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Part 1

Dynamic Programming and
Sequence Alignments

1.1 Lecture 1 – 9/7/2006

The course page is http://www.cs.umb.edu/cs697.

1.1.1 Overview of DNA

DNA stands for deoxyribonucleic acid. A DNA word is a very long sequence of 4 symbols: A, C, G, T.
In a human, the length of such a word is rougly 3 billion letters

A, C, G, T are known as nucleotides.

A adenine
C cytosine
G guanine
T Thymidine

A DNA molecule is an alternating sequence of desoxyribone (dR) and phosphate (P) pieces:

dR — P — dR — P — . . .

These constitute the spine or “ladder rails” of the DNA molecule.

The A, C, G, T nucleotides hang from the dR molecules. The chain has a direction. The beginning of
the chain is the 5′ (five prime) side and the end is the 3′ (three prime) side. DNA always starts with a
P and ends with an OH.

(5′) P — dR — P — dR — OH (3′)
| |
A C

The figure above shows half of a DNA chain. Because DNA is double-stranded, there is a second chain
of dR — P molecules, and the second chain goes in the opposite direction. In the middle (the ladder
rungs) nucleotides will be aligned in certain combinations. Not every alignment is possible, only certain
ones.
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(5′) P — dR — P — dR — OH (3′)
| |
A C
· · · · · ·
T C
| |

(3′) OH — dR — P — dR — P (5′)

The top and bottom halves of the chain can be separated fairly easily. This splitting occurs when DNA
replicates.

Cell fabrication uses RNA (ribonucleic acid). RNA is single-stranded. Where DNA is composed of the
letters A, C, G, T, RNA is composed of the letters A, C, G, U. U is uracil. When RNA is made from
DNA, Thymidine molecules will become uracil molecules.

The basic sequence of DNA replication

• We start with DNA
• DNA is used by a cell to produce RNA
• RNA is used to produce protiens

A protien is a chain of amino acids. There are 20 such chains.

Sequences of three nucleotides are used as codons in the making of amino acids. Because we have three-
letter sequences and four possible letters, there are 64 combinations. Note that there are more codons
than amino acids.

An exon is the part of DNA that is used for protien production.

An intron is the part of DNA that is not used for protien production.

A stop codon indicates where the transcription of a particular protien should end. There are three stop
codons: UAG, UGA, and UAA.

The three symbols in a stop codon are not equally significant. Most of the transcription choice is
determined by the first two codons. In many cases, the third codon doesn’t matter.

1.1.2 Similarity of Protiens

In biology, protiens have one-letter representations. Let’s suppose we had a pair of protien sequences:

D E K A C N P Q . . .
E E C T G P . . .

How closely do these two sequences match, and how does one measure their degree of similarity? Note
that these sequences have different lengths – this is not uncommon for protien sequences.

A common approach to judging similarity is to compute a score that represents the quality of the match.
This is called an alignment score, which we’ll denote as s(a, b).

The Blosum 50 matrix is a square matrix indexed by amino acid. The rows and columns are amino
acids. Each matrix cell contains a score indicating how well the two protiens match. We can find an
overall score by adding up scores for individual pairs. However, we may need to insert gaps in order to
get an alignment. Gaps will produce a penalty.

Given two protein sequences, how many different alignments are possible? As it turns out, this reduces
to the question “how many different ways can elements of the two sequences be shuffled?”.

There is a bijection between shuffle and sequence alignment (one of our homework problems will address
this).
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Let

x = x1 . . . xn

y = y1 . . . ym

Shuffled, these give a string of length m + n. The number of different ways to shuffle (arrange the
elements of x and y is:

(
m+n
n

)
. If the sequences have the same length (m = n) this is

(
m+ n

n

)
=

(
2n
n

)
=

(2n)!
n! · n!

=
(2n)!
n!2

1.1.3 Dynamic Programming

Let’s consider the problem of finding the longest common subsequence between two sequences.

Give

x = x1 . . . xn

we say that z is a subsequence of x if

z = xi1xi2 . . . xi3 . . .

if i1 ≤ i2 ≤ i3 ≤ . . .

Note that a subsequence is not the same thing as an infix. In a subsequence, symbols do not have to be
consecutive. They only have to appear in the proper order.

A sequence of length n has 2n possible subsequences.

Given

x = x1 . . . xn

y = y1 . . . ym

how can we find the longest length of a longest common subsequence of x and y. Note that the longest
length of a common subsequence is unique, while the subsequence itself is not unique.

Example:

X = GTCAGA

Y = AGCGTAG

The longest common subsequence has length 4. There are two such subsequences: GTAG and GCAG.

Let c(m,n) denote the length of the longest common subsequence between m and n. This problem can
be broken into two cases:

Case 1 If xm = yn then

c(m,n) = c(m− 1, n− 1) + 1

Case 2 If xm 6= yn then

c(m,n) = max( c(m− 1, n), c(m,n− 1) )
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Dynamic programming is similar to divide and conquer in that it decomposes a problem into smaller
subproblems. Unlike divide and conquer, dynamic programming saves all of the intermediate results and
re-uses them as necessary.

1.1.4 Combinatorial Refresher

Formula for selection of r elements from a set of n elements:

• r permutations, without repetition

n!
(n− r)!

• r permutations, with repetition

nr

• r combinations, without repetition

n!
r!(n− r)!

• r combinations, with repetition

(n+ r − 1)!
r!(n− 1)!
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1.2 Chapter 1 notes

1.2.1 Conditional Probability

Given one die, the probability of rolling an i on die #1 is P (i|D1). We call this a conditional probability.
In general, think of this as the probability of i under the parameter D1.

1.2.2 Joint Probability

The formula for joint probability is

P (X,Y ) = P (X|Y ) · P (Y )

P (X,Y ) is the probability of Y occurring and the probability of X occurring in the presence of Y .

Consider: at a casino, 1% of the die are loaded. On these loaded die, a 6 will come up 50% of the time.
The other 99% of the dice are normal. If you pick up a die, what is the probability of rolling a 6.

There are two things to consider: (1) the probability of rolling a 6 on an unloaded die and (2) the
probability of rolling a 6 on a loaded die.

The probability of rolling a 6 on a loaded die is 50%. The probability of picking up a loaded die is 1%.

P (6, loaded) = P (6|Dloaded) · P (loaded)
= 0.5 · 0.01
= 0.005

P (6, unloaded) = P (6|Dfair) · P (fair)
= 1/6 · 0.99
= 0.165

P (6) = P (6, loaded) + P (6, fair)
= 0.005 + 0.165
= 0.17

1.2.3 Bayes Theorem

Bayes theorem is:

P (X|Y ) =
P (Y |X) · P (X)

P (Y )

Example: Using the casino from the previous example, we pick up a die and roll it three times; each roll
is a 6. What is the probability that the die we picked up is loaded?

P (loaded|3 sixes) =
P (3 sixes|loaded) · P (loaded)

P (3 sixes)

=
(0.5)3 · 0.01

(0.5)3 · 0.01 + (1/6)3 · 0.99
= 0.21

It’s still more likely that we picked up a fair die.
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1.2.4 Marginal Probability

Given a conditional or joint probability, we can calculate a marginal probability that removes one of the
variables:

P (X) =
∑
Y

P (X,Y ) =
∑
Y

P (X|Y ) · P (Y )

P (X) is the summation over all possible events Y .

Bayes theorem is also known as posterior probability.
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1.3 Lecture - 9/11/2006

Logistics

• Prof. Simovici will be away from 9/24/2006 - 9/27/2006.
• Make up call on Saturday 9/23/2006 at 10:00 am
• Data mining seminars will be held on Tuesdays from 13:00 - 14:00 in the web lab (3rd floor science

center). The seminars are open to anyone who is interested.
• See first paper in dsim’s list of publications.

1.3.1 Longest Common Subsequences

We return to the problem of finding the length of a longest common subsequence between to words. We
have

x = (x1 . . . xm)
y = (y1 . . . yn)

x1,k = (x1 . . . xk) a prefix of x
y1,j = (y1 . . . yj) a prefix of y

In finding a longest common subsequence, there are two cases to consider

• xn = ym – the last symbols match
• xn 6= ym – the last symbols do not match

We denote Longest common subsequence as LCS and the length of a longest common subsequence as
LLCS.

Last Symbols Match

If xm = yn then

LLCS(x, y) = LLCS(x1,m−1, y1,n−1) + 1

If t is a LCS of x1 . . . xm−1 and y1 . . . yn−1, then ta is an LCS of x1 . . . xm−1 and y1 . . . yn−1 where
a = xm = yn

If xm = yn, then we have reduced the problem to one sub-problem.

Last Symbols Don’t Match

If xm 6= yn, then we have two cases to consider: (x1,m−1, y) and (x, y1,n−1). Therefore

LLCS(x, y) = max(LLCS(x1,m−1, y), LLCS(x, y1,n−1)

This reduces the problem to two sub-problems.

1.3.2 Dynamic Programming

Dynamic programming minimizes the re-computation of sub-problems. We present an algorithm that
uses a (m+ 1)× (n+ 1) array, M [i, j]. (i is row, j is column). In M [i, j] we will have the length of the
LLCS(x1,i, y1,j).
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The first row and first column of the matrix are special cases. By definition,

x1,i = λ if i = 0
y1,j = λ if j = 0

Aside from the first row an column, we fill in the array from left to right, from top to bottom as follows.

M [i, j] =
{
M [i− 1, j − 1] if xi = yj
max(M [i− 1, j],M [i, j − 1]) if xi 6= yj

Along with building up LLCS values, we will also maintain pointers (arrows) to show where each value
was derived. These arrows allow us to reconstruct (one of) the least common subsequences that produced
the LLCS.

In the case where M [i−1, j] = M [i, j−1], we’ll prefer M [i−1, j] (the up arrow). This means that there
are more than one possible LCS. To recover all of the strings, we’d need to record two pointers when a
tie occurs, and work backwards along each branch during the reconstruction.

Example: x = GTCAGA, y = AGCGTAG.

A G C G T A G

0 0 0 0 0 0 0 0
G 0 ↑ 0 ↖ 1 ← 1 ↖ 1 ← 1 ← 1 ↖ 1
T 0 ↑ 0 ↑ 1 ↑ 1 ↑ 1 ↖ 2 ← 2 ← 2
C 0 ↑ 0 ↑ 1 ↖ 2 ← 2 ↑ 2 ↑ 2 ↑ 2
A 0 ↖ 1 ↑ 1 ↑ 2 ↑ 2 ↑ 2 ↖ 3 ← 3
G 0 ↑ 1 ↖ 2 ↑ 2 ↖ 3 ← 3 ↑ 3 ↖ 4
A 0 ↖ 1 ↑ 2 ↑ 2 ↑ 3 ↑ 3 ↖ 4 ↑ 4

Figure 1.1: Example of Dynamic LLCS algorithm

The LLCS value resides in the lower right-hand corner.

To find an LCS that produced the LLCS, we simply need to follow the arrows from the lower-right corner.
A ↖ denotes that two symbols matched – these will be the symbols in the LCS.

Above, the LLCS = 4 and the word is GTAG.

1.3.3 LCS and matching protiens

The dynamic programming technique used in Figure 1.1 can be applied to the problem of aligning amino
acids or nucleotides. Let’s consider the problem of finding an alignment between two strands of amino
acids.

Suppose we have two protiens (using single-letter amino acid designations)

• DENCTY
• DGACY

We may ask, “Did these protiens come from a common ancestor?”. Put another way, can we identify
long protien sequences P1 an P2, that have evolved from the same ancestry?

ancestor
/ \
/ \

/ \
P1 P2
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We can answer these questions by aligning the protiens. The alignment will tell us what the long
sequences are. We should expect our alignment to contain gaps, but we don’t necessarily know where
or how long these gaps will be.

For DENCTY and DGACY , one possible alignment is

D E N C T – Y
D – G A – C Y

Ideally, we’d like our alignment to have (1) perfect matches or (2) amino acids that line up.

Given amino acids a, b it is possible to establish the probability that a, b have evolved from a common
ancestor. Call that probability pa,b. These probabilities come from biological observations.

Let qa be the probability of amino acid a occurring independently. If alignment probabilites were
independent, the probability of a and b occurring together would be qa · qb. However, this is not the case
in reality.

1.3.4 Probability and Biology

Definition: Odds ratio. The odds ratio is
pa,b
qa · qb

Some properties:

• If A is the set of all amino acids∑
qa = 1

• on A×A∑
a

∑
b

qa · qb = 1

• on A×A∑
a∈A,b∈A

pa,b = 1

We will score according to the log of the odds ratio.

s(a, b) = log
pa,b
qa · qb

(1.3.1)

s(a, b) is the score for a particular match. The Blosum50 matrix is one such table of scores.

Suppose we have r1 . . . rn, s1 . . . sn as a probability distribution.
n∑
i=1

ri = 1

n∑
j=1

sj = 1

We will introduce a measure of dissimilarity between these distributions (the Kullach-Leibler dissimilar-
ity). This measure is denoted as KL(r, s) or H(r|s).

KL(r, s) =
∑

ri · log
si
ri

Claim: KL(r, s) ≤ 0 in most cases. If KL(r, s) = 0 then r = s.
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Claim:∑
qa · qb · log

pa,b
qa · qb

≤ 0

Consider: f(x) = ln(x). The tangent to this line will be y = x− 1. Therefore ln(x) ≤ (x− 1).

0 2 4 6 8 10

-2
0

1
2

ln(x) and tangent

x

y

y = ln(x)

~

y = x - 1

Figure 1.2: Graph of f(x) = ln(x) and tangent line

From this we see that

log( si

ri
) ≤ si

ri
− 1

ri · log si

ri
≤ si − ri multiply by ri∑

ri · log si

ri
≤

∑
si −

∑
ri = 0

Equivalently,∑
ri · log

ri
si
≥ 0 (1.3.2)

(Note: formula above is the same as KL but with the fraction flipped).

The average score of amino acid alignments is non-positive.
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1.4 Lecture Notes - 9/13/2006

1.4.1 Alignment Scores

High values of the alignment score s(a, b) suggest that a and b have a common ancestor. s(a, a) should
produce the highest possible score (perfect match).

Recall that we are dealing in alignments with gaps: there are three combinations to consider

A · · · N · · · −
C · · · − · · · Y

Above, the first pair shows two protiens. The second pair shows a protein in x aligned with a gap in y.
The third pair shows a gap in x aligned with a protein in y. It is not legal to align a gap with a gap.

The goal of obtaining the best possible global score will influence our decisions for gap alignments.

As before we assume two sequences, x = (x1 . . . xn) and y = (y1 . . . yn). Let i be the index in x and let
j be the index into y. Let u be a sequence with from x and let v be a sequence with gaps from y.

If (ui, vj) are pairs, then the total score will be
∑

(ui, vj). Note that ui, vj ∈ (A ∪ {−}).

When gaps are used, we will assign a gap penalty. The gap penalty will typically be a constant, and we
denote it by d.

For two sequences with gaps, the total gap penalty will be proportional to the number of gaps. If there
are k gaps, then the total penalty will be d · k.

1.4.2 Needleman-Wunsch Algorithm

The Needleman-Wunsch Algorithm attempts to match full sequences, allowing for gaps.

Given

x = x1 . . . xm

y = y1 . . . yn

we wish to align x1,i and y1,j (prefixes). Let F (i, j) be the score of a prefix of x, y – our goal will be to
maximize F (i, j) globally.

There are three possibilities to consider

F (i, j) = max

 F (i− i, j − i) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

• In the first case, we match without a gap. In the algorithm given later, we denote these cases
with ↖

• In the second case, we add a gap to y. We denote these cases with ←.
• In the third case, we add a gap to x. We denote these cases with ↑.

This assumes we are working with a matrix where (1) x goes across the columns, (2) y goes down the
rows, (3) M [i, j] is finding column i and row j.

Example: x = HEAGAWGHEE, y = PAWHEAE.

Below is a matrix based on these sequences where each cell contains the Blosum50 score of the matches.



14 CS 697 Class Notes

H E A G A W G H E E

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1
A -2 -1 5 0 5 -3 0 -2 -1 -1
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3
H 16 0 -2 -2 -2 -3 -2 10 0 0
E 0 6 -1 -3 -1 -3 -3 0 6 6
A -2 -1 5 0 5 -3 0 -2 -1 -1
E 0 6 -1 -3 -1 -3 -3 0 6 6

Note that the highest scores are those with an exact match.

The matching technique is similar to the one we used to find longest common subsequences of strings.
Here we are using scores instead of lengths and we are inserting gap penalties.

Note that we fill the [0, 0] cell with 0, and use that to derive gap penalties of increasing lengths across
the first row and down the first column.

For ties, our order of preference is ↖, ↑, and ←.

H E A G A W G H E E

0 ← -8 ← -16 ← -24 ← -32 ← -40 ← -48 ← -56 ← -64 ← -72 ← -80
P ↑ -8 ↖ -2 ↖ -9 ↖ -17 ← -25 ↖ -33 ← -41 ← -49 ← -57 ↖ -65 ↖ -73
A ↑ -16 ↖ -10 ↖ -3 ↖ -4 ← -12 ↖ -20 ← -28 ← -36 ← -44 ← -52 ← -60
W ↑ -24 ↑ -18 ↑ -11 ↖ -6 ↖ -7 ↖ -15 ↖ -5 ← -13 ← -21 ← -29 ← -37
H ↑ -32 ↖ -14 ↖ -18 ↖ -13 ↖ -8 ↖ -9 ↑ -13 ↖ -7 ↖ -3 ← -11 ← -19
E ↑ -40 ↑ -22 ↖ -8 ← -16 ↖ -16 ↖ -9 ↖ -12 ↑ -15 ↖ -7 ↖ 3 ↖ -5
A ↑ -48 ↖ -30 ↑ -16 ↖ -3 ← -11 ↖ -11 ↖ -12 ↖ -12 ↑ -15 ↑ -5 ↖ -2
E ↑ -56 ↑ -38 ↑ -24 ↑ -11 ↖ -6 ↖ -12 ↖ -14 ↖ -15 ↖ -12 ↖ -9 ↖ 1

The maximum score is 1, with a sequence

H E A G A W G H E − E
− − P − A W − H E A E

Note that this sequence has length 11, and that we started with sequences of lengths 10 and 7.

Finally, note how ↑ and ← “point” to the sequence where the gap should be inserted.

As noted above, this algorithm is intended to match full sequences while allowing for gaps (aka - a
“gapped alignment of a full sequence”). Other algorithms have different goals.

1.4.3 Waterman-Smith Algorithm

The Waterman-Smith algorithm attempts to find alignments with infixes. The algorithm seeks to com-
pute F (i, j) ≥ 0. Because we are only matching infixes (not entire sequences), we don’t care about
gaps.

The decomposition technique is similar to the Needleman-Wunsch algorithm, but there are four cases to
consider:

F (i, j) = max


0
F (i− i, j − i) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d
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1.4.4 Resources

• ClustalX – a program for doing gene manipulation and analysis. Download from
ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/.

• Biological databases http://www.ncbi.nlm.nih.gov/. This is the National Center for Biotechnol-
ogy Information, courtesty of the National Library of Medicine, courtesy of the National Institute
of Health.
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1.5 Lecture - 9/18/2006

Along with a few notes from the course text.

1.5.1 Smith-Waterman Algorithm

The Smith Waterman algorithm is designed to find the best alignment between subsequences of x and
y. The highest-scoring subsequence alignment is called the best local alignment.

The Smith-Waterman algorithm is based on the following recurrence relation:

F (i, j) = max


0
F (i− 1, j − 1) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

Where s(xi, yj) is a scoring function and d is the gap penalty.

Note that the effect of the first case in this formula is to discard any scores with negative values – our
matrix will contain only scores that are ≥ 0. Taking the option of zero corresponds to starting a new
subsequence alignment.

The matrix used to compute this recurrence relation will have

• zeros across the top row (as opposed to −id)
• zeros down the first column (as opposed to −jd)

When using traceback to reconstruct an alignment, we will start from the cell that contains the maximum
score. This cell can be anywhere in the matrix – it need not be the one in the lower right hand corner.

Traceback stops when we reach a cell with a value of zero. (We don’t include the zero-valued pair in the
alignment).

This algorithm asumes that the score of a random match is negative (it won’t work otherwise).

Example: HEAGAWGHEE and PAWHEAE.

For references, below are the Blosum50 alignment scores for these two protien sequences.

H E A G A W G H E E

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1
A -2 -1 5 0 5 -3 0 -2 -1 -1
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3
H 16 0 -2 -2 -2 -3 -2 10 0 0
E 0 6 -1 -3 -1 -3 -3 0 6 6
A -2 -1 5 0 5 -3 0 -2 -1 -1
E 0 6 -1 -3 -1 -3 -3 0 6 6

The matrix produced by running the Waterman-Smith algorithm on these sequences (with d = 8):

H E A G A W G H E E

0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 ↖ 5 0 ↖ 5 0 0 0 0 0
W 0 0 0 0 ↖ 2 0 ↖ 20 ← 12 ← 4 0 0
H 0 ↖ 10 ← 2 0 0 ↖ 0 ↑ 12 ↖ 18 ↖ 22 ← 14 ← 6
E 0 ↑ 2 ↖ 16 ← 8 ← 0 0 ↑ 4 ↑ 10 ↖ 18 ↖ 28 ↖ 20
A 0 0 ↑ 8 ↖ 21 ← 13 ↖ 5 0 ↖ 4 ↑ 10 ↑ 20 ↖ 27
E 0 0 ↖ 6 ↑ 13 ↖ 18 ↖ 12 ← 4 0 ↖ 4 ↖ 16 ↖ 26
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The numbers in bold show the best local alignment (we start from 28, because 28 is the largest value in
the matrix). Note that we do not include the pair (E,A) = 27 in the last column. Including that pair
would yield a longer subsequence, but the score would be less (27 vs. 28).

The alignment is

A W G H E
A W − H E

Again, we omit the zero-valued pair from the last cell in the traceback.

Note that another subsequence is

H E A
H E A

but this has a smaller score (21 vs. 28).

1.5.2 Repeated Matches – Multiple Local Alignments

Another variation on the problem asks us to find all high-scoring local alignments that do not overlap.

This approach assumes that we are only interested in local alignments whose score is above a threshold
T .

