figure below

CompilationUnitContext
> javalang String

TypeNameDefn —» Type C1aSSRD, java lang String class

Object
lang System

Type CSRED, java

System
. | pass Factorial_|
IClassDeclaration Factorial

ClassContext
_eontext —oomen

Type ClassRep._

TypeNameDefn —>Type €lasSRep | pags Factorial.class

surroundingContext

indingC

MethodContext
context

IMethodDeclaration

MethodContext
YeRoCtone context
LocalVariableDefn
args o

“args” Type for

Stringl] |
) surroundingContext sumoundingContext P10k
LocalContext
J context
context for .
Position | LocalVariableDefn
o H
context for
Position 2 !
Type
for int

JFicldDeclaration +

j-- Symbol Tables

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST

A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it
For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

2 The context pointer from the AST’s iclassbeciaration POINtS tO @ classcontext

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

2 The context pointer from the AST’s iclassbeciaration POINtS tO @ classcontext

3 The context pointer from the AST’s two JMetnodbeciarations €ach point to a wetnodcontext

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

2 The context pointer from the AST's jclasspeciaration POINts tO a classcontext
3 The context pointer from the AST’s two JMetnodbeciarations €ach point to a wetnodcontext

@ The context pointer from the AST's two seiocks each point to a rocaicontext

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

2 The context pointer from the AST's jclasspeciaration POINts tO a classcontext
3 The context pointer from the AST’s two JMetnodbeciarations €ach point to a wetnodcontext

@ The context pointer from the AST's two seiocks each point to a rocaicontext

From any particular location in the program, looking back towards the root compilationunitcontext, the symbol table looks like
a stack of contexts

j-- Symbol Tables

The symbol table takes the form of a tree that corresponds to the shape of the AST
A context, ie, a node in this tree, captures the region of scope corresponding to the AST node that points to it

For example, in the above figure:

1 The context pointer from the AST's scompilationtnit Node points to the scompilationtnitcontext that is at the root of the
symbol table

2 The context pointer from the AST's jclasspeciaration POINts tO a classcontext
3 The context pointer from the AST’s two JMetnodbeciarations €ach point to a wetnodcontext

@ The context pointer from the AST's two seiocks each point to a rocaicontext

From any particular location in the program, looking back towards the root compilationunitcontext, the symbol table looks like
a stack of contexts

Each surroundingcontext link back towards the compilationunitcontext points to the context representing the surrounding lexical
scope

j-- Symbol Tables

j-- Symbol Tables

During analysis, when the compiler encounters a variable, it looks up that variable in the symbol table by name,
beginning at the rocaicontext Mmost recently created in the symbol table

j-- Symbol Tables

During analysis, when the compiler encounters a variable, it looks up that variable in the symbol table by name,
beginning at the rocaicontext Mmost recently created in the symbol table

Type names are looked up in the compilationunitcontext; to facilitate this, each context maintains three pointers to
surrounding contexts, as illustrated in the following figure

The context for the surrounding region

surroundingContext ———» LS "
of scope. (null for the compilation unit)

|, The class context for the

classContext
class

The context for the enclosing compilation

compilationUnitContext | —» *™ - 5
unit. (null for the compilation unit)

name; o> IDefn,
A map of
names to . .
definitions . .
for this region
of scope N N
name, o> IDefn,

j-- Symbol Tables

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:

® The implicitly declared types, java.lang.object, and java.lang.string

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:
® The implicitly declared types, java.lang.object, and java.lang.string

® |mported types

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:
® The implicitly declared types, java.lang.object, and java.lang.string
® |mported types

® User-defined types, that is, types introduced in clss declarations

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:
® The implicitly declared types, java.lang.object, and java.lang.string
® |mported types

® User-defined types, that is, types introduced in clss declarations

A ciasscontext represents the scope within a class declaration; in the j-- symbol table, no names are declared here, but if we
were to add nested type declarations to j--, they might be declared here

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:
® The implicitly declared types, java.lang.object, and java.lang.string
® |mported types

® User-defined types, that is, types introduced in clss declarations

A ciasscontext represents the scope within a class declaration; in the j-- symbol table, no names are declared here, but if we
were to add nested type declarations to j--, they might be declared here

A vethodcontext represents the scope within a method declaration; a method’s formal parameters are declared here

j-- Symbol Tables

A compilationunitcontext represents the scope of the entire program and contains a mapping from names to types:
® The implicitly declared types, java.lang.object, and java.lang.string
® |mported types

® User-defined types, that is, types introduced in clss declarations

A ciasscontext represents the scope within a class declaration; in the j-- symbol table, no names are declared here, but if we
were to add nested type declarations to j--, they might be declared here

A vethodcontext represents the scope within a method declaration; a method’s formal parameters are declared here

A Localcontext represents the scope within a block, which includes the block defining the body to a method; local variables
are declared here

j-- Symbol Tables

j-- Symbol Tables

Each kind of context derives from (extends) the class context, which supplies the mapping from names to definitions
(IDefns)

j-- Symbol Tables

Each kind of context derives from (extends) the class context, which supplies the mapping from names to definitions
(IDefns)

The inheritance tree for contexts is illustrated in the following figure

Context

CompilationUnitContext LocalContext ClassContext

MethodContext

j-- Symbol Tables

Each kind of context derives from (extends) the class context, which supplies the mapping from names to definitions

(IDefns)

The inheritance tree for contexts is illustrated in the following figure

Context

CompilationUnitContext LocalContext ClassContext

MethodContext

An 1etn is the interface type for symbol table definitions, which has two implementations:

j-- Symbol Tables

Each kind of context derives from (extends) the class context, which supplies the mapping from names to definitions

(IDefns)

The inheritance tree for contexts is illustrated in the following figure

Context

CompilationUnitContext LocalContext ClassContext

MethodContext

An 1etn is the interface type for symbol table definitions, which has two implementations:

1 A Typenanedesn, Which defines a type name; an mesn of this sort encapsulates the mype that it denotes

j-- Symbol Tables

Each kind of context derives from (extends) the class context, which supplies the mapping from names to definitions

(IDefns)

The inheritance tree for contexts is illustrated in the following figure

Context

CompilationUnitContext LocalContext ClassContext

MethodContext

An 1etn is the interface type for symbol table definitions, which has two implementations:
1 A Typenanedesn, Which defines a type name; an mesn of this sort encapsulates the mype that it denotes

2 A Locawvariabiedesn defines a local variable and encapsulates the name, its type and an offset in the current run-time
stack frame

j-- Symbol Tables

j-- Symbol Tables

Class member (field and method in j--) names are not declared in a ciasscontext, but in the 1ypes that they declare

j-- Symbol Tables

Class member (field and method in j--) names are not declared in a ciasscontext, but in the 1ypes that they declare

We rely on the encapsulated ciass object to store the interface information, and we rely on Java reflection to query a
type for information about its members

j-- Symbol Tables

Class member (field and method in j--) names are not declared in a ciasscontext, but in the 1ypes that they declare

We rely on the encapsulated ciass object to store the interface information, and we rely on Java reflection to query a
type for information about its members

