This document describes the Application Programming Interface (API) for the libraries used throughout the book Introduction to Programming in Python: An Interdisciplinary Approach \square by Robert Sedgewick, Kevin Wayne, and Robert Dondero.

≡ color.Color

Color(r=0, g=0, b=0)	constructs a color c given its red, green, and blue components
c.getRed()	returns the red component of c
c.getGreen()	returns the green component of ${\tt c}$
c.getBlue()	returns the blue component of ${\tt c}$
c.luminance()	returns the luminance of c
c.toGray()	returns the grayscale equivalent of c
<pre>c.isCompatible(d)</pre>	returns True if c is compatible with d, and False otherwise
str(c)	returns a string representation of c

≡ instream.InStream

InStream(fileOrUrl=None)	constructs an input stream i from a file/URL or standard input if the argument is empty
i.isEmpty()	returns True if i is empty, and False otherwise
i.readInt()	returns a token from i as an integer
i.readAllInts()	returns the remaining tokens from i as a list of integers
i.readFloat()	returns a token from i as a float
i.readAllFloats()	returns the remaining tokens from i as a list of floats
i.readBool()	returns a token from i as a boolean
i.readAllBools()	returns the remaining tokens from i as a list of booleans
i.readString()	returns a token from i as a string
i.readAllStrings()	returns the remaining tokens from i as a list of strings
i.hasNextLine()	returns True if i has a next line, and False otherwise
i.readLine()	returns a line of tokens from i as a string
i.readAllLines()	returns the remaining lines of tokens from i as a list of strings
i.readAll()	returns the remaining tokens from i as a string

■ outstream.OutStream

OutStream(file=None)	constructs an output stream o from a file or standard output if the argument is empty
o.writeln(x="")	writes x followed by newline to o
o.write(x="")	writes x to o
<pre>o.writef(fmt, *args)</pre>	writes each element of args to o according to the format specified by the string fmt

■ picture.Picture

Picture(file)	constructs a picture p from an image (.jpg or .png) file
Picture(width=512, height=512)	constructs a picture p given its dimensions in pixels
p.save(file)	saves p to the file with the given name
p.width()	returns the width of p in pixels
p.height()	returns the height of p in pixels

p.get(x, y)	returns the color of p at the location (x, y)
p.set(x, y, c)	sets the color of p at the location (x, y) to c

≣ stdarray

<pre>create1D(n, value=None)</pre>	creates and returns a 1D list of size n, with each element initialized to value
<pre>create2D(m, n, value=None)</pre>	creates and returns a 2D list of size ${\tt m}$ ${\tt x}$ ${\tt n},$ with each element initialized to ${\tt value}$
readInt1D()	reads an integer n from standard input; then reads n integers also from standard input and returns them as a 1D list of size n
readInt2D()	reads integers m and n from standard input, and then reads mn integers also from standard input and returns them as a 2D list of size $m \times n$
readFloat1D()	reads an integer n from standard input, and then reads n floats also from standard input and returns them as a 1D list of size n
readFloat2D()	reads integers m and n from standard input, and then reads mn floats also from standard input and returns them as an 2D list of size $m \times n$
readBool1D()	reads an integer n from standard input, and then reads n booleans also from standard input and returns them as a 1D list of size n
readBool2D()	reads integers m and n from standard input, and then reads mn booleans also from standard input and returns them as a 2D list of size $m \times n$
write1D(a)	writes the size and elements of the 1D list a to standard output
write2D(a)	writes the size and elements of the 2D list a to standard output

■ stdaudio

playSample(s)	plays sound sample s
playSamples(a)	plays all sound samples in the list a
<pre>playFile(file)</pre>	plays all sound samples in the file whose name is file.wav
<pre>save(file, a)</pre>	saves all sound samples in the list a to the WAVE file whose name is file.wav
read(file)	reads and returns a list of all sound samples from the WAVE file whose name is file.wav
wait()	waits for the currently playing sound to finish

■ stddraw

BLACK	represents black
BLUE	represents blue
CYAN	represents cyan
DARK_BLUE	represents dark blue
DARK_GRAY	represents dark gray
DARK_GREEN	represents dark green
DARK_RED	represents dark red
GRAY	represents gray
GREEN	represents green
LIGHT_GRAY	represents light gray
MAGENTA	represents magenta
ORANGE	represents orange