We define two recurrence relationships: one for the first row (F (i, 0)), and another for the rest of the
matrix.

F (0, 0) = 0

F (i, 0) = max
{
F (i− 1, 0)
F (i− 1, j)− T for 1 ≤ j ≤ m

For the rest of the matrix:

F (i, j) = max


F (i, 0)
F (i− 1, j − 1) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

Note carefully how this relation requires the matrix be computed. To compute F (i, 0), we need to know
F (i − 1, j) for all j in the previous column. In other words, we must fill down columns (as opposed to
filling across rows).

Finally, we add one more cell: F (n+ 1, 0) computed as F (i, 0) are computed. This final cell will tell us
where to begin traceback.

The final alignment will be partitioned into two types of regions: (1) regions containing alignments with
gaps and (2) unmatched regions.

• F (i, j), j ≥ 1 holds the best score for a local match of x1,i.
• F (i, 0) contains the best scores of matches so far (less the threshold)
• F (i, 0) cells will have pointers to a cell in the previous column, if the F (i, 0) value was derived

from a previous-column cell. (j ≥ 1).
• When traceback hits a cell in row zero, this corresponds to a break between local subsequences.

1.5.3 What is an Alignment

The following is a fairly precise definition of what an alignment is.
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An alignment is a set of pairs p1 . . . pl such that

pi =
(
ui
vi

)
Where

ui ∈ x1 . . . xn ∪ {−}
vi ∈ y1 . . . ym ∪ {−}

To convert from alignments with gaps to the orignal sequences, we define a morphism

h(t) =
{
t if t ∈ ({x1 . . . xn} ∪ {y1 . . . yn})
λ if t = −

h(t) maps alignments with gaps back to the original symbols.

1.5.4 Notes on Homework #1

Problem 1a contains a small flaw. Suppose we have an alignment that includes

x1 −
− y1

The w produced by these pairs would be w = x1 − − y1 = x1y1 We cannot differentiate between the
original alignment (above) and

x1

y1

Therefore, we will modify problem #1 to prohibit alignments such that w would contain two consecutive
gap symbols.

For part b, this implies that the number of possible alignments is at least
(
m+n
m

)
. Because of the ambiguity

noted above, the number of possible alignments could actually be greater.
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1.6 Lecture – 9/20/2006 (part 1)

1.6.1 Multiple Local Alignments (cont’d)

Picking up from the last lecture, we are looking for a way to find multiple local alignments between a
pair of sequences. More precisely, given

x = x1 . . . xn

y = y1 . . . ym

we are seeking to align fragments of x with fragments of y, and we are looking for fragments whose
score exceeds a specified threshold T . The algorithm uses dynamic programming. All cells in the M [i, j]
matrix will have non-negative values.

Our recurrence relations are

F (0, 0) = 0

F (i, 0) = max

{
F (i, 0)
F (i− 1, j)− T for 1 ≤ j ≤ m

F (i, j) = max


F (i, 0)
F (i− 1, j − 1) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

A few things to note about these relations

• F (i, 0) depends on all cells in column i − 1. As a result, we have to fill the array by going down
each column. We can’t work across rows.

• Once we find a value that exceeds T , that value will become the basis for the next F (i, 0) (using
max(F (i− 1, j)− T )). F (i, 0) cells computed in this way will have pointers to the F (i− 1, j) cell
from which they were derived.

Below is an example of this algorithm. For convenience, we repeat the set relevant Blosum50 scores.

H E A G A W G H E E

P -2 -1 -1 -2 -1 -4 -2 -2 -1 -1
A -2 -1 5 0 5 -3 0 -2 -1 -1
W -3 -3 -3 -3 -3 15 -3 -3 -3 -3
H 16 0 -2 -2 -2 -3 -2 10 0 0
E 0 6 -1 -3 -1 -3 -3 0 6 6
A -2 -1 5 0 5 -3 0 -2 -1 -1
E 0 6 -1 -3 -1 -3 -3 0 6 6
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This matrix is computed with T = 20 and d = 8.

H E A G A W G H E E

0 0 0 0 1 1 1 1 1 3 9 9
P 0 0 0 0 1 1 1 1 1 3 9
A 0 0 0 ↖ 5 1 ↖ 6 1 1 1 3 9
W 0 0 0 0 1 1 ↖ 21 ← 13 ← 5 3 9
H 0 ↖ 10 ← 2 0 1 1 ↑ 13 ↖ 19 ↖ 23 ← 15 9
E 0 ↑ 2 ↖ 16 ← 8 1 1 ↑ 5 ↑ 11 ↖ 19 ↖ 29 ← 21
A 0 0 ↑ 8 ↖ 21 ← 13 ↖ 6 1 ↖ 5 ↑ 11 ↑ 21 ↖ 28
E 0 0 ↖ 6 ↑ 13 ↖ 18 ↖ 12 ← 4 1 ↖ 5 ↖ 17 ↖ 27

�
�
�
�
�
�
��

�
�
�
�
�
�
���

The traceback produces the alignment

H E A G A W G H E E
H E A . A W – H E .

The “.” characters denote breaks in the partial matches.



Part 2

Hidden Markov Models

2.1 Lecture - 9/20/2006 (part 2)

2.1.1 Hidden Markov Models

We’ll use the terms “Markov Chain”, “Markov Process”, and “Markov Model” interchangeably. See
course web site for introductory paper on Markov Models.

In order to understand markov models, we’ll need to background in probability. Recall that independent
probabilities are calculated as

P (x = a ∧ Y = b) = P (x = a) · P (y = b)

Suppose that we have two functions f , g

f, g : R→ R

Let x, y be two independant variables where x, y ∈ R. How can we prove that f(x) and g(y) are also
independant? More precisely, we want to prove that

P (f(x) = c ∧ g(y) = d) = P (f(x) = c) · P (g(y) = d)

Because f , g are functions we’d like to think that because each x and y map to a single c and d the
independence is obvious. However, it’s not quite that simple. Given f(x) = c, c could be the image
under several values of x. Similarly, for g(y) = d, d could be the image under several values of y.

Let ap represent some possible value of c and let bq represent some possible value for d. We can think
of the probabilities as

P (f(x) = c ∧ g(y) = d)

P (
⋃
p

(x = ap) ∧
⋃
q

(y = bq))

The second line treats the ranges of the functions as sets.

Next, we take the second line and pull the unions to the front.

P (
⋃
p

⋃
q

(x = ap ∧ y = bq))

And replace the unions by sums

ΣpΣqP (x = ap ∧ y = bq)

21
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Now we’re clearly dealing with independent events, so

ΣpΣq (P (x = ap) · P (y = bq))
ΣpP (x = ap) · ΣqP (y = bq)
∴P (f(x) = c) · P (g(y) = d)

Thus, f(x) = c and g(y) = d can be considered as independent events.

2.1.2 Stochastic Processes

At its most basic form, a stochastic process is simple a sequence of random variables – x0, xi, . . . , xn

Consider the following: we have a closed vessel with two halves separated by a porous partition. There
are a total of N molecules in the vessel, xt in side A and N − xt in side B. At regular time intervals
we will randomly move a molecule from one side to the other. In this problem, the state of our vessel
changes at discrete moments in time.

Let xt be the number of molecules in side A at time t. For two successive values of t, the difference in
xt will be +1 or −1. The state at t+ 1 is determined by

xt+1 = xt + Zt+1

each Z value will be selected from the domain {−1, 1}. If xt−1 = i, then

Zn =
(

1 −1
N−i
N

i
N

)
[srevilak – I’m not quite sure what that notation for Zn means]

Suppose we have the sequence

xn = in, xn−1 = in−1, . . . , x0 = i0

what is the probability that the next discrete state will be

xn+1 = in+1

Recall the definition of conditional probability

P (A|B) =
P (A ∧B)
P (B)

The events A and B must both be satisifed, and B must occur. Note that for P (A|B) to be useful, B
must not be impossible.

Returning to our sequence, we are interested in the probability of

P (xn+1 = in+1|xn = in, xn−1 = in−1, . . . x0 = i0)

If you work out the iterations down to x0, many of the terms cancel out leaving

P (xn+1 = in+1|xn = in)

This is called the Markov Equation. The key point to note is that the (n + 1)th step depends only on
the nth step. The events that happened prior to n don’t matter.
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2.1.3 White Noise Driven Markov Processes

Suppose we have a sequence Z1 . . . Zn, where each Zi is independent and identically distributed (e.g. -
like a random number generator?) Let us also have an x0 whose value is independent of any Zi. Let

Zi ∈ U
x0 ∈ S

and let f be a function

f : S × U → S

Let us have a sequence of xi values, determined as follow:

x0

x1 = f(x0, Z1)
x2 = f(x1, Z2)
. . .

xn+1 = f(xn, Zn+1)

The Zi are called white noise. xn+1 is based on xn, plus white noise from a Z value.

The values x0, x1, . . . , xn satisify the markov equality, because x0 is independent of any Z value.

Let x0 = i0, x1 = i1, . . .xn = in. We have

P (f(in, Zn+1) = in+1) = P (xn+1 = in+1|xn = in)

2.1.4 Markov Models and Genetics

Recall that a DNA sequence is a word written with the symbols A, C, G, T .

C has a special role: together C, T , U form the pyrimidines.

C can mutate into a T through a process called methylation. C is vulnerable to this mutation when
paired with a G. The nucleotide pair C–G is frequently written CpG (to distinguish it from the C-G
pair across base strands. This leads to CG pairings to occur more often than one would expect given
their base probabilities of occurrence.

For biologically important reasons, the methylation process is supressed in certain parts of the DNA
sequence – typically the start of a gene region. In these regions we see more CpG dinucleotide pairs
than in other parts of the gene. Such regions are called CpG islands.

How can we recognize CpG islands, vs normal areas of the sequence? This problem can be solved using
Markov processes.

We assume that in a DNA sequence, the nucleotide in position k is determined by the nucleotide in
position k − 1. This is precisely the set of conditions where Markov models are applicable.
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2.2 Lecture - 9/23/2006

We’ll return the the discussion of CpG islands. CpG islands are portions of the DNA sequence where
cytosine is not mutated (methylated).

2.2.1 Markov Property

The essential property of Markov Models is that their memory goes back only 1 step. Stated formally

P (xn+1 = qq+1|xn = qn)

Note that P (xn+1 = qq+1|xn = qn) is a function that depends entirely on n. If

P (xn+1 = q|xn = q′)

then the transiation to q depends only on q′, and we say that the Markov Model is homogenous.

Let P (x0 = q) be the probability that the initial state of the model is q. Also assume that the set of
model states is finite. The means that x0 is a random variable which can take on a finite number of
values. We can represent the initial distribution of the starting states as a vector

x0 =


π1

π2

...
πn


Because each initial state πi is independant and mutually exclusive, the sum of the probabilities of the
initial states will be one:

n∑
i=1

πi = 1

Now consider x1. Let’s say that the set of possible states for x1

x1 = {S1, S2, . . . , Sn}

The probability function P (xt+1 = Sj |xt = Si) is a function of i and j. If we are in state Si at time t,
then at time (t+ 1) we will from state Si to state Sj , where Sj ∈ {S1 . . . Sn}.

Let aij denote the probability of moving from Si to Sj . For a given Si, the sum of the probabilities of
the available Sj must sum to one:

n∑
j=1

aij = 1

This will hold for all states Si.

The transition probabilities for a Markov Model can be specified by an (n× n) matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


The sum of each row must be one. Also, because each aij is a probability value, that value must be
non-negative. We call a matrix that has these properties a Stochastic matrix.

Suppose that v ∈ Rn. v is a vector of n real numbers. If we multiply A · v, then we have

A · v = λ · v



CS 697 Class Notes 25

• λ is an eigenvalue
• v is an eigenvector(

a11 a12

a21 a22

)
×
(
x
y

)
= λ

(
x
y

)
This gives us equations

a11x+ a12y = λx

a21x+ a22y = λy

(a11 − λ)x+ a12y = 0
a21x+ (a22 − λ)y = 0

And the determinant∣∣∣∣a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0

(the vertical bars denote determinant).

The characteristic equations of this matrix are

(a11 − λ)(a22 − λ)− a12a21 = 0

λ2 − λ(a11 + a12) + a11a22 − a12a21 = 0

There will be two solutions, λ1 and λ2. These are the eigenvalues.

For a stochastic matrix

a11 + a12 = 1
a21 + a22 = 1∣∣∣∣a11 − λ 1− λ
a21 − λ 1− λ

∣∣∣∣ = 0

(srevilak – I’m not sure I got that last determinant right).

A summary of properties of stochastic matricies

• They are square
• all values are non-negative
• the sum of the values in each row is one
• a stochastic matrix raised to any power is still a stochastic matrix.

Assume we have an initial distribution of starting states

v =


π1

π2

...
πn


The probability P (x0 = i) comes from the initial data in the Markov model. For the next state,

P (x1 = j) =
n∑
i=1

P (x1 = j|x0 = i) · P (x0 = i)

=
n∑
i=1

πiaij

= (πt ·A)j
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(above, the superscript t means “transposed”)

We can also view this as a transition vector:

πt1 = πt0 ·A
πtn+1 = πtn ·A
πtn+1 = πtn ·A · πtn−1 ·A
πtn = πt0 ·An

2.2.2 Using Markov Models for Detecting CpG Islands

The premise for using Hidden Markov Models to detect CpG islands in a DNA sequence is that nu-
cleotides are placed in a random (but disciplined) fashion. We assume that nucleotide n depends only
on nucleotide (n− 1). This may be a dubious assumption, but it is an accepted assumption.

We can regard a nucleotide as a random variable which comes from the alphabet {A,C,G, T}.

P (xn+1 = Sj |xn = Si) = aij

we can view this as a graph, where nodes are states, edges are transitions, and each edge is labeled with
its associated probability.

i

aij

S jS

Figure 2.1: Transition from Si to Si with probability aij

In this case, where each state produces a single output, we can represent the model as a strongly
connected graph: All possible edges are present in Figure 2.2 – any nucleotide is allowed to follow any

T

A C

G

Figure 2.2: Markov Model for ACGT

other nucleotide.

The transition probabilities for Figure 2.2 are be determined empirically. People have looked at many
long strands of DNA and counted the frequency of dinucleotides to get aCG, aGC , aAG, etc.

• Let Aisland be a 4× 4 matrix for showing probability in CpG islands.
• Let Anon−island be another 4× 4 matrix for showing probability outside of CPG islands.

A model to detect CPG islands would make use of both matrix (different aij values inside an outside of
CpG islands). Additionally, there will be transitions from each 4× 4 matrix to the other.
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When analyzing data, we would like a way to tell which of the matricies the data most closely resembles
– if the data is closer to Aisland we are probably in a CpG island. If the data is closer to Anon−island
the we are probably outside of a CpG island.

2.2.3 Hidden Markov Models

Hidden Markov Models (HMMs) are similar to Markov Models (aka Markov Chains). In both cases,
there is a set of states and a set of probabilities giving the probability of transitions between pairs of
states.

With hidden Markov Models:

• Each state q is capable of producing some set of output symbols. Symbols are produced by q in
accordance with a probability distribution.

• Outputs (symbols produced by) a hidden markov model are the observable part of the process.

• State transitions are not observable. The state transitions are the “hidden” part.

• A useful question to ask – given a set of output, how can we recover the state transitions that
(most probably) generated that output?

Logistics

• No class next Monday (9/25) or Wednesday (9/27).
• The next class will be 10/2/2006.
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2.3 Hidden Markov Models - Durbin

Hidden Markov models are characterized by a series of states.

For each state transition (eg - for each path between a connected pair of states) there is a probability
associated with the transition. We denote the probability of transitioning from state k to state l as

akl = P (πi = l|πi−i = k)

Above πi is the ith element of the path π. i prepresents discreet time units.

Thus, akl gives us the probability of being at state l at time i under the premise that we were in state
k at time (i− 1).

Each state is also associated with a set of emission probabilities. A symbol is emitted each time we reach
a state. Emission properties are denoted

ek(b) = P (xi = b|πi = k)

Here xi is the ith symbol in the output string x. ek(b) is the probability that the ith symbol of x is b,
under the premise that the ith member of the state path π is k. (In other words, we were in state k at
time i).

Finally, there is also a set of probabilities that are used to choose the initial state. We denote these as
a0k. If the model has a unique starting state, the initial probablity of that state will be one; the initial
probability of all other states will be zero.
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2.4 More Probability Notes

Basic probability formula

P (A) =
# of successful outcomes

number of possible outcomes

Probability of Independent Events

P (AB) = P (A) · P (B)

Conditional Probability

P (A|B) =
P (AB)
P (B)

This is the probability of A occurring under the condition B.

Independent Events: outcomes are not affected by other outcomes

Dependent Events: outcomes are affected by other outcomes.

Multiplication Rule

To compute joint probability (the probability of two ore more independent events occuring), multiply
the individual probabilities of each event.

Addition Rule

Given mutually exclusive events, to find the probability of at least one occurring, add probabilities.

Probability of Non-Mutually Exclusive Events

P (A+B) = P (A) + P (B)− P (AB)

Example: we draw a card from a standard deck. What is the probability of drawing an ace or a spade?

P (ace) =
4
52

P (spade) =
13
52

P (ace of spades) =
1
52

P (ace + spade) =
4
52

+
13
52
− 1

52

=
16
52

=
4
13
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2.5 Notes on Markov Models

These are notes taken from the first half of the IEEE paper A Tutorial on Hidden Markov
Models and Selection Applications in Speech Recognition, Lawrence R. Rabiner, Proceedings
of the IEEE, Vol 77 No. 2, Feb. 1989.

A Markov Chain consists of a series of states. At regularly spaced discrete intervals of time the system
undergoes a state change (changing from state st to st+1).

A probability is associated with every path between a pair of states, aij . This denotes the probability
of moving from state si to state sj . The probability of transitioning to a state si depends only upon the
state si−1. (Stochastic process).

2.5.1 HMM Characteristics

Hidden Markov Models are defined by five characteristics.

1. The set of states, S = (s1, s2, . . . , sn).

2. The set of observable outputs V = (v1, v2, . . . , vm).

3. The transition probability distribution aij . This distribution gives the probability of moving from
state si to state sj .

4. The observation symbol probability distribution, bj(k). This is the probability that symbol k is
produced by state sj . Each state can have a different symbol probability distribution.

5. The initial state distribution probability, π. This is used to determine the starting state of the
process. If the model has a single starting state, then we will have πi = 1 for some si and πj = 0
for all sj 6= si.

When the model runs, the output is a series of observations, o1, o2 . . . oT , where each oi ∈ V . The series
of states that produced this output is “hidden”.

How an HMM Runs

A hidden markov model runs according to the following procedure.

1. Choose the initial state q1 = si, according to the initial state distribution π. (Note si denotes a
single state in the model. q1 denotes the first state in the path of state transitions).

2. Set t = 1. t is the time interval counter.

3. Choose ot, according to the observable symbol distribution property for the current state si. (i.e.
- ot = bi(k))

4. Transition to a new state qt+1 = sj , according to the state transition probability aij .

5. Set t = t + 1. If t < T , repeat from step (3). Otherwise, halt. Here, T represents the number of
discrete time intervals for which the model is to be run.

We can denote models as a 5 tuple

H = (S,O,A,B, π)

Note: There is a small difference between the paper’s notation, and the notation we’ve used
in class. We use O for the set of output symbols (instead of V ), and we denote the model
with H instead of λ.
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2.5.2 Three Basic Problems For Hidden Markov Models

1. Given a sequence of observations O = o1, o2, . . . oT , how do we compute the probability that this
sequence of outputs was produced by our model. This problem can also be viewed as the question
“how well does our model match a particular observed sequence?”.

2. Given a sequence of observations O = o1 . . . oT and model H, what sequence of states ‘best explains’
the set of observations. There is no single correct answer to this problem – there are potentially
many state sequences capable of producing a given set of observations.

Often, we’ll ask this question with some notion of an ‘optimal’ answer – that criteria will provide
some basis for determining the set of states.

3. How do we adjust model parameters to maximize the probability of seeing a specific output se-
quence: P (O|H).

This problem is analogous to training the model, or creating the best model of a real set of
observations.

2.5.3 HMM Designs

So far, we have looked at fully connected hidden markov models. These are called ergodic. Ergodic models
allow every state to be reached from every other state. In the set of matrix of transition probabilities,
every aij element will be positive.

A left-right, also known as a bakis model allows you to move from si to sj only if j ≥ i. You can only
move forwards, or stay in the same place. Backwards movement is not possible. We have aij = 0 if j < i

Left right models typically have a unique starting state.

Left-right models can impose additional constraints. For example, transitions from si to sj may be
limited to i ≤ j ≤ j + ∆. Delta represents a limit on forward motion in a single step.

These are just two examples. Many other variations are possible.

2.5.4 Implementation issues for HMMs

For large models (many states), underflow can be a problem – we keep multiplying small probabilities
together. A common way of handling this situation is to scale the probabilities, and carry along a
separate exponent.

Choosing the initial model parameters can also be a difficult task. In some cases, one will assign a set
of uniform probability distributions. We then solve problems 1 and 3 iteratively in order to train the
model until it becomes acceptably accurate.
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2.6 Lecture Notes - 10/2/2006

2.6.1 HMM Example

Suppose we have two die, one fair and one loaded. Let D1 be the fair die and D2 be the loaded one. Let
the output probabilities of these two die be

D1 =
{

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

}
D2 =

{
1 2 3 4 5 6

0.05 0.05 0.05 0.05 0.05 0.75

}

We watch someone roll the dice. This person switches back and fourth between D1 and D2 – we can’t
tell which is being used, we only see the numbers that come up. Any number could have been produced
by a fair or a loaded die; we don’t know which. We assume that the die is chosen at random with some
given probability.

In principle, we have two sources of output, D1 and D2. An HMM for this process will have two states.
Each state has a different set of emission probabilities, and there is some set of probabilities associated
with going back and fourth between the two die:

1s

a12

a21

s 2 a22a11

b1={1/6,1/6,1/6,1/6,1/6,1/6}

b2={0.05, 0.05, 0.05, 0.05, 0.05, 0.75}

Figure 2.3: Hidden Markov Model for Two Die System

Recall that this model must have

a11 + a12 = 1
a21 + a22 = 1

The emission probability, bi(oi) is the probability that the system produces the output oi while in the
state si.