For example, 1ype supports a method :ie1aror0 Which, when given a name returns a rie1a with the given name that is
defined for that type

public Field fieldFor(String name) {
Class<?> cls = classRep;
while (cls != null) {
java.lang.reflect.Field[] fields = cls.getDeclaredFields ()
for (java.lang.reflect.Field field:fields) {
if (field.getName ().equals(name)) {
return new Field(field);
}
¥

cls = cls.getSuperclass();

return null;

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:

® Declaring imported type names

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names

® Declaring user-defined class names

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names

® Declaring fields

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:

® jCompilationUnit

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:
® jCompilationUnit

® jClassDeclaration

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:
® jCompilationUnit
® ClassDeclaration

® FieldDeclaration

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:
® jCompilationUnit
® ClassDeclaration
® JFieldDeclaration

® JMethodDeclaration

Pre-analysis of j-- Programs

The semantic analysis of j-- programs requires two traversals of the AST because a class name or a member name may
be referenced before it is declared in the source program

The traversals are accomplished by the method preanaiyze» for the first traversal and the method ana1yze0) for the second,
which invoke themselves at the child nodes for recursively descending the AST

The premnaiyze> method must traverse down the AST only far enough for:
® Declaring imported type names
® Declaring user-defined class names
® Declaring fields

® Declaring methods (including their signatures - the types of their parameters)

Therefore, preanaryzeoneed be defined only in the following types of AST nodes:

® jCompilationUnit
® jClassDeclaration

® FieldDeclaration
® JMethodDeclaration

JConstructorDeclaration

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:

9 It creates a compilationUnitContext

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:
9 It creates a compilationUnitContext

2 It declares the implicit j-- types, java.1ang.string and java.lang.Object

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:
9 It creates a compilationUnitContext
2 It declares the implicit j-- types, java.1ang.string and java.lang.Object

3 It declares any imported types

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:

It creates a compilationUnitContext

-

2 It declares the implicit j-- types, java.1ang.string and java.lang.Object

3 It declares any imported types

It declares the types defined by class declaration, ie, creates a type for each declared class, whose ciassrep refers to a
c1ass object for an empty class; for example, in the pre-analysis phase of our ractorial program above, the type for
Factorial Would have a ciassrep, the ciass object for the class

class Factorial {}

Pre-analysis of j-- Programs

For the scompilationunit node at the top of the AST, preanalyze) does the following:

It creates a compilationUnitContext

-

2 It declares the implicit j-- types, java.1ang.string and java.lang.Object
3 It declares any imported types

It declares the types defined by class declaration, ie, creates a type for each declared class, whose ciassrep refers to a
c1ass object for an empty class; for example, in the pre-analysis phase of our ractorial program above, the type for
Factorial Would have a ciassrep, the ciass object for the class

class Factorial {}

5 Finally, premnaiyze) invokes itself for each of the type declarations in the compilation unit

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

public void preAnalyze() {
context = new CompilationUnitContext ();

// Declare the two implicit types java.lang.Object and
// java.lang.String

context.addType (0, Type.OBJECT);

context.addType (0, Type.STRING);

// Declare any imported types
for (TypeName imported: imports) {
try {
Class<?> classRep =
Class.forName (imported.toString());
context.addType (imported.line(),
Type.typeFor (classRep));
b3
catch (Exception e) {
JAST.compilationUnit.reportSemanticError(
imported.line (),
"Unable to find %s", imported.toString());

¥

// Declare the locally declared type(s)
CLEmitter.initializeByteClassLoader ()
for (JAST typeDeclaration: typeDeclarations) {
((JTypeDecl)
typeDeclaration).declareThisType (context);
¥

// Pre-analyze the locally declared type(s). Generate
// (partial) Class instances, reflecting only the member
// interface type information
CLEmitter.initializeByteClassLoader ();
for (JAST typeDeclaration: typeDeclarations) {
((JTypeDecl)
typeDeclaration).preAnalyze (context);

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

In a class declaration, preanalyze) does the following:

Pre-analysis of j-- Programs

In a class declaration, preanalyze) does the following:

1 It firstly creates a new ciasscontext, WhoSe surroundingContext pOints to the compilationunitContext

Pre-analysis of j-- Programs

In a class declaration, preanalyze) does the following:
1 It firstly creates a new ciasscontext, WhoSe surroundingContext pOints to the compilationunitContext

2 It resolves the class’s super type

Pre-analysis of j-- Programs

In a class declaration, preanalyze) does the following:
1 It firstly creates a new ciasscontext, WhoSe surroundingContext pOints to the compilationunitContext
2 It resolves the class’s super type

3 It creates a new ctenitter instance, which will eventually be converted to the ciass object for representing the declared
class

Pre-analysis of j-- Programs

In a class declaration, preanalyze) does the following:

-

It firstly creates a new ciasscontext, WhOS€ surroundingcontext points to the compilationunitcontext

N)

It resolves the class’s super type

3 It creates a new ctenitter instance, which will eventually be converted to the ciass object for representing the declared
class

IS

It adds a class header, defining a name and any modifiers, to this ciemitter instance

Pre-analysis of j-- Programs

-

N)

IS

@

class declaration, preanalyze) does the following:

It firstly creates a new ciasscontext, WhOS€ surroundingcontext points to the compilationunitcontext

It resolves the class’s super type

It creates a new cienitter instance, which will eventually be converted to the ciass object for representing the declared
class

It adds a class header, defining a name and any modifiers, to this ciemitter instance

It recursively invokes preanalyze() on each of the class's members, which causes field declarations, constructors and
method declarations (but with empty bodies) to be added to the ctemitter instance

Pre-analysis of j-- Programs

-

N)

IS

@

o

class declaration, preanalyze) does the following:

It firstly creates a new ciasscontext, WhOS€ surroundingcontext points to the compilationunitcontext

It resolves the class’s super type

It creates a new cienitter instance, which will eventually be converted to the ciass object for representing the declared
class

It adds a class header, defining a name and any modifiers, to this ciemitter instance

It recursively invokes preanalyze() on each of the class's members, which causes field declarations, constructors and
method declarations (but with empty bodies) to be added to the ctemitter instance

If there is no explicit constructor (having no arguments) in the set of members, it adds the implicit constructor to
the cienitter instance; for example, for the ractoriar program above, the following implicit constructor is added

public Factorial() {
super () ;
}

Pre-analysis of j-- Programs

-

N)

IS

@

o

S

class declaration, preanalyze) does the following:
It firstly creates a new ciasscontext, WhOS€ surroundingcontext points to the compilationunitcontext
It resolves the class’s super type

It creates a new cienitter instance, which will eventually be converted to the ciass object for representing the declared
class

It adds a class header, defining a name and any modifiers, to this ciemitter instance
It recursively invokes preanalyze() on each of the class's members, which causes field declarations, constructors and
method declarations (but with empty bodies) to be added to the ctemitter instance

If there is no explicit constructor (having no arguments) in the set of members, it adds the implicit constructor to
the cienitter instance; for example, for the ractoriar program above, the following implicit constructor is added

public Factorial() {
super () ;

}

Finally, the cLenitter instance produces a ciass object, and that replaces the ciassrep for the 1ype of the declared class
name in the (parent) ciasscontext

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

Here is the code for preAnalyze () iN JClassbeclaration

public void preAnalyze (Context context) {
// Construct a class context
this.context = new ClassContext (this, context);

// Resolve superclass
superType = superType.resolve(this.context);