PINK	represents pink
RED	represents red
VIOLET	represents violet
WHITE	represents white
YELLOW	represents yellow
setCanvasSize(w=512, h=512)	sets the width and height of the canvas to w and h pixels
setXscale(min=0.0, max=1.0)	sets the x-scale of canvas to the interval [min, max]
setYscale(min=0.0, max=1.0)	sets the y-scale of canvas to the interval [min, max]
setPenRadius(r=0.005)	sets the pen radius to r
setPenColor(c=BLACK)	sets the pen color to c
setFontFamily(f="Helvetica")	sets the font family to f
setFontSize(s=12)	sets the font size to s
<pre>point(x, y)</pre>	draws on the canvas a point at (x, y)
line(x0, y0, x1, y1)	draws on the canvas a line from $(x0, y0)$ to $(x1, y1)$
circle(x, y, r)	draws on the canvas a circle of radius r centered at (x, y)
<pre>filledCircle(x, y, r)</pre>	draws on the canvas a filled circle of radius \mathbf{r} centered at (\mathbf{x}, \mathbf{y})
<pre>rectangle(x, y, w, h)</pre>	draws on the canvas a rectangle of width ${\tt w}$ and height ${\tt h}$ whose lower left point is $({\tt x},\ {\tt y})$
filledRectangle(x, y, w, h)	draws on the canvas a filled rectangle of width w and height h whose lower left point is (x, y)
square(x, y, r)	draws on the canvas a square of side length 2r centered at (x, y)
filledSquare(x, y, r)	draws on the canvas a filled square of side length 2r centered at (x, y)
polygon(x, y)	draws on the canvas a polygon with coordinates (x[i], y[i])
filledPolygon(x, y)	draws on the canvas a filled polygon with coordinates $(x[i], y[i])$
text(x, y, s)	draw on canvas the string s centered at (x, y)
<pre>picture(pic, x=None, y=None)</pre>	draws on the canvas the picture pic centered at (x, y) or middle of the screen
clear(c=WHITE)	clears the canvas to color ${\tt c}$
save(f)	saves the canvas to file f
<pre>show(msec=float("inf"))</pre>	shows the canvas and waits for msec milliseconds
${\tt hasNextKeyTyped()}$	returns True if the queue of keys the user typed is not empty, and False otherwise
nextKeyTyped()	removes and returns the first key from the queue of keys that the user type
mousePressed()	return True if the mouse has been left-clicked, and False otherwise
mouseX()	returns the \boldsymbol{x} coordinate of the location at which the mouse was most recently left-clicked
mouseY()	returns the y coordinate of the location at which the mouse was most recently left-clicked

≣ stdio

writeln(x="")	writes x followed by newline to standard output
write(x="")	writes x to standard output
writef(fmt, *args)	writes each element of \mathtt{args} to standard output according to the format specified by the string \mathtt{fmt}

isEmpty()	returns True if standard input is empty, and False otherwise
readInt()	returns a token from standard input as an integer
readAllInts()	returns the remaining tokens from standard input as a list of integers
readFloat()	returns a token from standard input as a float
readAllFloats()	returns the remaining tokens from standard input as a list of floats
readBool()	returns a token from standard input as a boolean
readAllBools()	returns the remaining tokens from standard input as a list of booleans
readString()	returns a token from standard input as a string
readAllStrings()	returns the remaining tokens from standard input as a list of strings
hasNextLine()	returns True if standard input has a next line, and False otherwise
readLine()	returns a line of tokens from standard input as a string
readAllLines()	returns the remaining lines of tokens from standard input as a list of strings
readAll()	returns the remaining tokens from standard input as a string

\blacksquare stdrandom

seed(i=None)	seeds the random number generator using integer i or the current time
uniformInt(lo, hi)	returns an integer chosen uniformly at random from the interval [lo, hi)
uniformFloat(lo, hi)	returns a float chosen uniformly at random from the interval [lo, hi)
bernoulli(p=0.5)	returns True with probability ${\tt p}$ and False with probability 1 - ${\tt p}$
binomial(n, p=0.5)	returns the number of heads in ${\tt n}$ coin flips, each of which is heads with probability ${\tt p}$
gaussian(mu=0.0, sigma=1.0)	returns a float from a Gaussian distribution with mean \mathtt{mu} and standard deviation \mathtt{sigma}
discrete(a)	returns an integer i with probability a[i]
exp(lambd)	returns a float from an exponential distribution with rate lambd
choice(a)	returns a random element from the list a
sample(a, k)	returns k unique random elements from the list a
shuffle(a)	shuffles the list a

≡ stdstats

mean(a)	returns the average of the elements in list a
var(a)	returns the sample variance of the elements in list a
stddev(a)	returns the standard deviation of the elements in list a
median(a)	returns the median of the elements in list a
plotPoints(a)	plots the elements in list a as points
plotLines(a)	plots the elements in list a as line end-points
plotBars(a)	plots the elements in list a as bars