We can directly observe the outputs of the model. The state transitions are hidden from us. In general,
there will be many state paths that can produce a given sequence of output symbols.

2.6.2 Forward Probability

Forward probability calculations can provide an exact answer to problem 1 (page 31): what is the
probability that a HMM generated a given output sequence.

We denote the forward probability as

αt(i) = P (o1 . . . ot, qt = si | H)

αt(i) represents the probability of seeing the observation sequence o1 . . . ot (until time t, not necessarily
the whole sequence), and being in state si at time t, using the model H.

αt(i) can be solved inductively.
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Before we get into the details of αt(i) let’s look at the brute force approach for solving the problem of
determining the probability with which a given sequence was generated.

The probability of a state path is

P (S|H) = πi1 · ai1i2 · ai2i3 . . . ait−1it

The probability of a series of observations, given a particular state path is

P (O|H) =
∑

s=s1...st

P (S|H) · P (O|S,H)

P (O|S,H) = bi1(o1) · bi2(o2) · . . . bit(ot)

(note – in the first formula above, P (S|H) is not a conditional probability)

Putting these together, we have

P (O|S,H) = (πi1bi1(o1)) · (ai1i2bi2(o2)) · ai2i3 · · · · · bit(ot−1) · (ait−1itbit(ot))

To do the computation with this approach, we’d consider every possible state transition and every
possible output symbol in each state. This is very expensive. There are nT different sequences of states,
each of which requires 2t computations – a total of 2t · nt.

Given n = 10 and t = 100, there would be 20 · 10100 computations. This is not feasable.

The probability of obtaining the prefix o1 . . . ok and winding up in state si is:

αk(i) = P ( (o1 . . . ok)qk = si|H)

qk denotes the state at moment k.
n∑
i=0

αt(i) = P (o1 . . . ot|H)

The inductive computation for αk(i) is

• initialization:

α1(i) = πi · bi(o1) 1 ≤ i ≤ n

• Inductive step

αk+1(j) = P ((o1, o2, . . . , ok, ok+1), qk+1 = sj |H)

=

[∑
si∈S

P ((o1, . . . ok), qk = si) · aij

]
· bj(ok+1)

=

[
n∑
i=1

αk(i) · aij

]
· bj(ok+1)

αk+1(j) =

[∑
si∈S

αk(i)aij

]
· bj(ok+1)

In summary,

αk(i) = P ((o1 . . . ok, qk = si|H)
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2.6.3 Backward Probability

Analogous to forward probability, there is backward probability, denoted βk(i).

βk(i) = P ((ok+1 . . . ot)|qk = si, H)

Where αk(i) worked on prefixes of sequences, βk(i) works on suffixes of sequences. βk(i) is computed
from ot . . . o1.

βt(i) = 1 for every i
βk+1(j) = P ((ok+2 . . . ot|qk+1 = sj)

βk(i) =
∑
j

βk+1(j) aij bj(ok+1)

Note: the Rabiner paper gives this recurrence for β

βn(i) = 1

βt(i) =
n∑
j=1

aijbj(ot+1)βt+1(j)

The essence of the inductive part of the equation is as follows: in order to have been in state si at time
t and to account for observations ot+1 . . . on, we have to consider all possible states sj at time t + 1,
accounting for transitions from states si to sj (the aij term) and then accounting for the remaining
partial observation sequence from state sj (the βt+1(j) term).

2.6.4 Finding Optimal State Sequences

To find the set of states that most likely produced a set of observations, we’ll look at

P (S|O,H)

Read this as the probability that the state sequence was S, given the observation sequence O and the
hidden markov model H.

Let

γk(i) = P (qk = si | O,H)

γk(i) denotes the probability that si was the kth state used, given the observation sequence O and model
H.

Our goal is to find the state si with the highest probability of producing the output state ok.

P (qk = si, O|H)
P (O|H)

Let us denote the observation sequence as

O = o1, o2, . . . , ok, ok+1, . . . , ot

The probability that si generates ok is represented by αk(i). The probability that ok+1 . . . ot is the suffix
is given by βk(i).

Think of this as cutting the observation into two halves. αk(i) gives the probability of the prefix, and
βk(i) gives the probability of the suffix.
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αk(i) and βk(i) can be used to derive γk(i):

γk(i) =
αk(i) · βk(i)
P (O|H)

=
αk(i) · βk(i)∑n
i=1 αk(i) · βk(i)

(2.6.1)

γk(i) is a probability measure, so that
n∑
i=1

γt(i) = 1

If all aij > 0, then we can use (2.6.1). However, if some aij = 0, we have a problem – this algorithm could
deduce a set of states that are not possible to traverse. (It always looks for locally optimal emissions
values – it could pick a succession of states that is not traversible because some aij = 0 along the path).

δk(i) = max
q1...qk−1

P (q1 . . . qk−1, qk = si, o1 . . . ok|H)

δk(i) contemplates different paths that allow us to reach si while generating the output sequence o1 . . . ok.

δt(i) is the largest probability of the sequences that allow us to reach qi.

δt(i) gives us the probability of a state sequence, but not the state sequence itself. To recover the state
sequence, we’ll use the Viterbi algorithm.
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2.7 Lecture - 10/4/2006

2.7.1 Review: Forward/Backward Probabilities

The forward probability αk(i) is

αk(i) = P (O, qk = sj |H)

Our convention for notation:

• i is an index that refers to a state
• k is an index that refers to a time interval

Backward probability is

βk(i) = P ((ok+1 . . . ot)|qk = si, H)

If k = t the βk(i) represents the probability of the null suffix (always 1). k counts down from t . . . 1. t
is the number of time intervals (and also the length of the sequence of observations).

The backward probability recurrence:

βt(i) = 1 for every i
βk(i) = P ((ok+1 . . . ot)|qk = si)

= P (ok+1, (ok+2 . . . ot)|qk = si)

=
∑
j

βk+1(j)aijbk(ok + 1)

In the last line above, note that k counts down from k to 1.

2.7.2 Viterbi Algorithm

Given a set of outputs, our goal is to recover the sequence of states that most likely produced the set of
outputs.

δk(i) = max
q1...qk−1

P (q1 . . . qk−1, qk = si, o1 . . . ok|H)

Again k represents time and i represents a state number.

δ is the probability of a conjunction of events.

δ eventually gives us the probability that a given sequence was produced.

Recurrence for Viterbi Algorithm

Initialization:

δ1(i) = P (q1 = si, o1|H)
= πibi(o1) 1 ≤ i ≤ n

Recurrence:

δk+1(j) = max
q1...qk

P ((q1 . . . qk−1qk), qk+1 = sj , (o1 . . . okok+1)|H)

δk+1(j) =
[
max
i
δk(i) · aij

]
· bj(ok+1)
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For a model with a moderate number of states (say 10 or 15), this recurrence will probably produce
arithmetic underflow. But, we can adapt the computation using logarithms (assume log2).

log δk+1(j) = max
i

(δk(j) + log aij) + log bj(ok+1)

δ gives us a probability. To get the actual sequence, we need an auxillary data structure I[j, k]. j denotes
a state, and k denotes a position. I[j, k] tells us what state sj most likely produced the symbol ok.

I[j, k] = argmax1≤i≤n δk−1(i) · aij
argmax means “argument that maximizes” the expression.

The termination of the sequence is

p∗ = max
1≤i≤n

δt(i)

Using the I array, we can trace back through the state paths.

Viterbi Example

Consider a simple HMM – we have two coins. One is fair, the other is crooked. Our HMM will have two
states, and a two-symbol observation alphabet.

O = {H,T} heads or tails
S = {G,K} good or crooked

Of course we also need distributions:

π = πG = πK = 1/2
bG(H) = bG(T ) = 1/2
bK(H) = 1/4
bK(T ) = 3/4

A =
(

0.5 0.5
0.75 0.25

)
logA =

(
−1 −1

log 3− 2 −2

)

Under this model, what series of states are most likely to have produced the sequence HHHTHT .

When working this out in class, we drew a graph like

H−H−H− T−H− T

G G G G G G

K K K K K K

The top row are observations, the second row is the G state and the third row is the K state. We drew
lines to represent the most probable state transitions, and filled in δk(i) below the state.

Working it out here, I’m just going to use tables. Although we’d want to use logs on a computer, I’m
going to work it out with rational numbers.
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k ok max δk−1(i)aij δk(G) max δk−1(i)aij δk(K)
1 H 1/2 1/4 1/2 1/8
2 H 1/8 1/16 1/8 1/32
3 H 1/32 1/64 1/32 1/128
4 T 1/128 1/256 1/128 3/512
5 H 9/2048 9/4096 1/512 1/2048
6 T 9/8192 9/16384 9/8192 27/32768

The I[j, k] matrix:

ok G K
H – –
H G G
H G G
T G G
H K G
T G G

2.7.3 Improving the Quality of Markov Models

There is an iterative process for improving the quality of a Markov model (i.e. - training).

ξk(i, j) = P (qk = si, qk+1 = sj |O,H)

ξk(i, j) is similar to aij , but it is conditioned by output.

ξk(i, j) = P (qk = si, sk+1 = sj , (o1 . . . okok+1 . . . ot)|H)

=
αk(i) · aij · bj(ok+1) · βk+1(j)

P (O|H)

=
αk(i) · aij · bj(ok+1) · βk+1(j)∑n

i=1

∑n
j=1 αk(i) · aij · bj(ok+1) · βk+1(j)

The training process can be conducted using the Baum-Welsch Algorithm.
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2.8 Lecture – 10/11/2006

Hidden Markov Models are described by a 5-tuple: H = (S,O,A, b, π). Let N be the number of states
and let M be the number of alphabet symbols.

This entire system can be described by a series of numbers pijl

pijl = P (qk = si, qk+1 = sj , output at time k + 1 = ol)

Recall that aij is

aij = P (qt+1 = si|qt = sj)

=
P (qt+1 = si, qt = sj)

P (qt = si)

If we sum pijl on l, we get something similar (but not exactly the same as) aij

a
∑
l

pijl = P (qk = si, qk+1 = sj)

= aij · P (qt = si)
= aij · P (q1 = si) (check this with someone)

The combination of pijl values determines the entire markov chain, assuming you have an initial distri-
bution.

If we sum pijl on i we have∑
i

pijl = P (qk+1 = sj , output at time k + 1 = ol)

= bj(ol)

A chain is a combination of N2 ∗M parameters, where N is the number of states and M is the number
of alphabet symbols.

Recall that

ξk(i, j) = P (qk = si, qk+1 = sj |O,H)

where O is a vector: O = o1o2 . . . ot.

Finally, recall that

γk(i) =
N∑
j=1

ξk(i, j)

= P (qk = si|O,H)
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Let’s examine ξ a little more.

ξk(i, j) = P (qk = si, qk+1 = sj |o1 . . . okok+1 . . . ot, H)

In words,

ξk(i, j) =P (qk = si, oi . . . ok|H) (2.8.1)
∧ P (we switch from si to sj at moment k) (2.8.2)
∧ P (we have output ok+1 at moment k + 1 is sj) (2.8.3)
∧ P (ok+2 . . . ot assuming that at moment k + 1 we have output ok+1) (2.8.4)

Line (2.8.1) is equivalent to αk(i).

Line (2.8.2) is equivalent to qij .

Line (2.8.3) is equivalent to bk(ok+1).

Line (2.8.4) is equivalent to βk+1(sj).

Therefore

ξk(i, j) =
αk(i) · aij · bj(ok+1) · βk+1(j)

P (O|H)

=
αk(i) · aij · bj(ok+1) · βk+1(j)∑N

i

∑N
j (αk(i) · aij · bj(ok+1) · βk+1(j))

The initial distribution π(i) = γ1(i). We can estimate π(i) by using probabilities from γ1(i).

2.8.1 The Baum-Welch Algorithm

Suppose we wanted to estimate aij :

t−1∑
k=1

ξk(i, j)

∑t−1
k=1 γk(i) will be proportional to the number of times we pass from si to sj .

Let us denote the estimate of aij by a∗ij (aij ≈ a∗ij).

a∗ij =
∑t−1
k=1 ξk(i, j)∑t−1
k=1 γk(i)

We can also estimate bj(ol). Let’s denote the estimate as b∗j (ol).

b∗j (ol) =
∑t
k=1 γk(i) when output is ol∑t

k=1 γk(i)

The numerator is the number of γk(i) at all times when the output is ol.

This is the essence behind the Baum-Welch estimation algorithm. This algorithm is used for iteratively
improving probability estimates. The general procedure is as follows:

1. We start with an arbitrary A and bi. (The bi are vectors, one for each state)

2. we compute a∗ij and b∗j (ol)

3. we replace aij with a∗ij , and replace bj(ol) with b∗j (ol)

4. If more accuracy is desired, repeat the steps above.
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This process makes local optimizations – we improve the model for a specific set of output. Each iteration
will improve the model for a specific set of output.∑

j

pijl = 1 for a fixed set of output

2.8.2 Comparing Sets of Discrete Random Variables

Suppose we have two sets of discrete random variables X and Y . Let a be an element of X and let b be
an element of Y .

Let’s also suppose that we have two models for these variables, P and P ′.

Claim 2.8.2.1: If∑
a

P (X = a|Y = b) · log
P ′(X = a, Y = b)
P (X = a, Y = b)

> 0 for every a

then

P ′(Y = b) > P (Y = b) for every b

This is called the EM Theorem or the Expectation Maximization Theorem.

Let’s say we fix the b value – P (X = a|Y = b) for a fixed b∑
a

P (X = a|Y = a fixed b) = 1

In Section 1.3.4 (page 12) we showed that∑
(pi · log

qi
pi

) > 0

for probability distributions pi and qi. Here, we will show that

logP ′(Y = b)− logP (Y = b) > 0

∑
a

P (X = a|Y = b) · log
P ′(X = a, Y = b)
P (X = a, Y = b)

(2.8.5)

=
∑
a

P (X = a|Y = b) · logP ′(Y = b)−
∑
a

P (X = a|Y = b) · logP (Y = b) (2.8.6)

=
∑
a

P (X = a|Y = b) · log
P ′(X = a, Y = b)
P ′(X = a|Y = b)

−
∑
a

P (X = a|Y = b) · log
P (X = a, Y = b)
P (X = a|Y = b)

(2.8.7)

=
∑
a

P (X = a|Y = b) · log
P ′(X = a, Y = b)
P ′(X = a|Y = b)

+
∑
a

P (X = a|Y = b) · log
P (X = a|Y = b)
P (X = a, Y = b)

(2.8.8)

=
∑
a

P (X = a|Y = b) · log
(
P ′(X = a, Y = b)
P (X = a, Y = b)

· P (X = a|Y = b)
P ′(X = a|Y = b)

)
(2.8.9)

=
∑
a

P (X = a|Y = b) · log
P ′(X = a, Y = b)
P (X = a, Y = b)

+
∑
a

P (X = a|Y = b) · log
P (X = a|Y = b)
P ′(X = a|Y = b)

(2.8.10)
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In Equation (2.8.10) note that each of the expressions being added will be > 0

∴ P ′(Y = b) > P (Y = b)

Given the derivations above, we can say that∑
a

P (X = a|Y = b) · logP ′(X = a, Y = b) >
∑
a

P (X = a|Y = b) · logP (X = a, Y = b) (2.8.11)

This is sufficient to ensure that P ′ is a better model than P .

If we can arrange for inequality (2.8.11) then P ′ will be a better model.

If we can maximize∑
P (X|O) · logP ′(X|O) (2.8.12)

Where the summation in (2.8.12) occurs over all values in X, then chances are that P ′ is better than P
in explaining O.

P is defined by pijl.

P ′ is defined by p′ijl

2.8.3 Gradients

Let f be a function f : Rn → R

The set of partial deriviatives

∂f

∂x1
· · · ∂f

∂xn

exists as a point x ∈ Rn.

This vector of partial derivatives(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)
is called the gradient of f . It is typically written

∇f =
(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)

Example 2.8.3.1: Let

f(x1, x2, x3) = x2
1 + x2

2 + x2
3

In this case, f denotes a sphere.

∇f = (2x1, 2x2, 2x3)
= 2(x1, x2, x3)
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2.9 Lecture – 10/16/2006

First, some background material leading up to the Baum-Welch algorithm.

2.9.1 Extremes with Constraints

Imagine a surface in R3, for example x2 + y2 + z2 = 0. This example represents a sphere of radius 1.
How would we maximize a function like

f(x, y, z) = x+ 2y + 3z

such that (x, y, z) ∈ the sphere?

A simpler example in two dimensions: given a circle x2 + y2 = 1, we like to find the extremes for
v = x+ 2y.

If y = 0 then x = v. If x = 0, then y = v/2. These equations give us a series of parallel lines

Figure 2.4: x2 + y2 = 1. Dots show extreme points (roughly)

Complicated functions can have many maximums and minimums. The Baum-Welch algorithm seeks
locally extreme points (local maximum and local minimum).

General Surfaces

In Rn we’ll have functions of the form

f(x1 . . . xn) = 0

This function represents a surface S. Let’s take a point p(x0 . . . xn) such that p ∈ S.

x1 = x1(s)
x2 = x2(s)
. . .

xn = xn(s)

When s varies, one of these points describes a curve C.

The tangent vectors to this curve have components

t =
(
∂x1

∂s
, · · · , ∂xn

∂s

)
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Given a piece of S take a curve C such that C is located on the surface of S, and there is a point p0 such
that p0 ∈ C.

p C S

Figure 2.5: Tangent line to a point on a curve in a surface

If the equation of S is

g(x1 . . . xn) = 0

then

g(x1(s) . . . xn(s)) = 0

The first derivative will be

g′(s) =
(
∂g

∂x1
· ∂x1

∂s
+

∂g

∂x1
· ∂x1

∂s
+ · · ·

)
= 0

for every curve C on the surface of S.

We also have(
∂g

∂x1
,
∂g

∂x2
, · · · , ∂g

∂xn
,

)
·
(
∂x1

∂s
,
∂x2

∂s
, · · · , ∂xn

∂s
,

)T
= 0 (2.9.1)

In equation (2.9.1) the first factor represents the gradient; the second factor represents the tangent to
the curve.

The gradient is perpendicular to the tangent at the point p0.

The combination of all tangents to the curve that pass through p0 form the tangent plane.

Thus, the gradient is perpendicular to the tangent plane.

Parital derivatives are usually denoted with the symbol ∇ (nabla).

Let y = f(x1 . . . xn). Let us pick a curve in space

y(s) = f(x1(s) . . . xn(s))

To find maximums and minimums, we need to find points where y′(s) = 0 (first derivative). To tell
whether such points are maximums or minimums we need the concavity test of the second derivative,
y′′(s) = 0.

Let us denote the tangent vector by t.

y′(s) = (∇f)p0 · t
T
po

To achieve an extrema (maximum or minimum) we need

(∇f)p0 ⊥ t
T
p0

The gradient of a constraint must be perpendicular to the tangent.

∇f = λ∇g

where λ is a constant, g is a constraint and f is the function we are optimizing on the surface g = 0.
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The combination of constraints and the original function give us a system of n+ 1 equations:

∂f

∂x1
= λ · ∂g

∂x1

∂f

∂x2
= λ · ∂g

∂x2

. . .

∂f

∂xn
= λ · ∂g

∂xn
g(x1 . . . xn) = 0

Above, λ is called a LaGrange multiplier.

By solving this system, we will find the maximum and minimum.

Example 2.9.1.1: Let our equation be f(x, y) = x+ 2y, and let our constraint be c : x2 + y2 − 1 = 0.

We seek extremes of f , constrained by c.

∂f

∂x
= λ · ∂g

∂x
= λ · 2x

∂f

∂y
= λ · ∂g

∂y
= λ · 2y

x2 + y2 = 1 = x2 + y2

x =
1

2λ

y =
1
λ

1
4λ2

+
1
λ2

= 1

λ2 =
5
4

λ = ±
√

5
2

x1 =
√

5
4

x2 = −
√

5
4

y1 =
√

5
2

y2 = −
√

5
2

2.9.2 The Baum-Welch Algorithm

Assume that we have two hidden markov models

• H ′ : the old model
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• H : the new model (the improved model).

We want a process to take us from H ′ to H such that H is a better fit for an output (i.e. training)
sequence ω = (ω1, . . . , ωt).

Let q = (q1 . . . qt) represent a set of states.

Our goal is to have

P (ω) > P ′(ω)

whereby the new model is better.

We can say

logP (ω)− logP ′(ω) > 0

Observe that∑
q

P ′(q|ω) = 1

This is a summation on the sequence of states q.

Below is a series of equations similar to the ones on page 41, but tailored to q and ω.

∑
q

P ′(q|ω) · logP (ω)−
∑
q

P ′(q|ω) · logP ′(ω) (2.9.2)

=
∑
q

P ′(q|ω) · log
P (ω, q)
P (q|ω)

−
∑
q

P ′(q|ω) · log
P ′(ω, q)
P ′(q|ω)

(2.9.3)

=
∑
q

P ′(q|ω) · log
P (ω, q)
P (q|ω)

+
∑
q

P ′(q|ω) · log
P ′(q|ω)
P ′(q, ω)

(2.9.4)

=
∑
q

P ′(q|ω) · log
P (ω, q)
P (q|ω)

· P
′(q|ω)

P ′(q, ω)
(2.9.5)

=
∑
q

P ′(q|ω) · log
P ′(q|ω)
P (q|ω)

+
∑
q

P ′(q|ω) · log
P (ω, q)
P ′(ω, q)

(2.9.6)

In equation (2.9.6) the first term being added will be > 0. If the second term is > 0, then

logP (ω)− logP ′(ω) > 0

will hold.

Above, note that

P (ω, q)
P (q|ω)

=
P (ω, q)

P (q,ω)
P (ω) = P (ω)

We insist that∑
q

P ′(q|ω) · log
P (ω, q)
P ′(ω, q)

≥ 0 (2.9.7)

Equation (2.9.7) is called the Kullbach-Leiber Inequality. It implies that

logP (ω)− logP ′(ω) > 0
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If we optimize the left-hand side of∑
q

P ′(q|ω) · logP (ω, q) ≥
∑
q

P ′(q|ω) · logP ′(ω, q)

then the inequality is guaranteed to hold.

If we maximize∑
q

P ′(q|ω) · P (ω, q) (2.9.8)

this ensures that ω will be more probable under the new model H ′.