// Creating a partial class in memory can result in a

// java.lang.VerifyError if the semantics below are

// violated, so we can’t defer these checks to analyze()

thisType.checkAccess(line, superType);

if (superType.isFinal()) {

JAST.compilationUnit.reportSemanticError (line,

"Cannot extend a final type: %s",
superType.toString ());

¥

// Create the (partial) class
CLEmitter partial = new CLEmitter();

// Add the class header to the partial class
String qualifiedName =
JAST.compilationUnit.packageName() == "" ? name
JAST.compilationUnit.packageName() + "/" + name;
partial.addClass(mods, qualifiedName, superType.jvmName(),
null, false);

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

// Pre-analyze the members and add them to the partial class
for (JMember member: classBlock) {
member.preAnalyze (this.context, partial);
if (member instanceof JConstructorDeclaration &&
((JConstructorDeclaration) member).
params.size() == 0) {
hasExplicitConstructor = true;

¥

// Add the implicit empty constructor?
if ('hasExplicitConstructor) {
codegenPartialImplicitConstructor (partial);

// Get the Class rep for the (partial) class and make it the
// representation for this type
Type id = this.context.lookupType (name);
if (id !'= null &&
1 JAST . compilationUnit.errorHasOccurred ()) {
id.setClassRep(partial.toClass ());

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:

1 It resolves the types of the formal parameters

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:
1 It resolves the types of the formal parameters

2 It resolves the return type

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:
1 It resolves the types of the formal parameters
2 It resolves the return type

3 It checks proper use of the abstract modifier

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:
1 It resolves the types of the formal parameters
2 It resolves the return type
3 It checks proper use of the abstract modifier

% It computes the method descriptor

Pre-analysis of j-- Programs

In a method declaration, pretnalyze) does the following:
1 It resolves the types of the formal parameters
2 It resolves the return type
3 It checks proper use of the abstract modifier
% It computes the method descriptor

5 It generates (partial) code for the method

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

Here is the code for preanalyze() in Methodbeciaration

public void preAnalyze(Context context, CLEmitter partial) {
// Resolve types of the formal parameters
for (JFormalParameter param: params) {
param.setType (param.type ().resolve(context));

}

// Resolve return type
returnType = returnType.resolve(context);

// Check proper local use of abstract
if (isAbstract && body !'= null) {
JAST.compilationUnit.reportSemanticError (line(),
"abstract method cannot have a body");

¥
else if (body == null && ! isAbstract) {
JAST.compilationUnit.reportSemanticError (line (),
"Method with null body must be abstract");
¥

else if (isAbstract && isPrivate) {
JAST.compilationUnit.reportSemanticError (line (),
"private method cannot be declared abstract");
}
else if (isAbstract && isStatic) {
JAST.compilationUnit.reportSemanticError(line(),
"static method cannot be declared abstract");

}

// Compute descriptor

descriptor = "(";

for (JFormalParameter param: params) {
descriptor += param.type().toDescriptor ()

3

descriptor += ")" + returnType.toDescriptor();

// Generate the method with an empty body (for now)
partialCodegen(context, partial);

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

The code for partialcodegen®) is as follows:

public void partialCodegen(Context context, CLEmitter partial) {
// Generate a method with an empty body; need a return to
// make the class verifier happy.
partial.addMethod (mods, name, descriptor, null, false);

// Add implicit RETURN
if (returnType == Type.VOID) {
partial.addNoArgInstruction (RETURN);

else if (returnType Type.INT ||
returnType Type.BOOLEAN ||
returnType == Type.CHAR) {

partial.addNoArgInstruction (ICONST_0);
partial.addNoArgInstruction (IRETURN);

else {
// A reference type.
partial.addNoArgInstruction (ACONST_NULL);
partial.addNoArgInstruction (ARETURN);

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

Pre-analysis for a srieiapeciaration is similar to that for a swetnoapeciaration, and does the following:

Pre-analysis of j-- Programs

Pre-analysis for a srieiapeciaration is similar to that for a swetnoapeciaration, and does the following:

1 Enforces the rule that fields may not be declared abstract

Pre-analysis of j-- Programs

Pre-analysis for a srieiapeciaration is similar to that for a swetnoapeciaration, and does the following:
1 Enforces the rule that fields may not be declared abstract

2 Resolves the field's declared type

Pre-analysis of j-- Programs

Pre-analysis for a srieiapeciaration is similar to that for a swetnoapeciaration, and does the following:
1 Enforces the rule that fields may not be declared abstract
2 Resolves the field's declared type

3 Generates the JVM code for the field declaration, via the cemitter created for the enclosing class declaration

Pre-analysis of j-- Programs

Pre-analysis for a srieiapeciaration is similar to that for a swetnoapeciaration, and does the following:
1 Enforces the rule that fields may not be declared abstract

2 Resolves the field's declared type
3 Generates the JVM code for the field declaration, via the cemitter created for the enclosing class declaration

The code itself is rather simple

public void preAnalyze(Context context, CLEmitter partial) {
// Fields may not be declared abstract.
if (mods.contains("abstract")) {
JAST.compilationUnit.reportSemanticError (line(),
"Field cannot be declared abstract");

¥

for (JVariableDeclarator decl: decls) {
// Add field to (partial) class
decl.setType(decl.type().resolve(context));
partial.addField(mods, decl.name(),
decl.type().toDescriptor (), false);

Pre-analysis of j-- Programs

Pre-analysis of j-- Programs

The following figure illustrates how much of the symbol table is constructed for our ractoria1 program once pre-analysis is
complete

JCompilationUnit
\
\

CompilationUnitContext
\ context

— java.lang.String 1

4 Typ Defn ——>Type classRep java.lang.String.class
\ String
/ java.lang Object —~
/ Javaangobjee \‘T,,, Defn »Typem java.lang.Object.class
/ Object "
JClassDeclaration

Jjava.lang.System

>T,,, NameDefn »Type _classRep java.lang.System.class

“ System —

l S —
\‘ ‘ pass Raciorial >‘.T“, NameDefn —>Type classRep pass.Factorial.class

\ \‘ Factorial

Vo B

\ \\context |

\ |

“ surroundingContext
ClassContext

| N

v
JFieldDeclaration
JMethodDeclaration

IMethodDeclaration

Analysis of j-- Programs

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:

® Re-writing field and local variable initializations as assignments

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments

® Declaring both formal parameters and local variables

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments
® Declaring both formal parameters and local variables

® Allocating locations in the stack frame for the formal parameters and local variables

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments
® Declaring both formal parameters and local variables
® Allocating locations in the stack frame for the formal parameters and local variables

® Computing the types of expressions and enforcing the language type rules

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments
® Declaring both formal parameters and local variables
® Allocating locations in the stack frame for the formal parameters and local variables
® Computing the types of expressions and enforcing the language type rules

® Reclassifying ambiguous names

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments
® Declaring both formal parameters and local variables
® Allocating locations in the stack frame for the formal parameters and local variables
® Computing the types of expressions and enforcing the language type rules
® Reclassifying ambiguous names

® Doing a limited amount of tree surgery

Analysis of j-- Programs

The analysis phase, ie, the aa1yze0 method, recursively descends throughout the AST all the way to its leaves:
® Re-writing field and local variable initializations as assignments
® Declaring both formal parameters and local variables
® Allocating locations in the stack frame for the formal parameters and local variables
® Computing the types of expressions and enforcing the language type rules