Equation (2.9.8) is the Baum-Welch function.

Equivalently, we can maximize∑
q

P ′(q, ω) · logP (q, ω)

P ′ represents the probability under the new model H ′, and P represents the probability under the old
model H.

Under the new model P (q, ω) is

P (q, ω) = πq0 ·
t∏

k=1

aqk−1qk
· bqk

(ωk) (2.9.9)

In order to maximize equation (2.9.9) we need to take

∑
q

P ′(q, ω) · log

[
πqo

t∏
k=1

aqk−1qk
· bqk

(ωk)

]
(2.9.10)

In equation (2.9.10) we can sum the log products to get

∑
q

P ′(q, ω) log πqo +
∑
q

P ′(q, ω)
t∑

k=1

log aqk−1qk
+
∑
q

P ′(q, ω)
t∑

k=1

log bqk
(ωk) (2.9.11)

The three added terms in equation (2.9.11) call all be computed independently. Therefore, we seek to
maximize each of these sums individually, including constraints.

Let q ∈ {s1 . . . sn} denote states.
Let ω ∈ {o1 . . . om} denote output symbols.

Optimizing π

To optimize π we use∑
q

P ′(q, ω) log πqo

=
n∑
i=1

P ′(ω, q0 = si) log πi

Our constraint is

c :
n∑
i=1

πi = 1
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Think of this as

f − λg = 0

where f is the function to optimize and g is a constant.

Φ =
n∑
i=1

P ′(ω, q0 = si) log πi − λ

(
n∑
i=1

πi − 1

)

0 =
∂Φ
∂πi

0 =
1
π1
· P ′(ω, q0 = si)− λ

π1 =
P ′(ω, q0 = si)

λ

π1 =
P ′(ω, q0 = si)∑n
i=1 P

′(ω, q0 = si)

π1 =
P ′(ω, q0 = si)

P ′(ω)
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2.10 Lecture – 10/18/2006

2.10.1 Baum-Welch Algorithm

Note: see also handout from
http://www.cs.umb.edu/cs697/bw.pdf

Recall that we started with a Hidden Markov Model that we wanted to improve. Let H ′ be the old
HMM and H be the new HMM.

The idea was to maximize the function

Q(H,H ′) =
∑
m

P ′(ω, q) logP (ω, q) (2.10.1)

Equation (2.10.1) decomposes into three sums that vary independently.

P (ω, q) = πq0

T∏
k=1

aqk−1qk
bqk

(ωk)

In our last lecture, we found that the first of these sums allowed us to maximize πi:

π1 =
P ′(ω, q0 = si)

P ′(ω)

Estimating aij

The portion that maximizes aij is∑
q

T∑
k=1

P ′(ω, q) log aqk−1qk

We need to maximize
N∑
i=1

N∑
j=1

N∑
k=1

P ′(ω, qk−1 = si, qk = sj) · log aij

within the constraint
N∑
j=1

aij = 1

The constraint is that each row must sum to one – there are really N constraints, one for each state.

Because we have N constraints, we also have N Lagrange Multipliers.

Ψ =
N∑
i=1

N∑
j=1

T∑
k=1

P ′(ω, qk−1 = si, qk = sj) · log aij −
N∑
i=1

λi

 N∑
j=1

aij − 1


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We have

∂Ψ
∂aij

= 0

∂Ψ
∂aij

=
1
aij

t∑
k=1

P ′(ω, qk−1 = si, qk = sj)− λi = 0

aij =
∑T
k=1 P

′(ω, qk−1 = si, qk = sj)
λi

=

∑N
j=1

∑N
i=1 P

′(ω, qk−1 = si, qk = sj)
λi

The final form is

aij =
∑T
k=1 P

′(ω, qk−1 = si, qk = sj)∑T
k=1 P

′(ω, qk−1 = si)
(2.10.2)

Estimating b

The portion that deals with b is

∑
q

T∑
k=1

P ′(ω, q) · log bqk
(ωk) (2.10.3)

constrained by
M∑
l=1

bil = 1

So we have
N∑
i=1

T∑
k=1

P ′(ω, qk = si) · log bi(ωk)

Again, because each b row must sum to one, there are N constraints and we will have N Lagrange
Multiplers – one for each state.

Let

Θ =
N∑
i=1

T∑
k=1

P ′(ω, qk = si) · log bi(ωk) =
N∑
i=1

λi

(
M∑
l=1

bil − 1

)
(2.10.4)

The partial derivative of our constraint is

∂Θ
∂bil

= 0

One complication here: log bil(ωk) only matters when ωk = ol – the generated symbol has to match the
one in the output sequence. To better handle this, we’ll define a function

δ(x, y) =

{
1 if x = y

0 if x = y

NOTE: this δ has nothing to do with δ from the viterbi algorithm.
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As before, our constraint is
M∑
i=1

bil = 1

So

∂Θ
∂bij

=
1
bil
·
T∑
k=1

P ′(ω, qk = si) · δ(ωk, ol)− λi = 0

bil =
∑T
k=1 P

′(ω, qk = si) · δ(ωk, ol)
λi

λi =
M∑
l=1

T∑
k=1

P ′(ω, qk = si)δ(ωk, ol)

λi =
T∑
k=1

P ′(ω, qk = si)

The final equation is

bil =
∑T
k=1 P

′(ω, qk = si) · δ(ωk, ol)∑T
k=1 P

′(ω, qk = si)
(2.10.5)

Note: all three of these formulas are expressed in terms of P ′. These are the probabilities of the old
model.

2.10.2 Pair Hidden Markov Models

A normal markov model generates one symbol per state transitions. Pair markov models generate two
symbols per transition (eg - a pair).

One use of pair HMMs is to employ an affine (linear) gap penalty. Instead of using −d as a penalty,
we’ll use −d− e(g − 1) where d, and d are constants, and g is the size of the gap.

Example: Consider three types of sequence alignments (each illustrates a different use of gaps).

I G A xi
L G V yj

| A I G A xi
G V yj – – | G A xi – –

S L G V yj

Let’s defined three functions:

• M(i, j) – the best score assuming that xi is aligned with yj

• Ix(i, j) – the best score assuming that xi is aligned with a gap

• Iy(i, j) – the score assuming that yj is aligned with a gap.

These functions are defined in terms of each other

M(i, j) = max


M(i− 1, j − 1) + s(xi, yj)
Ix(i− 1, j − 1) + s(xi, yj)
Iy(i− 1, j − 1) + s(xi, yj)

Ix(i, j) = max

{
M(i− 1, j)− d
Ix(i− 1, j)− e

Iy(i, j) = max

{
M(i, j − 1)− d
Iy(i, j − 1)− e
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This combination can be easily translated into an automaton.

1. There will be one state for each of M , Ix and Iy.
2. Each state will be associated with a set of (i, j) increments (corresponding to where gaps are used).
3. edges will be labeled with scores and penalties.
4. We can consider an edge as consuming and x and a y, (s, s′); an x and a gap (s,−); or a gap and

a y, (−, s′).

A diagram of this automaton:

s(xi,yj)

M

Ix

Iy
+1,+1

+1,0

0,+1

−e

−e

−d

−d

s(xi,yj)

s(xi,yj)

Figure 2.6: State machine for M , Ix, and Iy

To get a better idea of how this works, lets look at an example.

Example 2.10.2.1: Say we have the sequences

x = V LSPADK

y = HLAESK

and the alignment with gaps

V L S P A D – K
H L – – A E S K
M M →M M → Ix Ix → Ix Ix →M M →M M → Iy Iy →M

The bottom line isn’t part of the alignment, it just shows the state transitions that will be used.

We can apply this alignment to our state machine as pairs of symbols

M(1, 1) = s(V,H)
M(2, 2) = M(1, 1) + s(L,L)
Ix(3, 2) = M(2, 2)− d
Ix(4, 2) = Ix(3, 2)− e
M(5, 3) = Ix(4, 2) + s(A,A)
M(6, 4) = M(5, 3) + s(D,E)
Iy(6, 5) = M(6, 4)− d
Iy(7, 6) = Iy(6, 5) + s(K,K)

In this example, the system worked as a recognizer. However it is possible to re-write it as a generator,
whereby we can use it to generate alignments.
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2.11 Lecture – 10/23/2006 (part I)

2.11.1 Pairwise HMMs

Note: see chapter 4 in Durbin for more on Pairwise HMMs

During our last lecture, we saw how a finite state automaton (FSA) could be used to check alignments.
The FSA we looked at had three states, M , Ix, and Iy corresponding to an alignment between two
symbols, an alignment between x and a gap, and an alignment between y and a gap.

During our last lecture, we also stated that such an FSA was a recognizer, but that this FSA could be
turned into a generator. To make the FSA a generator, we turn it into an HMM.

We’ll start with an HMM that has three states: M , Ix, and Iy. Later, we’ll look at variations.

The emission probabilities of this HMM will look a little odd. Rather than emitting single symbols, this
HMM will emit pairs of symbols.

• M has emission probabilities Pxiyj

• Ix has emission probabilities Pxi−
• Iy has emission probabilities P−yj

For now, let’s say that the probability of going from M to Ix (or Iy) is δ, the probability of transitioning
from Ix to Ix is ε, and the probability of transitioning from Iy to Iy is ε.

Our first cut at this HMM is shown in figure 2.7.

ε

x

Iy

M

ε

1−2δ

δ

1−ε

δ

1−ε
I

Figure 2.7: Pairwise HMM – first version

This HMM is not complete – we haven’t specified any initial probabilities. Durbin shows an example
where ‘dummy’ start and end states have been added, and the probability of moving to the end state is
τ . Also, the probability of moving to Ix or Iy from the start state is δ. Figure 2.8 shows this version of
the HMM. The start state has been labeled S and the end state has been labeled E.

In Figure 2.8, notice how the transition probabilites have been adjusted so that they will sum to one. If
we make the decision that all alignments will start with a pair of symbols (i.e. - not with a gap in x or
y), then we can simplify the model by removing the start state. Because the first pair in the alignment
consists of a pair of symbols, the starting state will be M .

In Figure 2.9 shows the final version, with the start states removed.

The model shown in Figure 2.9 is really based on three parameters, δ, ε and τ . Having fewer parameters
makes the estimation process easier.
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1−2δ−τ

y

M

Ix

E
S

δ

δ

ε

1−2δ−τ
1−ε−τ

1−ε−τ
τ

τ

τ

ε

τ

δ

δ

I

Figure 2.8: Pairwise HMM – Dummy start and end states

ε

y

M

Ix

E

δ

δ

ε

1−2δ−τ
1−ε−τ

1−ε−τ
τ

τ

τI

Figure 2.9: Pairwise HMM – Dummy start state removed
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Now, let’s give the viterbi algorithm in terms of this new model.

• vM (i, j) denotes a match between xi and yj
• vM (0, 0) = 1
• v?(0, j) = v?(i, 0) = 0, where v? is either of vIx or vIy .

This much says that we always start from state M – never from Ix or Iy.

vM (i, j) = P (xi, yj)·max


(1− 2δ − τ) · vM (i− 1, j − 1)
(1− ε− τ) · vIx(i− 1, j − 1)
(1− ε− τ) · vIy (i− 1, j − 1)

(2.11.1)

vIx(i, j) = qxi
·max

{
δ · vM (i− 1, j)
ε · vIx(i− 1, j)

(2.11.2)

vIy (i, j) = qyj ·max

{
δ · vM (i, j − 1)
ε · vIy (i, j − 1)

(2.11.3)

The overall probability of the path is

vE(x, y) = max


vM (n,m)
vIx(n,m)
vIy (n,m)

(2.11.4)

As with the “standard” viterbi algorithm, it is preferable to work with logarithms.

Another approach would be to consider all paths from M to the end state.

Let fk(i, j) denote the sum of the probabilities of paths that end in state k using the prefixes x1 . . . xi
and y1 . . . yj .

Because fk(i, j) is the sum of probabilties, fk(i, j) is not a probability itself. It is a measure.

We can find fk(i, j) by taking Equations (2.11.1) through (2.11.4) and replacing max with
∑

.



Part 3

Phylogenetic Trees

3.1 Lecture – 10/23/2006 (part II)

3.1.1 Trees

Definition 3.1.1.1 (Tree): A Tree is a graph that is (1) connected and (2) acyclic. In a tree, the
number of edges will be |E| = |V | − 1.

Suppose we have a graph G = (V,E) and we wish to find the shortest path between two nodes x and y.
Let us denote distance between x and y by d(x, y).

We can observe three properties about d:

d(x, x) = 0 (3.1.1)
d(x, y) = d(y, x) (3.1.2)
d(x, y) ≤ d(x, z) + d(z, y) (3.1.3)

The combination of the three properties (3.1.1), (3.1.2), and (3.1.3) is referred to as a metric.

Suppose we are given a metric S and a function

d : S × S → N

Is there a graph G = (V,E) such that S ⊆ V ? The answer is yes.

Definition 3.1.1.2 (Weighted Graph): A weighted graph is a pair (G,W ) where G is a graph,
G = (V,E) and W is a function W : E → R.

W is just a function that assigns weights to edges.

In a weighted graph, we denote distance as

d(x, y) = min
∑

w(e)

The distance is the smallest sum of weights among all paths that join x and y.

Definition 3.1.1.3 (Four-Point Condition): Also known as Buneman’s Condition

d(x, y) + d(u, v) ≤ max

{
d(x, u) + d(y, v)
d(x, v) + d(y, u)

56



CS 697 Class Notes 57

If u = v, then this degenerates into a three-point condition (the Triangulation Theorem).

In our next lecture, we’ll talk more about trees and their use in finding affiliation between species.
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3.2 Lecture – 10/25/2006

3.2.1 Phylogenetic Trees

Suppose that we are looking at protiens from different organisms, and that we have a way of compar-
ing the protiens. Our method of comparison involves measuring the “distance” between the protien
sequences. We denote the distance between protiens Pi and Pj as d(Pi, Pj).

Knowing distances, phylogenetic trees allow us to rebuild the evolutionary process.

We start with a series of leaves x1 . . . xn, where each leaf is a protein. We’d like to construct a tree that
shows their evolution from a common ancestor. We’ll construct this tree by grouping data points with
a clustering process.

Grouping Points in a Hierarchy

A grouping process is a recursive one. It it called hierarchical clustering. To get an intuitive sense of
how the algorithm works, let’s work through the process with five hypothetical points, x1 . . . x5.

• we begin with five points and a 5×5 matrix of dij distances. Effectively, we have five clusters with
one point each.

• we find the pair with the smallest distance (say, (x2, x3)).

• our next iteration uses a 4 × 4 matrix and 4 clusters: x1, (x2, x3), x4, x5. Suppose the pair with
the smallest distance is (x4, x5)

• Our third iteration will use a 3 × 3 matrix and three clusters. This time, let’s say with pair x1

with (x2, x3). This gives clusters: (x1, (x2, x3)) and (x4, x5).

• In the final iteration, we merge the two remaining clusters, giving: ((x1, (x2, x3)), (x4, x5)).

In this example, I’ve used parenthesis to indicate the tree structure. The tree representation is shown
in figure 3.1.

1

123

C23 C45

C12345

3 4 52

C

Figure 3.1: The tree ((x1, (x2, x3)), (x4, x5))

3.2.2 Computing Distances Between Clusters

There are several ways in which we could compute the distance between the clusters C and C ′:

1. d(C,C ′) = min dij |i ∈ C, j ∈ C ′

2. d(C,C ′) = max dij |i ∈ C, j ∈ C ′
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3. d(C,C ′) =

∑
i∈C,j∈C′ dij

|C| · |C ′|
(1) is called the single-linked method.
(2) is the called the complete-linked method.
(3) is the unweighted pair group arithmetic average method, or UPGMA.

UPGMA is the method most used by biologists, and the method we will use here.

3.2.3 UPGMA Clustering Algorithm

• Input

– an n× n matrix of distances.

• Initialization

– Assign each leaf node (sequence) to its own cluster Ci. For leaves xi, we have clusters
Ci = {xi}, 1 ≤ i ≤ n

– Place each leaf at height zero.

• Iteration

– Let Ci, Cj be the clusters such that dij is minimal
– Eliminate Ci and Cj from the current clustering. Replace these with a new cluster Ck =
Ci ∪ Cj .

– Place Ck at height dij

2 .
– Update (rebuild) the dij matrix

• Termination

– When there are only two clusters left, combine those (again at height dij

2 ) and stop.

Updating the dij Matrix

With each iteration of the UPGMA algorithm, the dimensions of the dij matrix decrease by one: we
remove rows (and columns) for Ci and Cj , replacing them with a row (column) for Ck. This will require
the recomputation of each element in the matrix.

For the new cluster Ck we need to find dkl for every other cluster l, where l 6= i and l 6= j.

Between two clusters, the distance dij is given by

dij =

∑
p∈Ci,q∈Cj

dpg

|Ci| · |Cj |

If Ck = Ci ∪ Cj is the union of two clusters, then

dkl =
dil|Ci|+ djl|Cj |
|Ci|+ |Cj |
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The second equation can be derived from the first as follows:

dij =

∑
p∈Ci,q∈Cj

dpg

|Ci| · |Cj |∑
p∈Ci,q∈Cj

dpq = dij · |Ci| · |Cj |

dkl =
∑
dil +

∑
djl

|Ci + Cj | · Cl

=
|Ci| · |Cl| · dil + |Cj | · |Cl| · djl

|Ci + Cj | · Cl

=
|Cl|(|Ci| · dil + |Cj | · djl)

|Ci + Cj | · Cl

=
|Ci| · dil + |Cj | · djl

|Ci + Cj |

Height of Ck

In each iteration, we place the new cluster Ck at height dij

2

The immediate ancestor of a pair of nodes is always at a greater height than the child nodes. Height is
significant because it suggests the evolutionary time needed between two species.

We always join the pairs that are closest in height. In building the tree, we will have

dij ≤ max(dih, djh) for any h

Ultrametric Property of Distances

The distances dij are said to be ultrametric if, for any triplet of sequences xi, xj , xk, the distances dij ,
djk, dik are either all equal, or two are equal and the remaining one is smaller.

This condition will hold for distances derived from a tree with a molecular clock (the UPGMA algorithm
generates this kind of tree).
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3.3 Lecture – 10/30/2006

Logistics

• Our first exam will be a take home test. The exam will be given on 11/8/2006. It will be due the
following Monday.

3.3.1 Additive Trees

• A tree is a graph T = (V,E) with two properties. (1) T must be connected and (2) T must be
acyclic. T need not have a root.

• From the two properties given above, it follows that there is a unique path between any pair of
nodes in T .

• We denote a rooted tree by (T, v0). Here, we have simply chosen a vertex v0 to act as the root of
the tree.

Weighting Functions on Trees

A weighing function on a tree is a function w : E → R. w assigns weights to edges.

We assume that weights are non-negative.

Distance Defined by a Graph

The distance defined by a graph, d(x, y) is the length of the shorted path that links x to y.

Note for a tree, d(x, y) represents a unique path.

Distance Defined for Weighted (rooted) Trees

• Trees have unique paths between any two vertices x and y. This is called the additive distance.

• Trees with weights are sometimes called additive trees. Note that in this context “additive” refers
to the weights, not to the trees.

Let x, y be two nodes in the tree and let e1 . . . en be the unique path from x to y. The weight of this
path will be

∑n
i=1 w(ei).

We denote the additive distance as

dw(x, y) = w(e1) + . . .+ w(en)

If we have a set S and a distance d : S × S → R (a metric), is this distance induced by a tree? (Is it an
additive distance?)

3.3.2 The 4-Point Condition (Tree Metrics)

Peter Buneman proved that a distance d on set S is induced by a tree IFF the 4 point condition is
satisifed. The four point condition is given in equation (3.3.1).
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d(x, y) + d(u, v) ≤ max

{
d(x, u) + d(y, v)
d(x, v) + d(y, u)

(3.3.1)

This condition is also called a tree metric

Let’s say d is induced by T with weight w, and look at the 4-point condition with respect to the tree in
Figure 3.2. Dotted lines in this figure represent paths (which may pass through an arbitrary number of
vertices).

s

x y

u v

r

Figure 3.2: Tree for 4-point condition

Because this is a tree, there is a path between any pair of vertices. Therefore there is a path from x to
u. In figure 3.2 we’ve shown this path as going through r and s. Note that r could be x and s could be
u.

We can immediately see several distance inequalities:

d(x, v) ≤ d(x, r) + d(r, s) + d(s, v)
d(x, u) ≤ d(x, r) + d(r, s) + d(s, u)
d(y, u) ≤ d(y, r) + d(r, s) + d(s, u)
d(y, v) ≤ d(y, r) + d(r, s) + d(s, v)

Because paths in a tree are unique, we could actually rewrite these as equalities:

d(x, v) = d(x, r) + d(r, s) + d(s, v) (3.3.2)
d(x, u) = d(x, r) + d(r, s) + d(s, u) (3.3.3)
d(y, u) = d(y, r) + d(r, s) + d(s, u) (3.3.4)
d(y, v) = d(y, r) + d(r, s) + d(s, v) (3.3.5)

For the four-point condition condition to be violated, the following pair of inequalities would need to
hold:

d(x, u) + d(y, v) < d(x, y) + d(u, v) (3.3.6)
d(x, v) + d(y, u) < d(x, y) + d(u, v) (3.3.7)

From equations (3.3.2) – (3.3.5) we can derive

d(x, u) + d(v, y) = 2 · d(r, s) + d(x, y) + d(u, v) from (3.3.3), (3.3.5) (3.3.8)
d(x, v) + d(y, u) = 2 · d(r, s) + d(x, y) + d(u, v) from (3.3.2), (3.3.4) (3.3.9)

Even with d(r, s) = 0 we can see a contradiction between (3.3.8) and (3.3.6); also between (3.3.9) and
(3.3.7).

For the 4-point condition, there are really two cases to consider. The first case is shown in figure 3.3. In
case one, there is no overlap between the paths from x to y and u to v.
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v

x u

r s

y

Figure 3.3: 4-point condition, case one

v

p

q

x

y

u

Figure 3.4: 4-point condition, case two

The second case is shown in figure 3.4. In case two there is overlap between the paths from x to y and
u to v. In case two, we have:

d(x, y) = d(x, q) + d(p, q) + d(p, y)
d(u, v) = d(u, q) + d(p, q) + d(p, v)

d(x, y) + d(u, v) = d(x, q) + d(p, q) + d(p, y) + d(u, q) + d(p, q) + d(p, v)
= 2 · d(p, q) + d(x, q) + d(p, y) + d(u, q) + d(p, v)

d(x, u) = d(x, q) + d(q, u)
d(y, v) = d(y, p) + d(p, v)

3.3.3 Ultra-metrics

Suppose we have three numbers, a1, a2 and a3 where the following inequality holds between any permu-
tation of these numbers:

ai ≤ max{aj , ak}

Two of {a1, a2, a3} must be equal and the third number must be no larger than the equal numbers.

Suppose aj is the smallest.

ai ≤ ak
ak ≤ max{ai, aj}

Because aj is smallest,

ak ≤ ai
∴ aj ≤ ai = ak

Let’s apply this to d(x, y) + d(u, v).
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From the four-point condition, we can replace ai, aj and ak with

d(x, y) + d(u, v)
d(x, u) + d(y, v)
d(x, v) + d(y, u)

and the inequalities will still hold.

Recall our definition of a metric. We have distance as d : S × S → R ≥ 0. A metric must meet three
conditions:

d(x, y) = 0 if x = y

d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y)

We can make a stronger assertion

d(x, y) ≤ max{d(x, z), d(z, y)} (3.3.10)

Equation (3.3.10) is an ultra-metric.

Every triangle in ultra-metric space is an isosceles triangle.

Figure 3.5 shows the relationship between metrics, tree metrics and ultra-metrics. Every ultra-metric is

metrics

tree metrics

ultra−metrics

Figure 3.5: Relationship of metrics, tree metrics and ultra-metrics

a tree metric, and every tree metric is a metric.

Definition 3.3.3.1 (Equidistant Tree): A tree is equidistant if the distance from the root to every
leaf is the same.

Ultra-metrics give us equidistant trees.

Theorem 3.3.3.2: Every ultra-metric is a tree metric.

To prove theorem 3.3.3.2 we must show that given

d(p, q) ≤ max{d(p, r), d(r, q)}

we have

d(x, y) + d(u, v) ≤ max

{
d(x, v) + d(y, u)
d(x, u) + d(y, v)

There are four cases to consider, as shown in table 3.1. Note that cases 3 and 4 are symmetric to cases
1 and 2. We only need to show cases 1 and 2 – the other two can be shown in the same way.
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case closest among u,v to x closest among u,v to y
1 u u
2 u v
3 v u
4 v v

Table 3.1: 4 cases for proof of theorem 3.3.3.2

Case 1 We have d(x, u) ≤ d(x, v) and d(y, u) ≤ d(y, v). Therefore

d(x, u) ≤ d(x, v) = d(u, v)
d(y, u) ≤ d(y, v) = d(u, v)

Because d(u, v) = d(y, v) = d(x, v) we can say

d(x, y) ≤ max{d(y, u), d(x, u)}

Case 2

d(x, y) ≤ d(x, v) = d(u, v)
d(v, y) ≤ d(x, u) = d(u, v)

d(x, y) + d(u, v) ≤ max{d(u, v), d(x, u) + d(v, y)}
d(x, y) ≤ d(u, v)

∴ an ultra-metric is a tree metric.

Try picturing these cases with respect to Figure 3.6.

v

yx

u

Figure 3.6: isosceles triangle diagram of tree



66 CS 697 Class Notes

3.4 Lecture – 11/1/2006

3.4.1 Trees, Metrics, and Ultrametrics

Which kinds of trees produce ultra-metrics?

We have a weighting function defined on edges of trees:

w : E → R ≥ 0

and the weighted distance

dw(x, y) =
∑

w(e)

such that e belongs to the simple path that joins x to y.

Suppose d were an ultra-metric (produced by a clustering algorithm). What kind of tree produces this
kind of metric?

Definition 3.4.1.1 (Equidistant Tree): An equidistant tree is a tree where the distances between
the root and any of the leaves are the same.

The property of equidistance is inherited from a tree to all of its sub-trees.

Given the tree shown in Figure 3.7, we can say that

dw(u, l) = d(v0, l)− d(v0, u)

dw(u, li) =
d(l1, l2)

2

l

0

l 1 l 2

u

v

Figure 3.7: Equidistant Tree

Theorem 3.4.1.2: The metric generated by an equidistant tree is an ultrametric on the set of leaves
of the tree.

Consider the tree shown in Figure 3.8. u is the closest ancestor of x and y (reminder – all leaves have a
common ancestor, even if that ancestor is the root). If this is an equidistant tree, we can say

dw(x, y) = 2 · dw(u, x) = 2 · dw(u, y)
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z

0

u

x y

v

Figure 3.8:

Because all leaves have a common ancestor, y and z must also have a common ancestor. We propose
that there are only two places that a common ancestor of y and z can exist: (1) on the path u · · · y or
(2) on the path v0 · · ·u.

Case 1 – On the path u · · · y

For case 1 the tree is shown in figure 3.9, where v is the common ancestor. In Figure 3.9, we can say

v

0

u

x y z

v

Figure 3.9: Common ancestor on the path u · · · y

dw(y, z) = 2 · dw(v, y) = 2 · dw(v, z)
dw(x, z) = dw(x, u) + dw(u, v) + d(v, z)
dw(x, u) = dw(u, v) + dw(v, y)

= dw(u, v) + dw(v, z)
dw(x, z) = 2 · dw(u, v) + dw(v, y) + dw(v, z)

This tree is an ultra-metric.

d(y, z) ≤ d(x, y) = d(x, z)

Case 2 – On the path v0 · · ·u

For case 2 the tree is shown in figure 3.10. Again, v is the common ancestor of y and z. We have
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v

0

x y z

u

v

Figure 3.10: Common ancestor on the path v0 · · ·u

dw(x, y) = 2 · dw(u, x)
dw(x, z) = 2 · dw(u, x) + 2 · dw(u, v)
dw(y, z) = 2 · dw(u, v) + 2 · dw(y, y)

Again, this is an ultra-metric

dw(x, y) ≤ dw(x, z) = dw(y, z)

Theorem 3.4.1.3 (Semple & Steel): Given an ultra-metric d on the set S, there is an equidistant
tree that has S as its leaves, and the distance induced by the tree on S equals d.

Proof. We can prove this claim by induction on the number of elements in the set S. Let S = {s1 . . . sn}
for n ≥ 2.

For n = 2, the tree appears as shown in figure 3.11. For the distances a and b, we have

b

1 s 2

a

s

Figure 3.11: Case where n = 2

a = b =
dw(s1, s2)

2
Which trivially satisfies the ultra-metric property.

For n = 3, we have three points: s1, s2, s3. We chose these points such that dw(s1, s2) is the minimal
distance. If the distances dw(s1, s2), dw(s1, s3), dw(s2, s3) are all equal, we have an ultrametric because:

dw(s1, s2) ≤ dw(s1, s3) = dw(s2, s3)

If these distances are not all equal, the tree will look as shown in figure 3.12. In figure 3.12

c =
dw(s1, s2)

2

b =
dw(s1, s3)

2

a =
dw(s1, s3)− dw(s1, s2)

2
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c

3s 2s 1

a
b

c

s

Figure 3.12: Case where n = 3

Because the tree is equidistant,

b− a =
dw(s1, s2)

2

b+ a+
dw(s1, s2)

2
= dw(s1, s3) = dw(s2, s3)

b+ a =
−dw(s1, s2)

2
+ dw(s1, s3)

2b = dw(s1, s3)

b =
dw(s1, s3)

2

a =
dw(s1, s3)− dw(s1, s2)

2

This is an ultra-metric.

dw(s1, s2) ≤ dw(s2, s3) = dw(s1, s3)

For n ≥ 4, let us assume that the statement holds for sets with fewer than n elements.

We pick two elements of S; si and sj , such that the distance dw(si, sj) is the smallest distance between
any pairs of nodes.

Let S′ = S − {si, sj} ∪ s. Take si and sj out and replace them with a new node s. We define a new
weighting function for S′,

d′ : S′ × S′ → R ≥ 0

For two nodes sk and sl, we will have

d′(sk, sl) = d(sk, sl) if sk, sl ∈ S′ − {si, sj}

In d′,

d′(sk, s) = d(sk, si) = d(sk, sj)

Again, note how we have replaced si and sj in S (and d) with s ∈ S′ (and d′).

Also note that in the original set, we would have had

d(si, sj) ≤ d(sk, si) = d(sk, sj)

For any leaf sk, because d(si, sj) was the minimal distance in S.

To show that the distance d′ is an ultra-metric on S′, we need to look at d′(sk, s), d′(sl, s) and d′(sk, sl).
Note that

d′(sk, s) = d(sk, si)
d′(sl, s) = d(sl, si)
d′(sk, sl) = d(sk, sl)
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This means that we can build an equidistant tree for the set S′.

d(si, sj) ≤ d′(sk, s) = d(sk, si)

We want to replace T ′ with T and add back si and sj .

The general idea is shown in figure 3.13. However, Figure 3.13 is a little misleading – si and sj would
probably be the same distance from the root as s (I think ...). In Figure 3.13,

cm
s js i

u

s

a b

cs

Figure 3.13: Putting si, sj back to replace s

d(u, sm) = a

d(u, si) = d(u, sj) = b+ c

d(si, sj) = 2 · c

c =
d(si, sj)

2
b = d(u, si)− c

= d(u, si)−
d(si, sj)

2

a = d(u, sm) =
d(sm, si)

2
again, it’s not drawn to scale

b =
d(sm, si)− d(si, sj)

2
≤ 0

When going from T to T ′

d′(v0, u) = d(v0, u) = d(v0, sm)− d(sm, si)
2

si and sj are the same distance from the root of T as s was from the root of T ′ (I think).

3.4.2 For Next Class

In the next class, we’ll discuss algorithm’s for building trees out of tree metrics. Read over the Saitou-Nei
algorithm.



CS 697 Class Notes 71

3.5 Dissimilarities and Metrics – 11/6/2006

Notes taken from Prof. Simovici’s handout – Chapter 8: Dissimilarities, Metrics and Ultra-
metrics

3.5.1 Dissimilarities

Definition 3.5.1.1 (Dissimilarity): A dissimilarity on a set S is a function d : S × S → R ≥ 0 that
satisifies two conditions:

1. d(x, x) = 0 for all x ∈ S
2. d(x, y) = d(y, x) for all x, y ∈ S

Below are some properties that may be satisfied by dissimilarities:

Evenness d(x, y) = 0 implies that d(x, z) = d(z, y) for all x, y, z ∈ S

Definiteness d(x, y) = 0 implies that x = y

Triangular Inequality d(x, y) ≤ d(x, z) + d(z, y)

Ultrametric Inequality d(x, y) ≤ max{d(x, z), d(y, z)}

Bunneman’s Inequality (also known as the 4-point condition)

d(x, y) + d(u, v) ≤ max

{
d(x, u) + d(y, v)
d(x, v) + d(y, u)

Together, the triangular inequality and definiteness imply evenness.

3.5.2 Types of Metrics

metric a metric is a dissimilarity that satisfies definiteness and the triangular inequality

Tree metric A tree metric is a dissimilarity that satisfies definiteness and the four-point condition.

Ultrametric An ultrametric is a dissimilarity that satisfies definiteness and the ultrametric inequality.

Three Inequalities Satisfied by Metrics

1. d(x, y) = 0 IFF x = y
2. d(x, y) = d(y, x)
3. d(x, y) ≤ d(x, z) + d(z, y)

If (1) is replaced by the weaker requirement that d(x, x) = 0, then we have quasi-metric. In a quasi-
metric, having d(x, y) = 0 does not necessarily imply that x = y.

Relationships Between Metrics

Every tree metric is a metric.

Every ultrametric is a tree metric.

There is a link between ultrametrics and equivalence relations. Ultrametrics imply reflexivity, symmetry,
and transitivity.



72 CS 697 Class Notes

3.5.3 Graphs and Trees

Theorem 3.5.3.1: A graph G = (V,E) is a tree IFF

1. G is connected
2. G contains no triangles
3. G’s distance function satisifies Bunneman’s inequality.
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3.6 Lecture – 11/6/2006

3.6.1 Nei and Saitou’s Algorithm

Nei and Saitou’s algorithm is also known as the NJ Algorithm.

Input A tree metric

Output A tree

Procedure: Let n be the number of objects.

1. Compute

sij = (n− 2) · dij − ri − rj
where

ri =
n∑
j=1

dij

2. Chose a pair of objects i, j such that sij is minimal.

3. Create a new node u (also denoted (ij) – we form u by merging i and j), and define

diu =
dij
2

+
1

2(n− 2)
(ri − rj)

dju =
dij
2

+
1

2(n− 2)
(rj − ri)

dku =
dik + djk − dij

2

This step defines distances from u to all other objects.

4. Delete i, j, and replace them with u.

5. If more than two nodes remain, then go to step 1. Otherwise, stop.

One note about diu and dju – these tell us the distances from i to u and from j to u. However, we don’t
use them as part of the computation of dku (the distance from u = (ij) to all other nodes k).

3.6.2 Discussion of the Algorithm

Because we choose i, j such that their distance is minimal, we have

sik − sij ≥ 0 (3.6.1)

for any other node k.
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Let’s take (3.6.1), expand and manipulate some of the terms.

sik − sij = ((n− 2)dik − ri − rk)− ((n− 2)dij − ri − rj) basic expansion (3.6.2)
= (n− 2)(dik − dij) + rj − rk combine terms (3.6.3)
= (n− 2)dik − (n− 2)dij + rj − rk (3.6.4)

= (n− 2)dik − (n− 2)dij +
n∑
l=1

djl −
n∑
l=1

dkl definition of ri (3.6.5)

= (n− 3)dik − (n− 3)dij +
n∑

l=1,l 6=i

djl −
n∑

l=1,l 6=i

dkl see note 1 (3.6.6)

= (n− 3)dik − (n− 3)dij +
n∑

l=1,l 6=i,j,k

(djl − dkl) see note 2 (3.6.7)

=
∑
l 6=i,j,k

(dik − dij + djl − dkl) see note 3 (3.6.8)

1. Note 1: The restriction l 6= i in the summations allow us to get rid of dik and dij terms – hence
n− 3

2. Note 2: The summation’s restriction on l omits cases where d will be zero, or where the term will
by canceled by another term in the equation.

3. Note 3: Notice that dik and dij do not depend on l.

If i, j are chosen such that sij is minimal, then i, j must be neighbors.

If i, j are neighbors, then sij must be smaller than any other value situated on sij ’s row or column
(think of a matrix of sij values). To reiterate:

sik − sij ≥ 0 for any k

Consider the tree configuration in Figure 3.14.

l

i

j

u

v

k

Figure 3.14: Tree with 5 nodes, i and j closest

Let’s examine the terms

dik − dij + djl − dkl
Expanding these four terms with respect to Figure 3.14, we have

dik = diu + duv + dvk

dij = diu + duj

djl = dju + duv + dvl

dkl = dkv + dvl
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If we substitute these four expansions into

dik − dij + dil + dkl

then we’re left with

2 · duv ≥ 0

This tells us that the summation in (3.6.8) will be non-negative.

If sij is minimal, then i, j must be neighbors. This assertion is harder to prove.

A footnote to the discussion: we’ve been refering to tree nodes as “objects”. In biological literature,
these are commonly referred to as OTUs. OTU stands for Operational Taxonomical Unit.

3.6.3 Showing That i, j are neighbors

Let’s do some more manipulation with skl − sij

skl − sij = ((n− 2)dkl − rk − rl)− ((n− 2)dij − ri − rj)

= (n− 2)dkl −
∑

dkm −
∑

dlm − (n− 2)dij +
∑

dim +
∑

djm

In the next step, we restrict the summations by m 6= i, j, k, l. The distance terms excluded by the
summation are put back separately. Note that equation (3.6.9) is a single multiline formula.

skl − sij =(n− 2)dkl

−

 ∑
m 6=i,j,k,l

dkm

− dki − dkj − dkl
−

 ∑
m 6=i,j,k,l

dlm

− dli − dlj − dlk
− (n− 2)dij

+

 ∑
m 6=i,j,k,l

dim

+ dij + dik + dil

+

 ∑
m 6=i,j,k,l

djm

+ dji + djk + djl (3.6.9)

After simplification, this becomes:

skl − sij = (n− 4)dkl − (n− 4)dij +
∑

m6=i,j,k,l

(dim + djm − dkm − dlm)

=
∑

m6=i,j,k,l

((dim + djm − dij)− (dkm + dlm − dkl))

If sij is minimal, then i, j must be neighbors in this tree.

Assume this holds for n ≤ 4. (Actually, this is being left as an excercise for the student. Try working
out the different cases for n ≤ 4).

Consider n ≥ 5. For n ≥ 5 we’ll categorize points as category one, or category two, as shown by Figure
3.15.
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Category two

i

j l

k
u v

Category one

Figure 3.15: n ≥ 5, showing Category one and two

In figure 3.15, we assume that i, j are nodes such that sij is minimal.

Because sij is minimal, we have skl ≥ sij .

Suppose that m is a Category one point – we take m as being along the path i · · ·u (the j · · ·u case is
similar).

(dim + djm − dij)− (dkm + dlm − dkl)
=− 2 · dmu − 2 · duv < 0

Now, suppose m is a Category Two point, along the path u · · · v.

(dim + djm − dij)− (dkm + dlm − dkl)
=2 · dum − 2 · dmv ≥ 0

In order to get a positive contribution, we need more category two points than category one points.

(To be continued next lecture).
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3.7 Lecture – 11/8/2006

Saitou-Nei Algorithm (cont’d)

Recall that we have started with

• A distance dij , which is a tree metric between i and j.

• A matrix sij , defined as

sij = (n− 2)dij − ri − rj (3.7.1)

ri =
n∑
p=1

dip (3.7.2)

If i and j are neighbors (the immediate descendants of a common ancestor), then sij is minimal. We
proved this during our last lecture.

Today will we show the reverse: if sij is minimal, then i and j must be neighbors.

3.7.1 Showing sij minimal implies i, j neighbors

Suppose that sij were minimal but i and j were not neighbors. We can show that this leads to a
contradiction.

If i and j are nodes of a tree, then we know that there is a unique path from i to j. If i and j are
neighbors, then the path i · · · j has exactly one intermediate node. If i and j are not neighbors, then the
path i · · · j must two or more intermediate nodes.

Let’s consider a Category one node h where i and j are not neighbors.

j w

uh

i

Figure 3.16: i, j not neighbors with category one node h

Recall any four objects must satisfy the following inequality:

skl − sij =
∑

m6=i,j,k,l

((dim + djm − dij)− (dkm + dlm − dkl)) (3.7.3)

Let’s apply this inequality to Figure 3.16.

(diw + djw − dij) + (diw − dhw − dih)
= (diu + duw + djw − dij)− (diu + duw + duh + duw − diu − duh)
= 0− 2duw
= −2duw

No matter where we choose w, the distance is negative.
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3.7.2 Contributions of Category One and Category Two Points

Figure 3.17 shows a tree with a category one node m.

m

i

j l

k
u v

Category one Category two

w

Figure 3.17: Category One node m

If m is a category one point, then skl − sij breaks down to the summation of

(dim + djm − dij) + (dkm + dlm − dkl)
=[(diu + duv + dwm) + (djw + dmw)− dij ]

− [(dmw + dwu + duv + dvh) + (dmw + dwu + duv + dvl)− dkl]
=2dwm − (2dmw + 2duw + 2duv)
=− 2duw − 2duv

∴ category one points give us a negative contribution.

Now consider Figure 3.18, where m is a category two point.

z

i

j l

k
u v

Category one Category two

w
m

Figure 3.18: Category Two node m

We have

(dim + djm − dij)− (dkm + dlm + dkl)
=[(diu + duz + dzm) + (dju + duz + dzm)− dij ]

− [(dkv + dvz + dzm) + (dvl + dvz + dzm)− dkl]
=2duz − 2dvz

Category two points give us a positive contribution, as long as duz > dvz (required to satisify skl − sij).

For category 2 points, we see that the positive contribution really depends on z.

In conclusion, having sij minimal means that the path i · · · j has at most one intermediate point, which
means that i and j are neighbors.

The complexity of the Saitou-Nei algorithm is Θ(n3).
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3.8 The Parsimony Principle

Occam’s Razor The most plausable explanation of a phenemenon is the simplest.

Parsimony Principle A technique for building phylogenetic trees that’s based on the Occam’s Razor
approach.

Orthologous Genes These are families of genes that proceeded from a common ancestor, along the
same timeline.

Walter Fitch The first person to describe parsimony and phylogenetic trees. To find his original paper,
use jstore (one of the Healey Library online catalogs), and search by name.

Under the parsimony principle, we build trees using the following technique:

1. Start with a set of nucleotides (or amino acids) in corresponding positions.

2. Start with a proposed tree topology

The parsimony algorithm will tell us the plausibility of the topology.

Example: suppose we had four nucleotides, ACAA in four corresponding positions. We might propose
the tree structure shown in Figure 3.19.

A

C

A

A C A A

Figure 3.19: Proposed tree for ACAA (two mutations)

Now consider the tree in Figure 3.20, which requires only one mutation. Figure 3.20 is more plausable
than figure 3.19 because it requires only one mutation, not two.

A

A

A

A C A A

Figure 3.20: Proposed tree for ACAA (one mutation)

Let us define the following operation on the sets u and v:

u ∗ v =

{
u ∩ v if u ∩ v 6= ∅
u ∪ v if u ∩ v = ∅

(3.8.1)

The second case, u ∪ v applies when we have a mutation.
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Given two nodes u, v, we will label their ancestor with u ∗ v. Figure 3.21 shows an application of
u ∗ v = u ∪ v while Figure 3.22 shows u ∗ v = u ∩ v

(ACGT)

(AC) (GT)

Figure 3.21: Example of u ∗ v = u ∪ v

(AC) (AT)

(A)

Figure 3.22: Example of u ∗ v = u ∩ v

Figure 3.23 shows an example with five mutations. In Figure 3.23, the parenthesized letters show where
the mutations have occurred.

AC(G)

A G C T GC A

A(C) C(G)

(G)AT

(G)A

G

Figure 3.23: Example with 5 mutations

Reference Material

• There’s a book on phylogeny by Felsenstien. It’s not very mathematical, but it’s a well-written
and accessible work.