® Reclassifying ambiguous names

Doing a limited amount of tree surgery

At the top of the AST, anaiyze0 simply recursively descends into each of the type (class) declarations, delegating analysis
to one class declaration at a time

public JAST analyze(Context context) {
for (JAST typeDeclaration : typeDeclarations) {
typeDeclaration.analyze (this.context);

return this;

Analysis of j-- Programs

Analysis of j-- Programs

IN JFieldbeciaration, analyze() rewrites the field initializer as an explicit assignment statement, analyzes that and then stores it
in the sricldpeciaration’s initializations list

public JFieldDeclaration analyze(Context context) {
for (JVariableDeclarator decl : decls) {
// All initializations must be turned into assignment
// statements and analyzed
if (decl.initializer () != null) {
JAssignOp assignOp = new JAssignOp(decl.line(),
new JVariable(decl.line(),
decl.name()), decl.initializer ());
assignOp.isStatementExpression = true;
initializations.add(new JStatementExpression(decl.line(),
assignOp).analyze (context));
}
¥

return this;

Analysis of j-- Programs
IN JFieldbeciaration, analyze() rewrites the field initializer as an explicit assignment statement, analyzes that and then stores it

in the Jrieldpeciaration’s initializations list

public JFieldDeclaration analyze(Context context) {
for (JVariableDeclarator decl : decls) {

// All initializations must be turned into assignment

// statements and analyzed

if (decl.initializer () != null) {

JAssignOp assignOp = new JAssignOp(decl.line(),
new JVariable(decl.line(),
decl.name ()), decl.initializer ());

assignOp.isStatementExpression = true;
initializations.add(new JStatementExpression(decl.line(),
assignOp).analyze (context));
}
¥

return this;

In Jclassbeclaration, analyze() Separates the assignment statements into two lists: one for the static fields and one for the

instance fields

// Copy declared fields for purposes of initialization.
for (JMember member : classBlock) {
if (member instanceof JFieldDeclaration) {
JFieldDeclaration fieldDecl = (JFieldDeclaration) member;
if (fieldDecl.mods().contains("static")) {
staticFieldInitializations.add(fieldDecl);
} else {
instanceFieldInitializations.add(fieldDecl);

¥

Analysis of j-- Programs

Analysis of j-- Programs
static field declaration (static int n

The following figure shows how the

v
WariableDeclarator IStatementExpression
name |\ initializer

- - JAssignOp

Ths /s

.
TypeNT ILiteralint
IVariable JLiterallnt

v .
“n” TypeNT ILiterallnt

Lt text
o5 “5n name fext
e e
)

(@)

IClassDeclaration
classBlock " staticFieldInitializations

v
JAssignOp
s/ e
b

" TypeNT JLiterallnt
Jlext
gn

n
v v
IVariable JLiterallnt
|

| name text

o g

©

5;) in the Factorial program is

rewritten

Analysis of j-- Programs

Analysis of j-- Programs

Both formal parameters and local variables are declared in the symbol table and allocated locations within a method
invocation’s run-time stack frame

Analysis of j-- Programs

Both formal parameters and local variables are declared in the symbol table and allocated locations within a method
invocation’s run-time stack frame

For example, consider the following class declaration

public class Locals {
public int foo(int t, String u) {
int v = u.length();

{
int w = v + 5, x =w + 7;
V=W o+ ox

¥

{
int y = 3;
int z = v +y
t=t+y+z

}

return t + v;

Analysis of j-- Programs

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area

5 X z

4 Wy

3 v

2 u

1 t

0 haY

——» this

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area
5 X z
4 Wy
3 v
2 u
1 t
0 haY
——» this

The code for analyzing a Metnodveciaration performs four steps:

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area
5 X z
4 Wy
3 v
2 u
1 t
0 haY
——» this

The code for analyzing a Metnodveciaration performs four steps:

1 It creates a new metnodcontext, WhoSe surroundingcontext points back to the previous ciasscontext

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area
5 X z
4 Wy
3 v
2 u
1 t
0 haY
——» this

The code for analyzing a Metnodveciaration performs four steps:
1 It creates a new metnodcontext, WhoSe surroundingcontext points back to the previous ciasscontext

2 The first stack frame offset is 0; but if this is an instance method then offset 0 must be allocated to tis, and the
nextoftset 1S incremented to 1

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area
5 X z
4 Wy
3 v
2 u
1 t
0 haY
——» this

The code for analyzing a Metnodveciaration performs four steps:

-

It creates a new wetnoacontext, WhoSe surroundingcontext points back to the previous ciasscontext

2 The first stack frame offset is 0; but if this is an instance method then offset 0 must be allocated to tis, and the
nextoftset 1S incremented to 1

3 The formal parameters are declared as local variables and allocated consecutive offsets in the stack frame

Analysis of j-- Programs

The stack frame allocated for an invocation of 00 at run time by the JVM is shown below

7| computation |
6 area
5 X z
4 Wy
3 v
2 u
1 t
0 haY
——» this

The code for analyzing a Metnodveciaration performs four steps:

-

It creates a new wetnoacontext, WhoSe surroundingcontext points back to the previous ciasscontext

2 The first stack frame offset is 0; but if this is an instance method then offset 0 must be allocated to tis, and the
nextoftset 1S incremented to 1

3 The formal parameters are declared as local variables and allocated consecutive offsets in the stack frame

% It analyzes the method's body

Analysis of j-- Programs

Analysis of j-- Programs

public JAST analyze(Context context) {
this.context = new MethodContext (context, returnType);

if (!isStatic) {
// Offset 0 is used to addr "this".
this.context.nextOffset ();

¥

// Declare the parameters
for (JFormalParameter param : params) {
this.context.addEntry (param.line(), param.name(),
new LocalVariableDefn(param.type(), this.context
.nextOffset (), null));

3
if (body != null) {

body = body.analyze(this.context);
¥

return this;

Analysis of j-- Programs

Analysis of j-- Programs

The code for analyzing a ssiocx performs two steps:

Analysis of j-- Programs

The code for analyzing a ssiocx performs two steps:

v It creates a new Localcontext, WhOS€ surroundingcontext points back to the previous wethodcontext (OF Localcontext in the case of
nested blocks); its nextoztser value is copied from the previous context

Analysis of j-- Programs

The code for analyzing a ssiocx performs two steps:

v It creates a new Localcontext, WhOS€ surroundingcontext points back to the previous wethodcontext (OF Localcontext in the case of
nested blocks); its nextoztser value is copied from the previous context

2 It analyzes each of the body’'s statements; any svariabledeciarations declare their variables in the rocaicontext created in

step 1; any nested ssiock simply invokes this two-step process recursively, creating yet another rocaicontext for the
nested block

Analysis of j-- Programs

The code for analyzing a ssiocx performs two steps:

v It creates a new Localcontext, WhOS€ surroundingcontext points back to the previous wethodcontext (OF Localcontext in the case of
nested blocks); its nextoztser value is copied from the previous context

2 It analyzes each of the body’'s statements; any svariabledeciarations declare their variables in the rocaicontext created in

step 1; any nested ssiock simply invokes this two-step process recursively, creating yet another rocaicontext for the
nested block

public JBlock analyze(Context context) {
// { ... } defines a new level of scope.
this.context = new LocalContext (context);

for (int i = 0; i < statements.size(); i++) {
statements.set(i, (JStatement) statements.get(i).analyze(
this.context));
¥

return this;