• Phylogenetics by Steel, published by Oxford Press is a more mathematical treatment of Phylogeny.
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3.9 Lecture – 11/13/2006

Parsimony Algorithms

Last time, we looked at Fitch’s parsimony algorithm. We defined a set operation

u ∗ v =

{
u ∩ v if u ∩ v 6= ∅
u ∪ v if u ∩ v = ∅

The starting points for parsimony are (1) the topology of a tree and (2) a labeling of the leafs.

Trees found by the parsimony algorithm are not unique. Several different trees can have the same cost
associated with them.

Phylogenetic trees are rooted binary trees. Given n leaf nodes, there are a total of 2n− 1 nodes in the
tree. The algorithms described here visit trees in postorder.

3.9.1 Fitch’s Parsimony Algorithm

In the algorithm below, c denotes the cost of a tree, and k denotes a node. The node k = 2n− 1 denotes
the root of the tree.

Initialization
Set c = 0 and set k = 2n− 1 (the root of the tree)

Recursion
The recursive portion of the algorithm constructs sets of the form Rk.

If k is a leaf, then Rk = {xku}. In the notation xku, u is a sequence position, and k is a node.

If k is not a leaf, then k has two descendant nodes, i and j.

• Compute Ri, Rj for the descendants of k.

• Set Rk = Ri ∗Rj (‘*’ is the set operation described above).

• If Ri ∗ Rj = Ri ∪ Rj , then increment c. (Ri ∗ Rj = Ri ∪ Rj means that there must be a
mutation).

Termination
The cost of the tree is retrieved from c.

In this algorithm, the cost of the tree is unrelated to the type of mutation that has to take place. From
a biological standpoint, some mutations are less likely than others. For example, the purines are A and
G; the pyrimidines are C and T . Mutations within the purines are more likely than mutations from
purine to pyrimidine. Likewise, mutations within the pyrimidines are more likely than mutations from
pyrimidines to purines.

Fitch’s algorithm is not exhaustive – there are some tree structures that it will not find.

Fitch’s Algorithm – Examples

Figure 3.24 shows Fitch’s algorithm carried out on a tree whose leaves are ABAB. The cost of this tree
is c = 2.

Figure 3.25 shows one way in which specific interior nodes can be chosen. Arrows denote mutations.
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{A,B}

A B A B

{A,B}

{A}

Figure 3.24: Fitch’s Algorithm on tree with ABAB

A

A B A B

A

A

Figure 3.25: One Choice of Interior Nodes for ABAB

Figure 3.26 shows another way in which specific interior nodes can be chosen. Again, arrows denote
mutations and the cost of the tree is c = 2 (two mutations).

B

A B A B

A

A

Figure 3.26: Second Choice of Interior Nodes for ABAB

Figure 3.27 shows another tree of cost two that is not found by the Fitch algorithm.

B

A B A B

B

B

Figure 3.27: Tree that Fitch’s algorithm doesn’t find

3.9.2 Weighted Parsimony

Weighted parsimony helps account for the fact that certain mutations are more likely than others.

For every node k, and for every symbol a1 . . . ak, we will compute an array with components for each
symbol Sk(ai).
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Sk(ai) is a number in N = N ∪ {∞}

Let s(a, b) denote the cost of mutating from a to b.

Weighted Parsimony Algorithm

Initialization
Set k = 2n− 1 (the root)

Recursion
If k is a leaf, then

Sk(a) =

{
0 if a = xku
∞ otherwise

If k is not a leaf, then compute Si(a), Sj(b) for the descendants i, j of k. Then compute Sk(a) as

Sk(a) = min
b

(Si(b) + s(a, b)) + min
b

(Sj(b) + s(a, b))

Termination
The minimum cost of the tree is

min
a
S2n−1(a)

Weighted Parsimony Example

The example below uses the alphabet {a, b}. For a cost function, we use the following

s(a, b) =
(

0 1
1 0

)
In other words, s(a, b) = 0 if a = b; s(a, b) = 1 otherwise.

Figure 3.28 shows a tree with leaves ABAB. Nodes of the tree have been numbered in post-order.

B

7

S3

S5

S2 S4 S6S1

A B A

S

Figure 3.28: Tree for Weighted Parsimony Example

First, we compute the leaves. Note that each leaf is associated with an array of values. The first array
element is for the symbol A and the second array element is for the symbol B.

S1 = (0,∞) leaf is A
S2 = (∞, 0) leaf is B
S4 = (0,∞) leaf is A
S6 = (∞, 0) leaf is B
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Next, we turn to the interior nodes. Below, I’m going to use a slightly different notation that what was
presented in class. I’m going to use k as the variable of minimization.

S3(A) = min
k

(S1(k) + s(A, k)) + min
k

(S2(k) + s(A, k))

= min(0,∞) + min(∞, 1)
= 1

S3(B) = min
k

(S1(k) + s(B, k)) + min
k

(S2(k) + s(B, k))

= min(1,∞) + min(∞, 0)
= 1

∴ S3 = (1, 1)

S5(A) = min
k

(S3(k) + s(A, k)) + min
k

(S4(k) + s(A, k))

= min(1, 2) + min(0,∞)
= 1

S5(B) = min
k

(S3(k) + s(B, k)) + min
k

(S4(k) + s(B, k))

= min(2, 1) + min(1,∞)
= 2

∴ S5 = (1, 2)

S7(A) = min
k

(S5(k) + s(A, k)) + min
k

(S6(k) + s(A, k))

= min(1, 3) + min(∞, 1)
= 2

S7(B) = min
k

(S5(k) + s(B, k)) + min
k

(S6(k) + s(B, k))

= min(2, 2) + min(∞, 0)
= 2

∴ S7 = (2, 2)

This algorithm shows the minimal cost computation. To reconstruct the tree symbols, we’d need to keep
pointers to the descendant symbols that produced the minimums.
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3.10 Probabilistic Approaches to Phylogenetic Trees

Suppose we were dealing with the nucleotides AGCT . A probabilistic approach might model this as an
HMM.

1−3α

A

G

C

T

α

α

α

Figure 3.29: Partial Jukes-Cantor HMM for Phylogeny

Figure 3.29 is only partially drawn. Each AGCT node would have four outbound edges, with the same
set of probabilities that has been shown for A. In other words, we really have an HMM with four states.
This type of model is called the Jukes-Cantor model. A mutation from u → v (u 6= v) occurs with
probability α, regardless of the nucleotides that u, v represent.

The Kimura model is a refinement of the Jukes-Cantor model. Like the Jukes-Cantor model, the Kimura
model is based on a 4-state HMM. However, here we make the distinction between purines and pyrim-
idines. Given a mutation u → v, this model assigns a probability α if u and v are both purines
(pyrimidines), and a probability β if the mutation crosses purine (pyrimidine) groups.

Figure 3.29 shows the Kimura model. This tends to produce better results than the Jukes-Cantor model.

1−α−2β
C

A G

T
α

α

α

α

βββ β β
β

β

β

1−α−2β

1−α−2β

1−α−2β

Figure 3.30: HMM for the Kimura Model
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3.11 Lecture – 11/16/2006

Probabilistic Approaches to Phylogeny

There are two primary probabilistic approaches to phylogeny:

• Given a set of data, decide on the most plausable tree structure that is consistent with the data.
This is the Baysean approach.

• Assume that we have a particular tree structure, and analyze the data with respect to that data
structure. This is the approach that we will study.

We would like to look at probabilities of the form P (data|tree). In more concrete terms, let x and y be
nodes of a tree, and let t be the edge that connects them:

t

x

y

Figure 3.31: x, y and t

Our probabilities will look like P (x|y, t): given ancestor y and time t, what is the probability of x.

Given a tree structure like the one in Figure 3.32

4

x2 x3

t 2

x5 t 3

x4

x6

t 6

x7

t 5

x1

t 1

t

Figure 3.32: Example Tree

The probability of the tree would be calculated as

P (x2|x5, t1) · P (x3|x5, t2) · P (x5|x6, t3) · P (x4|x6, t4) · P (x1|x7, t5) · P (x6|x7, t6) · P (x7)

3.11.1 Jukes-Cantor Model

The Jukes-Cantor model assumes that all mutations u → v for nucleotides u and v occur with equal
probability (α). This is a big simplification.

We can do a discrete analysis of probabilities. Let PA(t) denote the probability of having nucleotide A
at time t in a given position. What is PA(t+ 1)?
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If we denote P (Nt = A) as the probability that the nucleotide at time t is A, we can say

PA(t) = P (Nt = A)
P (Nt+1 = A) = P (Nt+1 = A,Nt = A)

+ P (Nt+1 = A,Nt = C)
+ P (Nt+1 = A,Nt = G)
+ P (Nt+1 = A,Nt = T )

Put another way,

P (Nt+1 = A) = P (Nt+1 = A|Nt = T ) · P (Nt = T )

The P (Nt+1 = A|Nt = T ) term represents α.

3.11.2 Treating t as a continuous parameter

Suppose we have the evolution

sty x u

Figure 3.33: Evolution of y, x, u

Because these are probabilities, we have

P (u|y, t+ s) =

(∑
x

P (x|y, t)

)
· P (u|x, s)

Given residues x and y, we can represent the substitution probabilities as a matrix S(t). S(t) will be an
n× n matrix, where n is the number of residues. For nucleuotides, S(t) will be a 4× 4 matrix.

S(t) =


P (A|A, t) P (A|C, t) P (A|G, t) P (A|T, t)
P (C|A, t) P (C|C, t) P (C|G, t) P (C|T, t)
P (G|A, t) P (G|C, t) P (G|G, t) P (G|T, t)
P (T |A, t) P (T |C, t) P (T |G, t) P (T |T, t)


Note that the diagonal involve no substitution. Elements on the diagnonal will correspond to 1− 3α in
the Jukes-Cantor model; elements not on the diagonal correspond to α. Given a unit of time t, we can
express S(t) as a matrix R, where R represents the rates of substitution:

R =


−3α α α α
α −3α α α
α α −3α α
α α α −3α


As matrices,

S(t+ s) = S(t) · S(s)

For a short unit of time, ε, this gives

S(t+ ε) = S(t) · S(ε)
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Taking the first derivative of S(t),

S′(t) = lim
ε→0

S(t+ ε)− S(t)
ε

S(t+ ε)− S(t) = S(t) · S(ε)− S(t)
S(t+ ε)− S(t)

ε
= S(t) · S(ε)− I

ε

S′(t) = S(t) · lim
ε→0

S(ε)− I
ε

In the last line, I is the identity matrix, S(ε) represents the probablity of change at time ε. The rate
change matrix R will be a constant matrix.

S(ε) = I +Rε, so

I +Rε =


1− 3αε αε αε αε
αε 1− 3αε αε αε
αε αε 1− 3αε αε
αε αε αε 1− 3αε


In the limit of small ε, we have S′(t) = S(t)R, so we can write

S(t) =


rt st st st
st rt st st
st st rt st
st st st rt


Substituting this into S′(t) = S(t)R, we get the equations

r = −3αr + 3αs
s = αs+ αr

These are satisifed by

rt =
1
4
· (1 + 3e−4αt)

st =
1
4
· (1− e−4αt)

We can also look at this in terms of eigenvalues and eigenvectors.

r′ =
(
rsss

)
·


−3α
α
α
α


r′ = −3αr + 3αs

s′ =
(
srss

)
·


α
−3α
α
α


s′ = αs+ αr
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This system can be simplified to(
r′

s′

)
=
(
−3α 3α
α −α

)
·
(
r
s

)

To solve, we need to find determinants of the form[
λ+ 3α −3α
−α λ+ α

]
= 0

Where λ is an eigenvalue (I think . . .).

(λ+ 3α)(λ+ α)− 4α2 = 0

λ2 + 4λα = 0
λ = (0,−4α)

(
r(t)
s(t)

)
= c · v0 + de−4αt · v1 I think this is right ...

(λI −M)v = 0

where v is an eigenvector.

[
λ+ 3α −3α
−α λ+ α

]
·
(
u
v

)
= 0

(λ+ 3α)u− 3αw = 0
−αu+ (λ+ α)w = 0

u = w = 1 is one solution.
u+ 3w = 0 is another solution.

At the initial step, r(0) = 1 and s(0) = 0.(
r(0)
s(0)

)
= c

(
1
1

)
+ d

(
−3
1

)
=
(

1
0

)

c− 3d = 1
c+ d = 0

d = −c
4c = 1
c = 1/4
d = −1/4
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Jukes-Cantor model Final Equations

r(t) = v0c+ v1de
−4αt

r(t) = 1c+−3de−4αt

r(t) =
1
4
− 3(−1

4
)e−4αt from c = 1/4, d = −1/4

r(t) =
1
4

(1 + 3e−4αt) ♦ (3.11.1)

s(t) = v0c+ v1de
−4αt

s(t) =
1
4

+ (−1
4

)e−4αt from c = 1/4, d = −1/4

s(t) =
1
4

(1− e−4αt) ♦ (3.11.2)

To Do

• Review Eigenvalues and Eigenvectors
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3.12 Review: Determinants, Eigenvalues, Eigenvectors

3.12.1 Determinants

For a 2× 2 matrix

det
[
a11 a12

a21 a22

]
=
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

For a 3× 3 matrix:∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12

• Each of the terms in a determinant is a product of a diagonal. For the 3 × 3 matrix, notice how
the diagonal ‘wraps’ around to the other side.

• A matrix with a row of zeros has a determinant of zero.

• det(AB) = (det(A)) · (det(B))

3.12.2 Eigenvalues and Eigenvectors

The general form is

Ax = λx

where

• A is a square matrix
• λ is an eigenvalue
• x is an eigenvector

One of the uses of eigenvalues is their ability to simplify computations. It’s easier to multiply a vector
by a constant than to multiply it by a matrix.

Finding Eigenvalues

Ax = λx

Ax− λx = 0
Ax− λIx = 0
(A− λI)x = 0

In order for x to be an eigenvector, we must chose λ such that det(A− λI) = 0.
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Example: Finding eigenvalues

Let

A =
[
1 −2
2 −4

]
A− λI =

[
1 −1
3 −4

]
−
[
λ 0
0 λ

]
=
[
1− λ −2

3 −4− λ

]

Setting the determinant det(A− λI) = 0, we have

det(A− λI) = det
[
1− λ −2

3 −4− λ

]
= (1− λ)(−4− λ)− (−6)

= λ2 + 3λ− 4 + 6

= λ2 + 3λ+ 2

λ2 + 3λ+ 2 = 0
(λ+ 2)(λ+ 1) = 0

λ = {−1,−2}

∴ the eigenvalues are −1 and −2.

Finding Eigenvectors

• Start by finding the eigenvalues

• Substitute each eigenvalue λ into Ax = λx (or equivalently, into (A− λI)x = 0.

Example: Finding Eigenvectors

Let

A =
[
1 −2
3 −4

]
We have already found the eigenvalues for A: λ = {−1,−2}

Substituting λ = −1:[
1 −2
3 −4

]
·
[
x1

x2

]
= −1

[
x1

x2

]

x1 − 2x2 = −x1

3x1 − 4x2 − x2

2x1 − 2x2 = 0
3x1 − 3x2 = 0
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This system is satisfied by any vector where x1 = x2:

c ·
[
1
1

]
For any c.

Substituting λ = −2:[
1 −2
3 −4

]
·
[
x1

x2

]
= −2

[
x1

x2

]

x1 − 2x2 = −2x1

3x1 − 4x2 = −2x2

3x1 − 2x2 = 0
3x1 − 2x2 = 0

This system is satisifed by

c ·
[
2
3

]
for any constant c.
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3.13 Lecture – 11/20/2006

Logisitics

• We’ll wrap up phylogeny this week
• We’ll start formal language methods next week
• We’ll have one more homework assignment on phylogeny
• Our last exam will be a take-home test, distibuted on the last day of class.
• For next lecture, look over Felsenstein’s algorithm.

3.13.1 Jukes-Cantor Model

The Jukes-Cantor model uses functions r(t), s(t) and a matrix S(t):

S(t) =


r(t) s(t) s(t) s(t)
s(t) r(t) s(t) s(t)
s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)


S(t) has the property that S(t) · S(u) = S(t+ u):

r(t) s(t) s(t) s(t)
s(t) r(t) s(t) s(t)
s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)

 ·

r(u) s(u) s(u) s(u)
s(u) r(u) s(u) s(u)
s(u) s(u) r(u) s(u)
s(u) s(u) s(u) r(u)

 =


r(t+ u) s(t+ u) s(t+ u) s(t+ u)
s(t+ u) r(t+ u) s(t+ u) s(t+ u)
s(t+ u) s(t+ u) r(t+ u) s(t+ u)
s(t+ u) s(t+ u) s(t+ u) r(t+ u)


We provide direct definitions for r(t+u), s(t+u) (the symmetry of the matrix simplifies the job of doing
this)

r(t+ u) = r(t)r(u) + 3s(t)s(u) (3.13.1)
s(t+ u) = r(t)s(u) + s(t)r(u) + 2s(t)s(u) (3.13.2)

(Note that the book uses rt for r(t) and st for s(t)).

The Jukes-Cantor model does not take into account the differences between mutations of different clases
of nucleoties. (For example, mutations within the purines (AG) or within the pyrimidines (CT ), are
different than mutations that move from one of these groups to the other).

3.13.2 Kimura’s Model of Phylogeny

The Kimura model assigns different probabilities, based on whether the mutation crosses nucleotide
groups, as shown in Figure 3.34.

Where the Jukes-Cantor model uses two probabilities, the Kimura model will use three.

The S(t) matrix for the Kimura model is

A C G T

S(t) =


r(t) s(t) u(t) s(t)
s(t) r(t) s(t) u(t)
u(t) s(t) r(t) s(t)
s(t) u(t) s(t) r(t)


A
C
G
T

Notes on S(t)
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1−α−2β

A G

TC

α

α

β
β

β

β

1−α−2β

1−α−2β

1−α−2β

Figure 3.34: HMM For Kimura Model

• r(t) – represents transitions to the same nucleotide (1− α− 2β). There is one r(t) per row
• s(t) – represents transitions between the purines and pyrimidines (β). There are two of these per

row.
• u(t) – represents transactions to a different nucleotide within the same class (α). There is one u(t)

per row.

In the Kimura model, we’ll still want S(t+ t′) = S(t) · S(t′).

S(t+ ε) = S(t) · S(ε)
A C G T

S(ε) =


1− αε− 2βε βε αε βε

βε 1− αε− 2βε βε αε
αε βε 1− αε− 2βε βε
βε αε βε 1− αε− 2βε


A
C
G
T

S(t+ ε)− S(t) = S(t) · S(ε)− S(t)
= S(t)(S(ε)− I)

S′(t) = lim
ε→0

S(t+ ε)− S(t)
ε

= S(t) · lim
ε→0

S(ε)− I
ε

Let us refer to the matrix R as

R = lim
ε→0

S(ε)− I
ε

Kimura’s R will be

A C G T

R =


−α− 2β β α β

β −α− 2β β α
α β −α− 2β β
β α β −α− 2β


A
C
G
T

S′(t) = S(t) ·R is a system of linear differential equations. In what follows, we’ll be able to reduce this
to three equations and three unknowns.
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Expressed as matrices, S′(t) = S(t) ·R is
r′ s′ u′ s′

s′ r′ s′ u′

u′ s′ r′ s′

s′ u′ s′ r′

 =


r s u s
s r s u
u s r s
s u s r

 ·

−α− 2β β α β

β −α− 2β β α
α β −α− 2β β
β α β −α− 2β


Because of the symmetry we can simpify this to three equations:

r′ = (−α− 2β)r + uα+ 2sβ (3.13.3)
s′ = rβ + s(−α− 2β) + uβ + sα

= rβ − 2sβ + uβ (3.13.4)
u′ = rα+ sβ + u(−α− 2β) + sβ

= rα+ 2sβ + u(−α− 2β) (3.13.5)

We can sayr′s′
u′

 =

−α− 2β 2β α
β −2β β
α 2β −α− 2β

 ·
rs
u

 (3.13.6)

In (3.13.6), the 3× 3 matrix

M =

−α− 2β 2β α
β −2β β
α 2β −α− 2β


comes directly from equations (3.13.3), (3.13.4), and (3.13.5).

To solve this system, we start by computing eigenvalues:

λ = det(M − λI) = 0

M − λI =

−α− 2β − λ 2β α
β −2β − λ β
α 2β −α− 2− λ


det(M) =

−α− 2β − λ 2β α
β −2β − λ β
α 2β −α− 2− λ

 = 0

det(M) =

−α− 2β − λ 2β −λ
β −2β − λ −λ
α 2β −λ


= −λ

−α− 2β − λ 2β 1
β −2β − λ 1
α 2β 1


= −λ

 −α− 2β − λ 2β 1
α+ β + 2β + λ −4β − λ 0

2α+ 2β + λ 0 0



In the final line above, the only portion which contributes to the determinant is a31a22a13, so we have

det(M) = −λ(4β + λ)(2α+ 2β + λ) = 0



CS 697 Class Notes 97

The solutions will take the form eλt (a decay function), where λ ≤ 0.

The eigenvalues are

λ1 = 0
λ2 = −4β
λ3 = −2α− 2β

Now that we have the eiqenvalues, we can find the eigenvectors, v.

Mv = λv

For λ1 = 0:−α− 2β 2β α
β −2β β
α 2β −α− 2β

 ·
v1v2
v3

 = 0 ·

v1v2
v3


Therefore, for λ1 = 0,

v =

0
0
0


For λ2 = −4β:−α− 2β 2β α

β −2β β
α 2β −α− 2β

 ·
v1v2
v3

 = −4β ·

v1v2
v3



(−α− 2β)v1 + 2βv2 + αv3 = −4βv1
βv1 − 2βv2 + βv3 = −4βv2

αv1 + 2βv2 + (−α− 2β)v3 = −4βv3

(−α+ 2β)v1 + 2βv2 + αv3 = 0
βv1 + 2βv2 + βv3 = 0

αv1 + 2βv2 + (−α+ 2β)v3 = 0

(−α+ 2β)v1 + 2βv2 + αv3 = 0
v1 + 2v2 + v3 = 0

αv1 + 2βv2 + (−α+ 2β)v3 = 0

For λ2 = −4β, we have the eigenvector

v =

 1
−1
1


For λ3 = −2α− 2β:−α− 2β 2β α

β −2β β
α 2β −α− 2β

 ·
v1v2
v3

 = −2α− 2β ·

v1v2
v3


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For λ3,

v =

 1
0
−1


Now, we can put all of these pieces together.r(t)s(t)

u(t)

 = c · e0t
1

1
1

+ d · e−4βt

 1
−1
1

+ k · e(−2α−2β)t

 1
0
−1


where c, d, and k are constants.

Let

r(0) = 1 at t = 0, when we have no mutation
s(0) = 0
u(0) = 0

r(t)s(t)
u(t)

 =

cc
c

+

 d
−d
d

+

 k
0
−k

 =

1
0
0


Solving for c, d, k:

c+ d+ k = 1
c− d = 0

c = d

c+ d− k = 0
k = 2c
c = 1/4
d = 1/4
k = 1/2

Kimura model final equations

r(t)s(t)
u(t)

 =
1
4

1
1
1

+
1
4
e−4βt

 1
−1
1

+
1
2
e(−2α−2β)t

 1
0
−1

 (3.13.7)

r(t) =
1
4

+
1
4
e−4βt +

1
2
e(−2α−2β)t (3.13.8)

s(t) =
1
4
− 1

4
e−4βt (3.13.9)

u(t) =
1
4

+
1
4
e−4βt − 1

2
e(−2α−2β)t (3.13.10)
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3.14 Lecture – 11/22/2006 (Part 1)

Logistics

• hw3 online, due 12/4/2006

3.14.1 Jukes-Cantor Example

Recall that the Jukes-Cantor model of phylogeny used two probabilities:

• r(t) – denotes a transition of a→ a for any nucleotide a.

• s(t) – denotes a transition of a→ b for any nucleotides a, b, a 6= b.

Over time t+ u, r and s can be expressed as

r(t+ u) = r(t)r(u) + 3s(t)s(u)
s(t+ u) = r(t)s(u) + s(t)r(u) + 2s(t)s(u)

Let us use T to denote a tree, and t to denote an evolution time (assigned to edges of the tree). We are
interested in the probability

P (x0|T, t0)

We know x0 and assume T , t0. Our goal is to maximize P over trees and time distributions.

Consider the tree in Figure 3.35, having three leaves.

4 x3

x1 x2

x5

t 1
t 2

t 3
t 4

x

Figure 3.35: Tree T with three leaves

Our hypothesis – the tree has the shape shown in figure 3.35. We would like to evaluate the probability
of our hypothesis. That is, we’d like to find the probability

PT = P (x1, x2, x4, x4, x5|T, t1, t2, t3, t4)

Applying conditional probabilities,

PT = P (x1|x4, t1) · P (x2|x4, t2) · P (x4|x5, t4) · P (x3|x5, t3) · P (x5)

This computation involves lots of very small numbers. In a computer program, we’d want to use
logarithms.

Felsenstein’s Algorithm computes the likelihood over a tree, by taking pairs of leaves at a time, and
working bottom-up to the root of the tree.

See Durbin pg. 200–201 for Felsenstein’s algorithm.
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3.14.2 Calculating The likelihood for ungapped aligments

In this section, we’ll see how to calculate the likelihood that a pair of sequences evolved from a common
ancestor. As we go through this, it’s helpful to have a concrete example to refer to. We’ll use the
example:

x1 = CCGGCCGCGCG

x2 = CGGGCCGGCCG

In this section, we deal with the Jukes-Cantor approach.

Given two sequences, x1, x2, there is only one tree. The tree has brances for each of x1, x2, and the
root is their common ancestor. This is shown in figure 3.36. In figure 3.36 xa means “ancestor”.

2

xa

x1 x

Figure 3.36: Tree for a pair of ungapped alignments

To compute the probability of the sequences, we’ll have to start with the probabilites that each pair of
nucleotides came from a common ancestor. For example:

• x11 = C, x21 = C is a pair, so we compute that as a tree.
• x12 = C, x22 = G is a pair, so we compute that as a tree.
• x13 = G, x23 = G is a pair, so we compute that as a tree.

And so fourth.

In general

P (x1i
, x2i

, xa|T, t1, t2) = P (xa) · P (x1i
|xa, t1) · P (x2i

|xa, t2)

There is one more twist – while we know what x1i and x2i are, we don’t know what their ancestor is.
Thus, the probability that x1i

and x2i
came from a common ancestor is the probability that they both

descended from an A, plus the probability that they both descended from a G, plus the probability that
they both descended from a C, plus the probability that they both descended from a T .

In other words, we need to find P for every possible ancestor and sum them together:

P (x1i
, x2i
|T, t1, t2) =

∑
a∈A,C,G,T

P (xa) · P (x1i
|xa, t1) · P (x2i

|xa, t2) (3.14.1)

The book uses qA, qC , qG, qT where I’ve used P (xa). I’m changing the notation slightly so
that it makes more sense to me.

To find the probability of the two sequences:

• Find the probability that each pair of nucleotides came from a common ancestor. Again, we’ll
need to consider all 4 nucleotides as possible ancestors.

• To find the probability of the entire sequence, we take the product of the probabilities for the
individual pairs.

The probability of the entire sequences (N pairs) is therefore:

P (x1, x2|T, t1, t2) =
N∏
i=1

= P (xi1 , x2i
|T, t1, t2) (3.14.2)
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Note that we can save ourselves a little bit of work by looking at the different x1i , x2i combinations
and the number of times they occur. For example, in x1, x2 the pair (C,C) occurs four times – we can
compute the probability for (C,C) once and raise it to the fourth power.

Now, for the example. Recall

r(t) = 1
4 (1 + 3e−4αt) see (3.11.1)

s(t) = 1
4 (1− e−4αt) see (3.11.2)

r(t+ u) = r(t)r(u) + 3s(t)s(u) see (3.13.1)
s(t+ u) = r(t)s(u) + s(t)r(u) + 2s(t)s(u) see (3.13.2)

First, cases where x1i
= C and x2i

= G.

P (C,G|T, t1, t2) =
P (xA) · s(t1) · s(t2) 2 mutations: A→ C, A→ G

+ P (xC) · r(t1) · s(t2) 1 mutation: C → G

+ P (xG) · s(t1) · r(t2) 1 mutation: G→ C

+ P (xT ) · s(t1) · s(t2) 2 mutations: T → C, T → G

The Jukes-Cantor model assigns equal probabilities for each of the mutations, so

P (C,G|T, t1, t2) = 1
4 (2 · s(t1)s(t2) + r(t1)s(t2) + s(t1)r(t2))

= 1
4s(t1 + t2) from (3.13.2)

Next, cases where x1i
= G and x2i

= G.

P (G,G|T, t1, t2) =
P (xA) · s(t1) · s(t2) 2 mutations
+ P (xC) · s(t1) · s(t2) 2 mutations
+ P (xG) · r(t1) · r(t2) 0 mutations
+ P (xT ) · s(t1) · s(t2) 2 mutations

P (G,G|T, t1, t2) = 1
4 (3s(t1)s(t2) + r(t1)r(t2))

= 1
4 (s(t1 + t2)) from (3.13.2)

Next, cases where x1i = C and x2i = C.

P (C,C|T, t1, t2) =
P (xA) · s(t1) · s(t2) 2 mutations
+ P (xC) · r(t1) · r(t2) 0 mutations
+ P (xG) · s(t1) · s(t2) 2 mutations
+ P (xT ) · s(t1) · s(t2) 2 mutations

P (C,C|T, t1, t2) = 1
4 (3s(t1)s(t2) + r(t1)r(t2))

= 1
4 (r(t1 + t2)) from (3.13.1)
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Finally, cases where x1i = G and x2i = C.

P (G,C|T, t1, t2) =
P (xA) · s(t1) · s(t2) 2 mutations
+ P (xC) · s(t1) · r(t2) 1 mutation
+ P (xG) · r(t1) · s(t2) 1 mutation
+ P (xT ) · s(t1) · s(t2) 2 mutations

P (G,C|T, t1, t2) = 1
4 (2 · s(t1)s(t2) + r(t1)s(t2) + s(t1)r(t2))

= 1
4s(t1 + t2) from (3.13.2)

Note that the probabilities for CC and GG are the same.
Likewise, the probabilities for CG, CG are the same.

x1, x2 have 8 of 11 pairs with CC or GG. These each have probability 1
4 (r(t1 + t2))

x1, x2 have 3 of 11 pairs with GC or CG. These each have probability 1
4 (s(t1 + t2))

The final probability is

P (x1, x2|T, t1, t2) = (1
4 )11 · (s(t1 + t2))3 · (r(t1 + t2))8 from (3.14.2)



Part 4

Formal Language Methods

4.1 Lecture – 11/22/2006 (Part II)

Suppose we wanted to count then occurrences of a specific sequence of nucleotides. For example – how
many times does CGG occur in a particular piece of DNA?

DFAs are good at recognizing sequences of symbols. However, the are not good at counting them.

One can create a finite state machine that works as a binary counter (if it counts to N , then it has
log2N states). We might be able to count nucleotide sequences with by hooking two machines together:
one that recognizes nucleotides, and one that counts them.

For next class: brush up on automata theory and grammars.

103
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4.2 Logarithm Review

ln(ex) = x

eln x = x

lim
x→−∞

ex = 0

lim
x→∞

ex =∞

ex+y = exey

ex−y =
ex

ey

(ex)y = exy

d

dx
ex = ex

ax = ex ln a

ax+y = axay

loga x =
lnx
ln a

loga x = y ⇔ ay = x

4.3 Decay Functions

Let y = f(t) denote the size of a population at time t. The rate of growth (or decay) will be proportional
to the size of the population.

f ′(t) = k · f(t)

for some constant k.

If y(t) is the value of quantity y at time t, then the rate of change in y is

dy

dt
= ky

For k > 0, the is a growth function; for k < 0, this is a decay function.

Any formula that satisifies

dy

dt
= ky

must have the form

y = cekt

In general,

y(t) = Aekt

where A represents the value at time zero: y(0) = A.

Therefore, we can say

y(t) = Aekt (4.3.1)

y(t) = y(0)ekt (4.3.2)
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4.4 Lecture – 11/27/2006

4.4.1 PROSITE

PROSITE is a swedish project that allows one to look up geneome research (you search for research
papers by genome pattern). Some characteristics of PROSITE patterns:

• patterns are separated by dashes. For example

p0 - p1 - p2 - ... - pk

where pi is a pattern (a sequence of protiens)

• x(5) – match any sequence of 5 characters

• x(m,n) – means match at least m occurrences, but no more than n.

• [AHKPU] – match any of the symbols A,H,K,P,U

• {AHKPU} – match any symbol that is not A,H,K,P,U (like [^AHKPU])

An article on PROSITE: http://bib.oxfordjournals.org/cgi/reprint/3/3/265
Prosite syntax: http://www.expasy.org/prosite/

4.4.2 Regular Languages

The class of regular languages R is closed with respect to union, product and star. These are the regular
operations.

Regular operations are monotonic. Negation is not a monotonic operation.

4.4.3 Context-Free Grammars for RNA

The spatial Structure of RNA

• RNA and DNA form coils. This entanglement is necessary for the protien to function properly.

• Given a succession of nucleotides, can we predict how they will coil? For DNA, there is affinity
between the nucleotide pairs (AT,CG). For RNA, there is affinity between the pairs (AU,CG).
These affinities affect the shape of the coil.

For example: given CAGGAAACUG, Figure 4.1 shows affinity between three nucleotide pairs. Figure
4.2 shows one possible shape for the coil.

C  A  G  G  A  A  A  C  U  G

Figure 4.1: Nucleotide affinity for CAGGAAACUG

In order to describe this kind of structure with a grammar, we need a context free grammar. For example

S → CSG | GSC | ASU | USA
S → X
X → CX | GX | AX | TX | λ

The first production matches nucleotide pairs. The third production “fills in the middle”.
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A

UA

C G

CG

G A

A

Figure 4.2: Possible Coil shape for CAGGAAACUG

Using the grammar above, a derivation for CAGGAAACUG is

S ⇒ CSG
⇒ CASUG
⇒ CAGSCUG
⇒ CAGXCUG
4⇒ CAGGAAAXCUG

⇒ CAGGAAACUG

We can use this idea to generate grammars for more complex structures, such as the one shown in Figure
4.3.

Figure 4.3: A more complicated coil structure

4.4.4 Review of CFGs

A CFG is a 4-tuple

G = (VN , VT , S, F )

where

• VN is the set of non-terminals
• VT is the set of terminals
• S is the start symbol
• F is the set of productions.

Productions typically have the form

X → α

An erasure production has the form

X → λ

where λ is the null word. This production allows the non-terminal X to disappear.



CS 697 Class Notes 107

If λ /∈ L(G), then there is a grammar G′ such that G′ has no erasure rules and L(G) = L(G′).

4.4.5 Stochastic Context Free Grammars

A traditional context-free grammar has productions of the form

S
∗⇒ . . . X . . .

X → α1

X → α2

...
X → αn

One can apply any of the X → αi rules to the non-terminal X.

A stochastic context-free grammar (SCFG) assigns a probability to each production:

X → α1 P1

X → α2 P2

...
X → αn Pn

Because this is a probability distribution,
∑
i Pi = 1 where the LHS non-terminal is X.

With an SCFG, we can determine the probability of deriving a particular word, but only if the word has
a finite number of derivations.

The question “is x ∈ L(G)” is decideable for context-free grammars, if all productions have the form
X → Y Z or X → a.

If G is a CFG, λ /∈ L(G), then there is a grammar G′ such that

1. L(G′) = L(G)
2. Productions of G′ have the form X → Y Z or X → a

Such a grammar G′ is said to be in Chomsky Normal Form.

If a context-free grammar is in Chomsky Normal Form, then there is a bound on the number of derivations
(the parse tree is a binary tree).

4.4.6 Coche-Younger-Kasami Algorithm

This algorithm is also known as the CYK Algorithm.

The CYK algorithm is a parsing algorithm for parsing context-free grammars. The algorithm can also
be generalized to SCFGs. We’ll start with the regular CFG algorithm first.

Let x = x1 . . . xn, and let the set of non-terminals be VN = W1 . . .Wm.

The algorithm is based on the following formula

γ(i, j, k) =

{
1 if Wk

∗⇒ xi . . . xi+j−1

0 otherwise
(4.4.1)

We have γ(1, L, 1) = 1 where

W1
∗⇒ x1 . . . xL = x
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(L is the length of the word).

Given a grammar in Chomsky Normal form, we can subdivide the RHS as follows:

W1
∗⇒Wi1 . . .Wil ⇒ xi1 . . . xil

Both the first and second parts of this derivation take place in l − 1 steps, for a total derivation length
of 2l − 1. There are a finite number of steps.

In CYK, γ has the following meaning

γ(i, l,Wj)

We generate a string of length l (middle term) starting at position i (first term), from the symbol Wj .
(If we order the productions, then Wj could just be the index of a production).

If l = 1, the computation is easy – Wj either produces the non-terminal directly or it doesn’t.

Algorithm 1 CYK Algorithm
1: procedure CYK
2: for i = 1 to L do . Handle l = 1 first
3: for j = 1 to M do
4: if wj → xi ∈ F then
5: γ(i, 1,Wj) = 1
6: else
7: γ(i, 1,Wj) = 0
8: end if
9: end for

10: end for
11: for i = 1 to L do
12: for j = 1 to L− 1 do
13: for k = 1 to M do . for each production
14: γ(i, j, k) = max1≤p≤M

1≤q≤M
1≤l≤j−1

(γ(i, l, p) · γ(i+ l, j − l, q) · t(k, p, q)) . See below for t()

15: end for
16: end for
17: end for
18: return γ(1, L, 1) . starting from start symbol
19: end procedure

In algorithm 1, t is defined as follows

t(k, p, q) =

{
1 if Wk →WpWq ∈ F
0 otherwise

t(k, p, q) tells us whether there is a production that allows us to subdivide the derivation.

Notes on some Aspects of the Algorithm

When does γ(i, j, k) = 1? When

Wk
∗⇒ xi . . . xi+j−1

Given a production Wk = WpWq, we can derive

Wk
1⇒WpWq

∗⇒ xi . . . xi+j−1
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such that

Wp
∗⇒ xi . . . xi+l−1 length l

Wq
∗⇒ xi+l . . . xi+j−1 length j − l

For Wp, γ(i, l, p) = 1
For Wq, γ(i+ l, j − l, q) = 1

With this form of Wk = WpWq subdivision, we’ll have γ(i, j, k) = 1 if the following three conditions are
met:

1. γ(i, l, p) = 1
2. γ(i+ l, j − l, q) = 1
3. Wk →WpWq ∈ F (eg t(k, p, q) = 1)

In algorithm 1, this conditions are captured on line 14.

After calculating γ values, it’s possible to reconstruct the parse tree with a traceback algorithm.

Complexity of CYK

• Space Requirements: L2 ·M

• Time Requirements: L3 ·M3

(L is the length of the word, and M is the number of productions).
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4.5 Lecture – 12/29/2006

4.5.1 Stochastic Context Free Grammars

Given a Stochastic CFG, there are two questions we might like to answer.

1. Given x, find P (x|G) – what is the probability that the grammar G generated x?
2. For a nonterminal, Uv, find P (Uv|x,G) – given x and G, what is the probability that the symbol
Uv was used in the derivation of x?

Problem 1 can be solved using the inside algorithm. Problem 2 can be solved using the outside algorithm.

As noted last time, we assume that the grammar is in Chomsky Normal Form. A non-terminal X will
appear as the LHS of two types of productions:

X → Y1Z1

X → Y2Z2

. . .
X → YmZm
X → a

To each production, there is an associated probability. We denote the probability of using X → Y2Z2 as

tX(Y2, Z2)

In general, if we have productions whose LHS member is X

X → α1

. . .
X → αr

Then we have probabilities p1 . . . pr such that
r∑
i=1

pi = 1

It’s a probability distribution.

Let x be a word such that x = x1 . . . xL. x is L symbols in length. Figure 4.4 shows part of a derivation
tree that might produce x.

1

v

i j

x x

L

W

Figure 4.4: Partial parse tree showing derivation Wv
∗⇒ xi . . . xj

We will denote

P (Wv
∗⇒ xi . . . xj) = α(i, j, v)

This represents the probability that production Wv is used to derive the substring xi . . . xj .

The overall length of x is L. The length of xi . . . xj is j − i+ 1 (i, j are inclusive indexes).
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4.5.2 Inside Algorithm

The inside algorithm allows us to find the probability of generating a given string: P (x|G). There are
two cases to consider:

Case 1: We use the production Wv → a, and immediately know that Wv generates a. This step will be
captured by the initialization phase of the inside algorithm.

Case 2: We use Wv →WyWz. Suppose Wv
∗⇒ xi . . . xj . A portion of xi . . . xj will come from Wy and a

portion will come from Wz. However, we don’t know where the split occurs, so will we have to examine
every possible break in order to find the one that is most probable.

Figure 4.5 shows the context in which Case 2 operates.

j

v

Wy Wz

xx

L1 i k k+1

W

Figure 4.5: Inside algorithm, Case 2 (iteration phase)

Again, note that k can be anywhere between i and j − 1, and we’ll have to check each possible position.

In Figure 4.5, there are really three events taking place:

Wv →WyWz

Wy
∗⇒ xi . . . xk

Wz
∗⇒ xk+1 . . . xj

Because this is a context-free grammar, all three events are independent.

Algorithm 2 Inside Algorithm
1: procedure Inside Algorithm(String x, Grammar G)
2: . Initialization Phase
3: for i = 1 to L do
4: α(i, i, v) = P (Wv → xi)
5: end for
6: . Iteration Phase
7: for i = 1 to L do
8: for j = i+ 1 to L do
9: for v = 1 to M do

10: α(i, j, v) =
∑
y,z
k=i...j−1

α(i, k, y) · α(k + 1, j, z) · tv(y, z)
11: end for
12: end for
13: end for
14: return P (W1

∗⇒ x1 . . . xL) = P (x|G) = α(1, L, 1)
15: end procedure

Several points of algorithm 2 are worth discussing.
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Look at the formula in line 10

α(i, j, v) =
∑

y,z
k=i...j−1

α(i, k, y) · α(k + 1, j, z) · tv(y, z) (4.5.1)

• i and j are character indexes. v is a production index.

• y and z are RHS productions in Wv →WyWz

• α(i, k, y) covers xi . . . xk, produced by Wy (see figure 4.5 for reference).

• α(k + 1, j, z) covers xk+1 . . . xj , produced by Wz

• tv(y, z) denotes the probability of using production Wv →WyWz

In line 14

P (x|G) = α(1, L, 1) (4.5.2)

α(1, L, 1) is the probability of producing the word x = x1 . . . xL, starting with production W1 (the start
symbol).

The inside algorithm works bottom up.

4.5.3 Outside Algorithm

Given a grammar G, suppose we were interested in

β(i, j, v) = P (x|Wv
∗⇒ xi . . . xj)

This is the probability that x was generated by G, conditioned by Wv producing the subsequence xi . . . xj

What would β(1, L, 1) mean? It means:

β(1, L, 1) = P (x|S ∗⇒ x1 . . . xL) = 1

If x was generated, then the start symbol must produce x1 . . . xL.

Before getting into the details of the algorithm, let’s look at some diagrams to provide context.

Figure 4.6 shows Wv
∗⇒ xi . . . xj . Wv is not the start symbol of the grammar.

j

1

Wv

xx

L1 i

W

Figure 4.6: Wv
∗⇒ xi . . . xj , v 6= 1

Suppose that Wv was produced by Wy. This can happen in two ways: Wy → WvWz or Wy → WzWv.
The former case is shown in figure 4.7, the latter case is shown in figure 4.8
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i

v

Wy

Wz

W1

xx

L1 kj+1j

W

Figure 4.7: Case of Wy →WvWz

i

y

W1

Wz Wv

xx

L1 jk i−1

W

Figure 4.8: Case of Wy →WzWv

Algorithm 3 Outside Algorithm
1: procedure Outside Algorithm
2: . Initialization Phase
3: β(1, L, 1) = 1
4: β(1, L, v) = 0 if v 6= 1
5: . Iteration Phase
6: for i = 1 to L do
7: for j = i+ 1 to L do
8: for v = 1 to M do
9:

β(i, j, v) =
∑

y,z
k=1...i−1

α(k, i− 1, z) · β(k, j, y) · ty(z, v)

+
∑

y,z
k=1...i−1

α(j + 1, k, z) · β(i, k, y) · ty(v, z)

10: end for
11: end for
12: end for
13: . termination phase
14: return P (x|G) =

∑M
v=1 β(i, i, v) · ev(xi)

15: end procedure
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Some discussion of algorithm 3.