Analysis of j-- Programs

Analysis of j

- Programs

The stages of the symbol table in analyzing rocais.foo0)

i . . > -
(MethodContext C C C
(MethodContest MethodContext MethodContext
f m | W « -
neuOffset = 2 u @ vl G+
[nextOffset=3] nextOffset = 3
-

-
@

LocalContext

4=
“@
[T}
[nextOffset=6]
)

®) [0

Analysis of j-- Programs

Analysis of j-- Programs

A local variable declaration is represented in the AST with a svariabiedeciaration; for example, consider the local variable
declaration from Locais

int w=v +5, x=w+7;

Analysis of j-- Programs

A local variable declaration is represented in the AST with a svariabiedeciaration; for example, consider the local variable
declaration from Locais

int w=v +5, x=uw+T;

Before the variavieveciaration is analyzed, it appears exactly as it was created by the parser, as is illustrated below

JVariableDeclaration
decls
‘ \

M LocalContext
IWariableDeclarator

nextOffset = 4

v
“w” TypeNT IPlusOp “X" TypeNT IPlusOp
s /N hs s\ shs
s \
/ \ / \
v v v v
IVariable ILiterallnt JVariable JLiteralInt

l name. l text l name. l text

o s “w o

Analysis of j-- Programs

Analysis of j-- Programs

Analysis of a svariablepeciaration involves the following:

Analysis of j-- Programs

Analysis of a svariablepeciaration involves the following:

1 LocalvariableDesns and their corresponding stack frame offsets are allocated for each of the declared variables

Analysis of j-- Programs

Analysis of a svariablepeciaration involves the following:
1 LocalvariableDesns and their corresponding stack frame offsets are allocated for each of the declared variables

2 The code checks to make sure that the declared variables do not shadow existing local variables

Analysis of j-- Programs

Analysis of a svariablepeciaration involves the following:
1 LocalvariableDesns and their corresponding stack frame offsets are allocated for each of the declared variables
2 The code checks to make sure that the declared variables do not shadow existing local variables

3 The variables are declared in the local context

Analysis of j-- Programs

Analysis of a svariablepeciaration involves the following:
1 LocalvariableDesns and their corresponding stack frame offsets are allocated for each of the declared variables
2 The code checks to make sure that the declared variables do not shadow existing local variables
3 The variables are declared in the local context

Any initializations are rewritten as explicit assignment statements; those assignments are re-analyzed and stored in

an initializations list

Analysis of j-- Programs

Analysis of j-- Programs

public JStatement analyze(Context context) {
for (JVariableDeclarator decl : decls) {
// Local variables are declared here (fields are
// declaredin prehAnalyze ())
int offset = ((LocalContext) context).nextOffset ()
LocalVariableDefn defn = new LocalVariableDefn(decl
.type () .resolve(context), offset);

// First, check for shadowing
IDefn previousDefn = context.lookup(decl.name());
if (previousDefn != null
&% previousDefn instanceof LocalVariableDefn) {
JAST.compilationUnit.reportSemanticError (decl.line(),
"The name " + decl.name ()
+ " overshadows another local variable.");

¥

// Then declare it in the local context
context.addEntry (decl.line(), decl.name(), defn);

// All initializations must be turned into assignment
// statements and analyzed
if (decl.initializer () != null) {
defn.initialize();
JAssignOp assignOp = new JAssignOp(decl.line(),
new JVariable(decl.line(), decl.name()), decl
.initializer());
assignOp.isStatementExpression = true;
initializations.add(new JStatementExpression(decl
.line(), assignOp).analyze(context));
}
}

return this;

Analysis of j-- Programs

Analysis of j-- Programs

The sub-tree for int w = v + 5, x = w + 7; after analysis is shown below

LocalContext
— LocalVariableDefn
—,type = Type.INT |Offset=4.
LocalVariableDefn

* *type = Type.INT | Offset=4

nextOffset = 6

w

IVariableDeclaration
initializatior

¥

IStatementExpression IVariableDeclarat IVariableDeclarator

7 liype _initializer name [type _initializer
- »

« e
JAssignOp JAssignOp W IPlusOp o TypeNT -~ IPlusOp
s | _type _ths |\ _type _hs g type s e type
¥ Lis® 2 “rhs] / ¥ e e P o Rl
IVariable 7 TypeINT IVariable \ Type.INT ~ JVariable ILiterallnt TypeNT " JVariable ILiterallnt TypeINT
Lt \ name /. A A A A
~_type /O type A na AN AN /
4 \. - r o |ype' =/ \uame type 0%/ \text typf e, \ndme typ/e/ text

B Type.INT N W Type.INT / /

v v v v . v
TypeINT “v" TypeINT }’/ TypeNT “w” TypeINT 7"

Analysis of j-- Programs

Analysis of j-- Programs

Simple variables (local variables or fields) are represented in the AST as svariabie nodes

Analysis of j-- Programs

Simple variables (local variables or fields) are represented in the AST as svariabie nodes

Analysis of simple variables involves looking their names up in the symbol table to find their types

Analysis of j-- Programs

Simple variables (local variables or fields) are represented in the AST as svariabie nodes
Analysis of simple variables involves looking their names up in the symbol table to find their types

If a variable is not found in the symbol table, we examine the 1ype for the surrounding class (in which the variable
appears) to see if it is a field; if it is a field, then the field selection is made explicit by rewriting the tree as a srieiaselection

Analysis of j-- Programs

Simple variables (local variables or fields) are represented in the AST as svariabie nodes
Analysis of simple variables involves looking their names up in the symbol table to find their types

If a variable is not found in the symbol table, we examine the 1ype for the surrounding class (in which the variable
appears) to see if it is a field; if it is a field, then the field selection is made explicit by rewriting the tree as a srieiaselection

public JExpression analyze(Context context) {
iDefn = context.lookup(name);
if (iDefn == null) {
// Not a local, but is it a field?
Type definingType = context.definingType ();
Field field = definingType.fieldFor (name);
if (field == null) {
type = Type.ANY;
JAST.compilationUnit.reportSemanticError (line,
"Cannot find name: " + name);
} else {
// Rewrite a variable denoting a field as an
// explicit field selection
type = field.type();

JExpression newTree = new JFieldSelection(line(),
field.isStatic() ||
(context.methodContext () != null &&

context.methodContext ().isStatic()) ?
new JVariable(line(),
definingType.toString ())
new JThis(line), name);
return (JExpression) newTree.analyze(context);

Analysis of j-- Programs

Analysis of j-- Programs

} else {

if (lanalyzeLhs && iDefn instanceof LocalVariableDefn &&
!((LocalVariableDefn) iDefn).isInitialized()) {
JAST.compilationUnit.reportSemanticError(line,

"Variable " + name + " might not have been
initialized");
}
type = iDefn.type();

return this;

Analysis of j-- Programs

} else {

if (lanalyzeLhs && iDefn instanceof LocalVariableDefn &%
!((LocalVariableDefn) iDefn).isInitialized()) {
JAST.compilationUnit.reportSemanticError (line,

"Variable " + name + " might not have been
initialized");
3
type = iDefn.type();

return this;

For example, the AST node for the local variable v in the statement return ¢ + v; in Locals.fo00), before and after analysis, is
shown below

JVariable JWariable

name | type

e

==
e // iDefn
v

ot oy LocalVariableDefn ~ Type.INT

Analysis of j-- Programs

Analysis of j-- Programs

As another example, consider the analysis of the static field », when it appears in the nain0 method of our ractoria1 class;
the AST node for the field, before and after analysis, is shown below

Analysis of j-- Programs

As another example, consider the analysis of the static field », when it appears in the nain0 method of our ractoria1 class;
the AST node for the field, before and after analysis, is shown below

JVariable JFieldSelection JFieldSelection
target AN field target ™
/// \\ ic %// \\\'ch

name / \‘I I;f field \".

| 1

¢ v v v

Ly 1Al IVariable ot JVariable “p» TypeINT
name e

name ~._lype
v // iDefn \{p

“pass.Factorial™
TypeDefn Type for

pass.Factorial

Analysis of j-- Programs

Analysis of j-- Programs

Both field selections and message expressions have targets

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

® . is a class name, x is a static field in «, and y is a field of x;

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

® . is a class name, x is a static field in «, and y is a field of x;

® . is a package containing class x, and y is a static field in x; or

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

® . is a class name, x is a static field in «, and y is a field of x;
® . is a package containing class x, and y is a static field in x; or

® . x.yis a fully qualified class name like java.1ang.systen

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

® . is a class name, x is a static field in «, and y is a field of x;
® . is a package containing class x, and y is a static field in x; or

® . x.yis a fully qualified class name like java.1ang.systen

For this reason, the parser packages up the string "w.x.y» in an amiguousnane Object, attached to either the sriecidselection OF
IMessageExpression, deferring the decision until analysis

Analysis of j-- Programs

Both field selections and message expressions have targets

In a field selection, the target is either an object or a class from which one wants to select a field, and in a message
expression, the target is an object or class to which one is sending a message

Unfortunately, the parser cannot always make out the syntactic structure of a target

For example, consider the field selection w.x.y.z; the parser knows this is a field selection of some sort and that z is the
field, but, without knowing the types of «, x and y, the parser cannot know whether:

® . is a class name, x is a static field in «, and y is a field of x;
® . is a package containing class x, and y is a static field in x; or

® . x.yis a fully qualified class name like java.1ang.systen

For this reason, the parser packages up the string "w.x.y» in an amiguousnane Object, attached to either the sriecidselection OF
IMessageExpression, deferring the decision until analysis

The reciassisy0 method in ambiguousiane is based on the rules in the Java Language Specification for reclassifying an
ambiguous name

Analysis of j-- Programs

Analysis of j-- Programs

public JExpression reclassify(Context context) {
// Easier because we require all types to be imported.
JExpression result = null;

= new StringTokenizer (name, ".");

StringTokenizer st

// Firstly, find a variable or Type.
String newName = st.nextToken();
IDefn iDefn = null;

do {
iDefn = context.lookup(newName);
if (iDefn != null) {
result = new JVariable(line, newName);
break;

} else if (!st.hasMoreTokens()) {
// Nothing found. :(
JAST.compilationUnit.reportSemanticError(line,

"Cannot find name " + newName);
return null;
} else {
newName += "." + st.nextToken();

} while (true);
// For now we can assume everything else is fields.
while (st.hasMoreTokens()) {

result = new JFieldSelection(line, result, st.nextToken());

return result;

Analysis of j-- Programs

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

v Firstly, reciassity0 looks up the simple name, java in the symbol table.

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

v Firstly, reciassity0 looks up the simple name, java in the symbol table.
2 Not finding that, it looks up java.1ang

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

v Firstly, reciassity0 looks up the simple name, java in the symbol table.
2 Not finding that, it looks up java.1ang

3 Not finding that, it looks up java.1ang.systen, which (assuming java.1ang.systen has been properly imported) it finds to be
a class.

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

v Firstly, reciassity0 looks up the simple name, java in the symbol table.
2 Not finding that, it looks up java.1ang

3 Not finding that, it looks up java.1ang.systen, which (assuming java.1ang.systen has been properly imported) it finds to be
a class.

4 It then assumes that the rest of the ambiguous part, that is out, is a field

Analysis of j-- Programs

For example, consider the message expression

java.lang.System.out.println(...);

The parser will have encapsulated the target java.1ang.system.out IN an Ambiguousiame Object

The first thing anaiyze) does for a svessageExpression iS to reclassify the amiguousvane to determine the structure of the expression
that it denotes, which it does by looking at the ambiguous java.iang.system.out from left to right:

v Firstly, reciassity0 looks up the simple name, java in the symbol table.
2 Not finding that, it looks up java.1ang

3 Not finding that, it looks up java.1ang.systen, which (assuming java.1ang.systen has been properly imported) it finds to be
a class.

4 It then assumes that the rest of the ambiguous part, that is out, is a field

5 Thus the target is a field selection whose target is java.lang.systen and whose field name is out

Analysis of j-- Programs

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows
1 It analyzes the target and determines the target’s type

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows
1 It analyzes the target and determines the target’s type

2 It then considers the special case where the target is an array and the field is 1engtn. In this case, the type of the
“field selection” is Type.InT

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows

1 It analyzes the target and determines the target’s type

2 It then considers the special case where the target is an array and the field is 1engtn. In this case, the type of the
“field selection” is Type.InT

3 Otherwise, it ensures that the target is not a primitive and determines whether or not it can find a field of the
appropriate name in the target's type; if it cannot, then an error is reported

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows

1 It analyzes the target and determines the target’s type

2 It then considers the special case where the target is an array and the field is 1engtn. In this case, the type of the
“field selection” is Type.InT

3 Otherwise, it ensures that the target is not a primitive and determines whether or not it can find a field of the
appropriate name in the target's type; if it cannot, then an error is reported

Otherwise, it checks to make sure the field is accessible to this region, a non-static field is not referenced from a
static context, and then returns the analyzed field selection sub-tree

Analysis of j-- Programs

After reclassifying any ambiguous part and making that the target, analysis of a srieiaselection proceeds as follows
1 It analyzes the target and determines the target’s type
2 It then considers the special case where the target is an array and the field is 1engtn. In this case, the type of the
“field selection” is Type.InT

3 Otherwise, it ensures that the target is not a primitive and determines whether or not it can find a field of the
appropriate name in the target's type; if it cannot, then an error is reported

Otherwise, it checks to make sure the field is accessible to this region, a non-static field is not referenced from a
static context, and then returns the analyzed field selection sub-tree

public JExpression analyze(Context context) {
// Reclassify the ambiguous part.

target = (JExpression) target.analyze(context);
Type targetType = target.type();

// We use a workaround for the "length" field of arrays.
if ((targetType instanceof ArrayTypeName) && fieldName.equals("length")) {
type = Type.INT;
} else {
// Other than that, targetType has to be a
// ReferenceType
if (targetType.isPrimitive()) {
JAST.compilationUnit.reportSemanticError (line(),
"Target of a field selection must be a defined type");
type = Type.ANY;
return this;

Analysis of j-- Programs

Analysis of j-- Programs

field = targetType.fieldFor (fieldName);

if (field == null)
JAST.compilationUnit.reportSemanticError (line(),
"Cannot find a field: " + fieldName);
type = Type.ANY;
} else {

context.definingType ().checkAccess (line,
(Member) field);
type = field.type();

// Non-static field cannot be referenced from a
// static context.
if (!field.isStatic()) {
if (target instanceof JVariable &&
((JVariable) target).iDefn() instanceof
TypeNameDefn) {
JAST.compilationUnit.
reportSemanticError (line(),
"Non-static field " + fieldName +
" cannot be referenced from a static
context");

¥
¥

return this;

Analysis of j-- Programs

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:

1 It analyzes the arguments to the message and constructs an array of their types

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:
1 It analyzes the arguments to the message and constructs an array of their types

2 It determines the surrounding, defining class (for determining access)

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:
1 It analyzes the arguments to the message and constructs an array of their types
2 It determines the surrounding, defining class (for determining access)

3 It analyzes the target to which the message is being sent

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:
1 It analyzes the arguments to the message and constructs an array of their types
2 It determines the surrounding, defining class (for determining access)
3 It analyzes the target to which the message is being sent

% It takes the message name and the array of argument types and looks for a matching method defined in the
target’s type (in j--, argument types must match exactly), and if no such method is found, it reports an error

Analysis of j-- Programs

After reclassifying any ambiguousiane, analyzing a swessageexpression proceeds as follows:
1 It analyzes the arguments to the message and constructs an array of their types
2 It determines the surrounding, defining class (for determining access)
3 It analyzes the target to which the message is being sent

% It takes the message name and the array of argument types and looks for a matching method defined in the
target’s type (in j--, argument types must match exactly), and if no such method is found, it reports an error

5 Otherwise, the target class and method are checked for accessibility, a non-static method is now allowed to be
referenced from a static context, and the method’s return type becomes the type of the message expression

public JExpression analyze(Context context) {
// Reclassify the ambiguous part

// Then analyze the arguments, collecting
// their types (in Class form) as argTypes
argTypes = new Type[arguments.size()];
for (int i = 0; i < arguments.size(); i++) {
arguments.set (i, (JExpression) arguments.get(i).analyze(
context));
argTypes[i]l = arguments.get(i).type();

Analysis of j-- Programs

Analysis of j-- Programs

// Where are we now? (For access)
Type thisType = ((JTypeDecl) context.classContext
.definition()).thisType ();

// Then analyze the target
if (target == null) {
// Implied this (or, implied type for statics)
if (!context.methodContext ().isStatic()) {
target = new JThis(line()).analyze(context);

else {
target = new JVariable(line(),
context.definingType ().toString ()).
analyze (context);

}
} else {
target = (JExpression) target.analyze(context);
if (target.type().isPrimitive()) {
JAST.compilationUnit.reportSemanticError (line(),
"cannot invoke a message on a primitive type:"
+ target.type());

Analysis of j-- Programs

Analysis of j-- Programs

// Find appropriate Method for this message expression
method = target.type().methodFor (messageName, argTypes);
if (method null) {
JAST.compilationUnit.reportSemanticError (line(),
"Cannot find method for: "
+ Type.signatureFor (messageName, argTypes));
type = Type.ANY;
} else {
context.definingType ().checkAccess (line,
(Member) method);

type = method.returnType ();

// Non-static method cannot be referenced from a
// static context.
if (!method.isStatic()) {
if (target instanceof JVariable &&
((JVariable) target).iDefn() instanceof
TypeNameDefn) {
JAST.compilationUnit.reportSemanticError (line(),
"Non-static method " +
Type.signatureFor (messageName, argTypes) +
"cannot be referenced from a static context");

}
}

return this;

Analysis of j-- Programs

Analysis of j-- Programs

The rest of analysis, as defined for the various kinds of AST nodes is about computing and checking types and enforcing
additional j-- rules

Analysis of j-- Programs

The rest of analysis, as defined for the various kinds of AST nodes is about computing and checking types and enforcing
additional j-- rules

For most kinds of AST nodes, analysis involves analyzing the sub-trees and checking the types

Analysis of j-- Programs

The rest of analysis, as defined for the various kinds of AST nodes is about computing and checking types and enforcing
additional j-- rules

For most kinds of AST nodes, analysis involves analyzing the sub-trees and checking the types

Analysis of sizstatenent

public JStatement analyze(Context context) {
test = (JExpression) test.analyze(context);
test.type ().mustMatchExpected(line (), Type.BOOLEAN);
consequent = (JStatement) consequent.analyze(context);
if (alternmate != null) {
alternate = (JStatement) alternate.analyze(context);
¥

return this;

Analysis of j-- Programs

The rest of analysis, as defined for the various kinds of AST nodes is about computing and checking types and enforcing
additional j-- rules

For most kinds of AST nodes, analysis involves analyzing the sub-trees and checking the types

Analysis of sizstatenent

public JStatement analyze(Context context) {
test = (JExpression) test.analyze(context);
test.type ().mustMatchExpected(line (), Type.BOOLEAN);
consequent = (JStatement) consequent.analyze(context);
if (alternmate != null) {
alternate = (JStatement) alternate.analyze(context);
¥

return this;

Analysis of ssubtractop

public JExpression analyze(Context context) {
lhs = (JExpression) lhs.analyze(context);
rhs = (JExpression) rhs.analyze(context);
lhs.type () .mustMatchExpected (line (), Type.INT);
rhs.type ().mustMatchExpected(line(), Type.INT)
type = Type.INT;
return this;

Analysis of j-- Programs

Analysis of j-- Programs
Analysis of spusop

public JExpression analyze(Context context) {
lhs = (JExpression) lhs.analyze(context);
rhs = (JExpression) rhs.analyze(context);
if (lhs.type() == Type.STRING || rhs.type() == Type.STRING) {
return (new JStringConcatenationOp(line, lhs, rhs))
.analyze (context);
} else if (lhs.type() == Type.INT && rhs.type ()
type = Type.INT;
} else {
type = Type.ANY;
JAST.compilationUnit.reportSemanticError (line(),
"Invalid operand types for +");

Type.INT){

}

return this;

Analysis of j-- Programs
Analysis of spusop

public JExpression analyze(Context context) {
lhs = (JExpression) lhs.analyze(context);
rhs = (JExpression) rhs.analyze(context);
if (lhs.type() == Type.STRING || rhs.type() == Type.STRING) {
return (new JStringConcatenationOp(line, lhs, rhs))
.analyze (context);
} else if (lhs.type() == Type.INT && rhs.type ()
type = Type.INT;
} else {
type = Type.ANY;
JAST.compilationUnit.reportSemanticError (line(),
"Invalid operand types for +");

Type.INT){

}

return this;

Analysis of sstringconcatenateop

public JExpression analyze(Context context) {
type = Type.STRING;
return this;

Analysis of j-- Programs
Analysis of spusop

public JExpression analyze(Context context) {
lhs = (JExpression) lhs.analyze(context);
rhs = (JExpression) rhs.analyze(context);
if (lhs.type() == Type.STRING || rhs.type() == Type.STRING) {
return (new JStringConcatenationOp(line, lhs, rhs))
.analyze (context);
} else if (lhs.type() == Type.INT && rhs.type ()
type = Type.INT;
} else {
type = Type.ANY;
JAST.compilationUnit.reportSemanticError (line(),
"Invalid operand types for +");

Type.INT){

}

return this;

Analysis of sstringconcatenateop

public JExpression analyze(Context context) {
type = Type.STRING;
return this;

Analysis of sLiteralm:

public JExpression analyze(Context context) {
type = Type.INT;
return this;

Analysis of j-- Programs

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

This does not exclude polymorphism; for example if type sar extends type roo, if var is a variable of type sar and oo is a
variable of type ros, we can say

foo = (Foo) bar;

to keep the j-- compiler happy

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

This does not exclude polymorphism; for example if type sar extends type roo, if var is a variable of type sar and oo is a
variable of type ros, we can say

foo = (Foo) bar;

to keep the j-- compiler happy

Of course, the object that var refers to could be of type ear or any of its sub-types; polymorphism has not gone away

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

This does not exclude polymorphism; for example if type sar extends type roo, if var is a variable of type sar and oo is a
variable of type ros, we can say

foo = (Foo) bar;

to keep the j-- compiler happy
Of course, the object that var refers to could be of type ear or any of its sub-types; polymorphism has not gone away

Analysis, when encountering a scastop for an expression such as

(Type2) expression of Typel

must determine two things:

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

This does not exclude polymorphism; for example if type sar extends type roo, if var is a variable of type sar and oo is a
variable of type ros, we can say

foo = (Foo) bar;

to keep the j-- compiler happy
Of course, the object that var refers to could be of type ear or any of its sub-types; polymorphism has not gone away

Analysis, when encountering a scastop for an expression such as

(Type2) expression of Typel

must determine two things:

1 That an expression of type 1ypet can be cast to type2, ie, that the cast is valid

Analysis of j-- Programs

The j-- language is stricter than is Java when it comes to types

There are no implied conversions in j--; when one assigns an expression to a variable, the types must match exactly, and
the same goes for actual parameters to messages matching the formal parameters of methods

This does not exclude polymorphism; for example if type sar extends type roo, if var is a variable of type sar and oo is a
variable of type ros, we can say

foo = (Foo) bar;

to keep the j-- compiler happy
Of course, the object that var refers to could be of type ear or any of its sub-types; polymorphism has not gone away

Analysis, when encountering a scastop for an expression such as

(Type2) expression of Typel

must determine two things:
1 That an expression of type 1ypet can be cast to type2, ie, that the cast is valid

2 The type of the result, which is simply type2

Analysis of j-- Programs

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2

v Any type may be cast to itself (aka identity cast)

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2

v Any type may be cast to itself (aka identity cast)
2 An arbitrary reference type may be cast to another reference type if and only if either one of the following holds:

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2
v Any type may be cast to itself (aka identity cast)
2 An arbitrary reference type may be cast to another reference type if and only if either one of the following holds:

1 The first type is a sub-type of (extends) the second type; this is called widening and requires no action at run time

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2
v Any type may be cast to itself (aka identity cast)
2 An arbitrary reference type may be cast to another reference type if and only if either one of the following holds:
1 The first type is a sub-type of (extends) the second type; this is called widening and requires no action at run time

2 The second type is a sub-type of the first type; this is called narrowing and requires a run-time check to make sure the
expression being cast is actually an instance of the type it is being cast to

Analysis of j-- Programs

To determine (1) we must consider the possibilities for Typer and type2
v Any type may be cast to itself (aka identity cast)
2 An arbitrary reference type may be cast to another reference type if and only if either one of the following holds:
1 The first type is a sub-type of (extends) the second type; this is called widening and requires no action at run time

2 The second type is a sub-type of the first type; this is called narrowing and requires a run-time check to make sure the
expression being cast is actually an instance of the type it is being cast to

3 The following table summarizes other casts, and says whether or not (and how) a type labeling a row may be cast
to a type labeling a column

boolean char int Boolean Character Integer
boolean Identity Error Error Boxing Error Error
char Error Identity Widening | Error Boxing Error
int Error Narrowing | Identity Error Error Boxing
Boolean Unboxing | Error Error Identity | Error Error
Character | Error Unboxing Error Error Identity | Error
Integer Error Error Unboxing | Error Error Identity

Analysis of j-- Programs

Analysis of j-- Programs

Analysis in jcastop

public JExpression analyze (Context context) {
expr = (JExpression) expr.analyze(context);
type = cast = cast.resolve(context);
if (cast.equals(expr.type())) {
converter = Converter.Identity;
else if (cast.isJavaAssignableFrom(expr.type())) {
converter = Converter.WidenReference;
else if (expr.type().isJavaAssignableFrom(cast)) {
converter = new NarrowReference(cast);
else if ((converter =
conversions.get (expr.type(), cast)) != null) {
else {
JAST.compilationUnit.reportSemanticError (line,
"Cannot cast a " + expr.type().toString() +
+ cast.toString());

B

¥

return this;

Analysis of j-- Programs

Analysis in jcastop

public JExpression analyze (Context context) {
expr = (JExpression) expr.analyze(context);
type = cast = cast.resolve(context);
if (cast.equals(expr.type())) {
converter = Converter.Identity;
else if (cast.isJavaAssignableFrom(expr.type())) {
converter = Converter.WidenReference;
else if (expr.type().isJavaAssignableFrom(cast)) {
converter = new NarrowReference(cast);
else if ((converter =
conversions.get (expr.type(), cast)) != null) {
else {
JAST.compilationUnit.reportSemanticError (line,
"Cannot cast a " + expr.type().toString() +
+ cast.toString());

B

to a

¥

return this;

A converter for narrowing one reference type to another (more specific) reference sub-type

class NarrowReference implements Converter {
private Type target;

public NarrowReference(Type target) {
this.target = target;

¥

public void codegen(CLEmitter output) {
output.addReferenceInstruction (CHECKCAST , target.jvmName());

Analysis of j-- Programs

Analysis of j-- Programs

In Java, every variable (whether it be a local variable or a field) must be definitely assigned before it is accessed in a
computation, ie, it must appear on the left hand side of the - operator before it is accessed

Analysis of j-- Programs

In Java, every variable (whether it be a local variable or a field) must be definitely assigned before it is accessed in a
computation, ie, it must appear on the left hand side of the - operator before it is accessed

We do not have this rule in j--, so we need not enforce it in our compiler

Analysis of j-- Programs

In Java, every variable (whether it be a local variable or a field) must be definitely assigned before it is accessed in a
computation, ie, it must appear on the left hand side of the - operator before it is accessed

We do not have this rule in j--, so we need not enforce it in our compiler

Enforcing the definite assignment rule requires data flow analysis, which determines where in the program variables are
defined (assigned values), where in the program the variables’ values are used and so where in the program those values
are valid (from assignment to last use)

Analysis of j-- Programs

In Java, every variable (whether it be a local variable or a field) must be definitely assigned before it is accessed in a
computation, ie, it must appear on the left hand side of the - operator before it is accessed

We do not have this rule in j--, so we need not enforce it in our compiler

Enforcing the definite assignment rule requires data flow analysis, which determines where in the program variables are
defined (assigned values), where in the program the variables’ values are used and so where in the program those values
are valid (from assignment to last use)

Our JVM to MIPS translator performs data-flow analysis as part of computing live intervals for register allocation

	Outline
	Introduction
	The j– Types
	j– Symbol Tables
	Pre-analysis of j– Programs
	Analysis of j– Programs