• Lines 3 and 4 are effectively saying that “a derivation may only start with the start symbol”.

• i, j, k are character indexes. v, y, z are production indexes.

• In

β(i, j, v) =
∑

y,z
k=1...i−1

α(k, i− 1, z) · β(k, j, y) · ty(z, v)

+
∑

y,z
k=1...i−1

α(j + 1, k, z) · β(i, k, y) · ty(v, z) (4.5.3)

The first sum handles the case of Wy →WzWv (See figure 4.8). The second sum handles the case
of Wy →WvWz (see figure 4.7).

• In the return statement,

ev(xi) = P (Wv → xi) (4.5.4)

ev(xi) acts like an emission probability.

Terms like α(i, j, v) mean

P (Wv
∗⇒ xi · · ·xj)

Terms like β(i, j, v) mean

P (x|Wv
∗⇒ xi · · ·xj)

Taken together

α(i, j, v) · β(i, j, v) = P (x ∈ L(G),Wv
∗⇒ xi · · ·xj)

The outside algorithm gives you the probability of a tree, assuming that certain portions have been
generated.

4.5.4 Parameter estimation for SCFGs

Let

φv =
∑
i

∑
j

P (x ∈ L(G),Wv
∗⇒ xi · · ·xj)

What does φv mean?

If we divide

φv
P (x ∈ L(G))

=
∑
i

∑
j

P (Wv
∗⇒ xi · · ·xj |x ∈ L(G)) (4.5.5)

Equation (4.5.5) is the approximate frequency with which Wv appears in the generation of x. This
formula can be used for parameter estimation (similar to the way we estimated parameters for HMMs).

Logistics

• Our next take-home exam will be distributed on 12/6.
• Our next take-home exam will be due on 12/13.
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4.6 Lecture – 12/4/2006

4.6.1 Stochastic Context Free Grammars

When working with SCFGs, we assume that all grammars are in Chomsky Normal Form.

Last time, we looked at the probabilities:

α(i, j, k) = P (Wv
∗⇒ xi . . . xj) (4.6.1)

β(i, j, v) = P (S ∗⇒ x|Wv
∗⇒ xi . . . xj , G) (4.6.2)

α (4.6.1) is the probability that Wv produced the substring xi . . . xj .

β (4.6.2) is the probability that x was produced from the start symbol S, under the condition that Wv

produced the substring xi . . . xj .

How do we compute P (S ∗⇒ x|G)? Let’s look at a diagram.

S

v

1 i j L

W

Figure 4.9: Partial derivation tree for S ∗⇒ x

The probability of Wv
∗⇒ xi . . . xj is α.

The probability of S ∗⇒ x is β (if Wv
∗⇒ xi . . . xj).

P (S ∗⇒ x|G) =
∑
v

α(i, j, v) · β(i, j, v)

= α(1, L, 1) for every i and j

For the special case of i = j (a single character), only the outside probabilities are required:

P (S ∗⇒ x|G) =
∑
v

α(i, i, v) · β(i, i, v)

=
∑
v

ev(i) · β(i, i, v)

This holds for every i.

SCFG’s have what is loosely equivalent to transition probabilities and emission probabilities in Hidden
Markov Models.

tv(y, z) = probability of Wv →WyWz like a transition probability
ev(i) = probability of Wv → i like an emission probability
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Together, tv and ev form a probability distribution. For every Wv,∑
yz

tv(y, z) +
∑
i

ev(i) = 1

4.6.2 Parameter Estimation for SCFGs

As with HMMs, there is an iterative method that allows SCFGs to be “trained” against data. This
method is similar to the Baum-Welsch process.

α(i, j, v) · β(i, j, v) = P (S ∗⇒ x,Wv
∗⇒ xi . . . xj |G) (4.6.3)

For a fixed v.

We can use the definition of conditional probabily to rewrite this as

P (Wv
∗⇒ xi . . . xj |S

∗⇒ x,G) · P (S ∗⇒ x|G) (4.6.4)

Equation (4.6.4) is the probability that Wv is used in a deriviation – how do we estimate this?

Let Pv be the probability that Wv is used in a derivation. From (4.6.3) and (4.6.4) we can say

Pv =

∑L
i=1

∑L−1
j=i α(i, j, v) · β(i, j, v)

P (S ∗⇒ x|G)
(4.6.5)

Again, Pv is the probability that Wv is used in a derivation. This is something we can count by inspection.
However, counting does not tell us which Wv →WyWz was used. So, we still need something else.

The probability that we’re really interested in is

P (Wv →WyWz
∗⇒ xi . . . xj |S

∗⇒ x,G) (4.6.6)

Given the case where Wv
1⇒WyWz

∗⇒ xi . . . xj , there must be a number k such that

Wy ⇒ xi . . . xk

Wz ⇒ xk+1 . . . xj

In parameter estimation, we must consider every k from i < k ≤ j.

The probabilities of these events are

P (Wy
∗⇒ xi . . . xk) = α(i, k, y) (4.6.7)

P (Wz
∗⇒ xk+1 . . . xj) = α(k + 1, j, z) (4.6.8)

Both (4.6.7) and (4.6.8) happen in the context of Wv →WyWz.

Considering all possible k values, our probability computation looks like this:∑j−1
k=1 tv(y, z) · α(i, k, y) · α(k + 1, j, z) · β(i, j, v)

P (S ∗⇒ x|G)
(4.6.9)

The one remaining question is how to express tv.

tv(y, z) = P (Wv →WyWz|Wv was used)

=
P (Wv →WyWz was used)

P (Wv was used)
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Our new estimate of tv (we’ll call it t̂v) is given is (4.6.10)

t̂v(y, z) =

∑L−1
i=1

∑L
j=i tv(y, z) · α(i, k, y) · α(k + 1, j, z) · β(i, j, v)∑L−1

i=1

∑L
j=i α(i, j, v) · β(i, j, v)

(4.6.10)

A similar procedure exists for estimating ev(a). In this case, we’re after

ev(i) =
P (Wv → a was used)
P (Wv was used)

We estimate êv(a) using (4.6.11) (from Durbin, pg 256)

êv(a) =

∑
i|xi=a

β(i, i, v) · ev(a)∑L
i=1

∑L
j=1 α(i, j, v) · β(i, j, v)

(4.6.11)

4.6.3 HMM vs SCFG

• is it fair to compare HMMs and SCFGs?
• HMMs are simpler structures. They tend to have many fewer parameters.
• HMMs tend to be more popular, primarily because of their simplicity. SCFGs almost end up giving

us “too much freedom”.

4.6.4 CYK Algorithm For Stochastic Grammars

A few classes ago, we looked at the CYK algorithm for parsing context-free grammars. Here, we will
look at a variation that handles stochastic context-free grammars. In spirit, this is similar to the Viterbi
algorithm for Hidden Markov Models.

α(i, j, v) can be expressed as a recurrence:

α(i, i, v) = ev(i)

α(i, j, v) =
M∑
y=1

M∑
z=1

j−1∑
k=i

tv(z, y) · α(i, j, y) · α(k + 1, j, z)

In the probabilistic CYK algorithm, our goal is to maximize probabilities.

Let’s examine the quantity

tv(y, z) · α(i, k, y) · α(k + i, j, z) (4.6.12)

These terms represent the probability that

Wv
1⇒WyWz

∗⇒ xi . . . xkxk+1 . . . xj

We are producing a string, but we are using a precisely-chosen derivation tree.

In the CYK algorithm for stochastic context-free grammars, we will seek to maximize (4.6.12).

Below, we use γ(i, j, v) in the algorithm. This γ is a little different than the one used in the non-stochastic
version of the algorigthm. Here, j is an index – in the earlier version j was a length.

γ(i, j, v) = max
y,z,k

log [tv(y, z) · α(i, k, y) · α(k + 1, j, z)] (4.6.13)
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Because we deal with multiplication of small numbers, we’ll want to use logarithms:

γ(i, j, v) = max
y,z,k

[log tv(y, z) + logα(i, k, y) + logα(k + 1, j, z)] (4.6.14)

We can replace α(i, k, y) with γ(i, j, y), and we can replace α(k + 1, j, z) with γ(k + 1, j, z). This
substitution gives

γ(i, j, v) = max
y,z,k

[log tv(y, z) + log γ(i, k, y) + log γ(k + 1, j, z)] (4.6.15)

Of course, we’ll need to remember argmaxy,z,k in order to do backtracking (τ in the algorithm given
below)

Algorithm 4 Stochastic CYK algorithm
1: procedure Stochastic CYK
2: . Initialization Phase
3: for i = 1 to L do
4: for v = 1 to M do
5: γ(i, i, v) = log ev(i)
6: τ(i, i, v) = (0, 0, 0)
7: end for
8: end for
9: . Iteration Phase

10: for i = 1 to L− 1 do
11: for j = i+ 1 to L do
12: for v = 1 to M do
13: γ(i, j, v) = maxy,z max1≤k≤j−1 γ(i, k, y) + γ(k + 1, j, z) + log tv(z, y)
14: τ(i, j, v) = argmaxy,z,k
15: end for
16: end for
17: end for
18: . termination phase
19: return γ(1, L, 1)
20: end procedure

In line 13, note that log is only applied to the tv term. (γ takes a log value in the initialization phase,
so we just keep adding to it).

In line 14, τ is used to maintain traceback information. Page 257 of Durbin gives the traceback routine
shown in algorithm 5

4.7 Secondary Structure of RNA

• RNA is a string of ACGU nucleotides.

• RNA is typically a single strand. It tends to coil itself into different shapes. As it turns out, these
shapes have biological significance.

• Looking at a strand of RNA, can we predicat how the strand would coil? What secondary structure
would it form?

For next class, read over the Nussinov algorithm.
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Algorithm 5 Stochastic CYK traceback
1: procedure Stochastic CYK Traceback
2: . Initialization Phase
3: Push (1, L, 1) onto the stack.
4: . Iteration Phase
5: Pop (i, j, v)
6: (y, z, k) = τ(i, j, v)
7: if τ(i, j, v) = (0, 0, 0) then . implies i = j
8: attach xi as the child of v.
9: else

10: Attach y,z to parse tree as children of v
11: Push (k + 1, j, z)
12: Push (i, k, y)
13: end if
14: end procedure
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4.8 Lecture – 12/6/2006

4.8.1 RNA Folding

RNA consists of a sequence of AGCU nucleotides. Affinities between nucleotide pairs are

• G− C (strongest)
• A− U (less strong)
• G− U (weakest)

Figure 4.10 shows some of the structural features of RNA.

Stem

Hairpin Loop

Internal
Loop

Bulge

Pseudoknot

Figure 4.10: Structural Features of RNA

The challenge is to take a linear strand and predict the shape of the folding.

This folding, the secondary structure is caused by nucleotide affinity. In figure 4.11, affinity between G
and C produces a stem.

C

G C

GC

A

U

A
A

A

Figure 4.11: Secondary shape from G− C

The Nussinov algorithm is based on nucleotide affinity. It does not consider stability of the resulting
structure – the algorithm can produce structures that would never occur in nature.

4.8.2 RNA and Parenthesis Matching

The table below uses balanced parenthesis to show different ways in which a single strand can fold. Dots
indicate no folding.

Let’s Illustrate a few of these examples.

Nussinov’s algorithm will allow the structure of Figure 4.12. However, such a structure would never
occur in nature – in nature, we never see hairpin loops whose length is less than three.
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A C G U A C G U

Shape 1 (no folding) · · · · · · · ·
Shape 2 (Figure 4.12) · · · · ( · · )
Shape 3 (Figure 4.13) · · ( · · · · )
Shape 4 (Figure 4.14) · · ( ( · · ) )
Shape 5 ( · · · · · · )
Shape 6 ( · · ( · · ) )
Shape 7 (Figure 4.15) ( · · ) ( · · )
Shape 8 ( ( · · · · ) )
Shape 9 ( ( ( · · ) ) )

Table 4.1: Examples of RNA Folding

U

A C G U A

C

G

Figure 4.12: Shape 2 of table 4.1

Figure 4.13 is more plausable than Figure 4.12. Although the G − U link is weaker, the loop length is
something that could actually occur in nature.

G

A C G

U

U

C

A

Figure 4.13: Shape 3 of table 4.1

Figure 4.14 shows another impossible hairpin.

C

A C
G

U G

U

A

Figure 4.14: Shape 4 of table 4.1

Figure 4.15 has an interesting structure to it.

C

A U A U

G C G

Figure 4.15: Shape 7 of table 4.1
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The others are pretty easy to visualize.

4.8.3 Number of Coilings in an RNA String

Given n pairs of parenthesis, how many different ways can you arrange them so that the parens are
balanced?

The answer is a number known as a Catalan Number(
2n
n

)
n+ 1

∼ Θ(4n)

Let S(n) denote the number of possible coilings for an RNA string.

Base cases:

S(0) = 1
S(1) = 1
S(2) = 1

For the (n + 1)st coiling, there are two ways it could happen: (1) the (n + 1)st nucleotide is paired or
(2) the (n+ 1)st nucleotide is not paired.

For case (2), there’s no additional coiling. S(n+ 1) = S(n).

For case (1), let k be a point somewhere along the RNA string. The (n+ 1)st nucleotide could coil back
to any possible index for k. We need to count each of these points as a possible coiling for nucleotide
(n+ 1).

S(n+ 1) = S(n) +

(
n−2∑
k=0

S(k) · S(n− k − 1)

)
(4.8.1)

In (4.8.1), S(n) represents the case of no coiling, and the summation represents the coiling with another
nucleotide k.

Writing the k = 0 case explicitly,

S(n+ 1) = S(n) + S(n− 1) +

(
n−2∑
k=1

S(k) · S(n− k − 1)

)
(4.8.2)

Equation (4.8.2) shows S(n+ 1). For S(n), this is

S(n) = S(n− 1) + S(n− 2) +

(
n−2∑
k=1

S(k) · S(n− k − 2)

)
(4.8.3)

We can plug (4.8.3) back into (4.8.2), giving

S(n+ 1) = S(n) + S(n− 1) + S(n− 2) +

(
n−3∑
k=1

S(k) · S(n− k − 1)

)
(4.8.4)

From (4.8.3) and (4.8.4) is pretty easy to see that if p < q, then S(p) < S(q).

∴ S(n− k − 2) < S(n− k − 1)
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From (4.8.2) and (4.8.3) we can deduce

S(n+ 1) ≥ 2 · S(n)

S(n) ≥ 2n−1

Given a sequence of, say, 100 nucleotides this is an infeasable number of computations.

4.8.4 Nussinov Algorithm

Given a sequence x = x1 . . . xl, our goal is to find a folding that maximizes the number of pairs.

Figure 4.16 - 4.19 show four different ways in which folding can occur:

• Add unpaired position i onto best structure for subsequence i+ 1,j (Figure 4.16).
• Add unpaired position j on to the best structure for subsequence i, j − 1 (Figure 4.17).
• Add i, j pair onto best structure found for subsequence i+ 1, j − 1 (Figure 4.18).
• Combine two optimal substuctures i,k and k + 1, j (Figure 4.19).

i

ji+1

Figure 4.16: Sample Folding #1 – unpaired i

i

j

j−1

Figure 4.17: Sample Folding #2 – unpaired j

Let γ(i, j) be the maximal number of joined nucleotides in a folding of xi . . . xj (assuming i ≤ j).

We define γ(i, i− 1) = 0 (this is a technicality that simplifies the algorithm a little).

Finally, define γ(i, i) = 0.

This algorithm works by filling in an (L× L) matrix where L is the length of the RNA sequence.

• There will be zeros along the diagonal (from γ(i, i) = 0)
• There will be zeros immediately below the diagonal (from γ(i, i− 1) = 0).
• Matrix cells below (i, i−1) will be unused. Our computations take place in the upper right triangle

of the matrix. Figure 4.20 shows this matrix. i indexes rows, j indexes columns and Cells with ’x’
are unused.
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i+1 j−1

i j

Figure 4.18: Sample Folding #3 – i, j pair

k

i j

k+1

Figure 4.19: Sample Folding #4: bifurcation

i\j 1 2 3 . . . L
1 0
2 0 0
3 x 0 0
... x x 0 0
L x x x 0 0

Figure 4.20: Matrix for Nussinov Algorithm

In line 14 of Algorithm 6, note the similarity between the max terms and figures 4.16–4.19.

Also, from line 14, we define δ(i, j) as

δ(i, j) =

{
1 if i, j form a base pair: GC, AU , GU
0 otherwise

(4.8.5)

Finally, examine the expression

max
i<k<j

γ(i, k) + γ(k + 1, j)

This only comes into effect when j − i > 1 – it considers j − i − 1 different places where a bifurcated
structure can occur. With each iteration of m the number of terms in the max expression increases by
one.
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Algorithm 6 Nussinov Algorithm
1: procedure Nussinov
2: . Initialization
3: for i = 1 to L do
4: γ(i, i) = 0
5: end for
6: for i = 2 to L do
7: γ(i, i− 1) = 0
8: end for
9: . Recursion – fill by diagonals

10: for m = 1 to L− 1 do
11: for n = 1 to L−m do
12: i = n
13: j = n+m
14:

γ(i, j) = max


γ(i+ 1, j)
γ(i, j − 1)
γ(i+ 1, j − 1) + δ(i, j)
maxi<k<j [γ(i, k) + γ(k + 1, j)]

15: end for
16: end for
17: return γ(1, L) . Upper-right cell
18: end procedure

Traceback in the Nussinov Algorithm

γ(1, L) tells us the maximum number of matchings. To recover the actual matches, we’d use a traceback
algorithm: pointers and arrows, or a stack (as described in Durbin).

Algorithm 7 is Durbin’s traceback algorithm.

4.8.5 To Do

• Look at Durbin’s example, and try to find the mistake. (Possible exam question).

• Think about how to modify the algorithm, so that it will not consider hairpin loops of length ≤ 3.
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Algorithm 7 Nussinov Traceback
1: procedure Nussinov Traceback
2: . Initialization
3: Push (1, L) onto the stack
4: . Recursion
5: while Stack is not empty do
6: pop (i, j)
7: if i ≥ j then
8: continue
9: else if γ(i+ 1, j) = γ(i, j) then

10: push (i+ 1, j)
11: else if γ(i, j − 1) = γ(i, j) then
12: push (i, j − 1)
13: else if γ(i+ 1, j − 1) + δ(i, j) = γ(i, j) then
14: Record (i, j) base pair
15: Push (i+ 1, j − 1)
16: else
17: for k = i+ 1 to j − 1 do
18: if γ(i, k) + γ(k + 1, j) = γ(i, j) then
19: push (k + 1, j)
20: push (i, k)
21: end if
22: end for
23: end if
24: end while
25: end procedure
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4.9 Lecture – 12/11/2006

4.9.1 hw3, problem 2

Let d be an ultrametric on a set of objects subjected to the UPGMA algorithm. Prove that
if clusters Cj and Ck are joined by the algorithm, then the distances between any member
of Cj and any member of Ck are the same.

In order to prove this by induction, we must first state what we are doing induction on (a number, a
structure, a step in an algorithm, etc). This holds true for any proof by induction.

In this section, we’ll look at two different proofs by induction.

Induction of the Number of Algorithm Steps

Let k denote the number of steps in the clustering algorithm.

• At step 0 we have n clusters. (each is a single element)
• At step 1 we have n− 1 clusters
• At step k we have n− k clusters.

We can do induction on k.

At step k, we have clusters C1 . . . Cn−k
At step k + 1, we have clusters C1 . . . Cn−k−1

If step k + 1 fuses C1 and C2, then we must show that all points in C1 are equidistant to all points in
C2.

Let dk denote the set of distances in step k. dk+1 can be expressed as a function of dk.

Claim: all distances d0 . . . dk are ultrametric.

Inductive Hypothesis: if dk is an ultrametric, the we can use this to prove that dk+1 is an ultrametric.

Let C12 = C1 ∪ C2. At step k + 1, what is dk+1(C12, Cp) (for any other cluster Cp)? Applying the
UPGMA’s distance formula

d(C12, Cp) =
d(C1, Cp) · |C1|+ d(C2, Cp) · |C2|

|C1|+ |C2|

Because we start with an ultrametric, d(C1, Cp) = d(C2, Cp), so we can factor:

d(C12, Cp) =
d(C1, Cp) · (|C1|+ |C2|)

|C1|+ |C2|
d(C12, Cp) = d(C1, Cp)
∴ d(C12, Cp) = d(C1, Cp) = d(C2, Cp)

In the UPGMA algorithm, C1, C2 would be joined if the distance between the two clusters was the
smallest. Relative to any other cluster Cp, the distances form an isoceles triangle, as shown in figure
4.21.

By arguments above, if d(C1, Cp) = d(C2, Cp) then

dk+1(C12, Cp) = dk(C1, Cp) = dk(C2, Cp)

In the UPGMA algorithm, if we start with an ultrametric distance measure, successive iterations will
produce ultrametric distance measures.
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1

C2

Cp

C

Figure 4.21: Isoceles triangle between C1, C2, Cp

Another Possible Proof

Claim: at any step k, if we fuse C1 and C2 then for every x ∈ C1, and every y ∈ C2, d(x, y) is the same.

We are working with an arrangement like the one shown in figure 4.22.

x’

12

C1

C2

Cky
x

C

Figure 4.22: Points and clusters for second proof

In the first iteration, assume that x ∈ Cp and y ∈ Cq.

d(Cp, Cq) = d(x, y)
∴ d(x, y) = d(C1, Ck)
∴ d(x′, y) = d(C2, Ck)

At step k + 1 (no relationship to the subscript k in Ck),

dk+1(C12, Ck) =
dk(C1, Ck) · |C1|+ dk(C2, Ck) · |C2|

|C1|+ |C2|
= dk(C1, Ck)
= dk(C2, Ck)

d(x, y) = d(C1, Ck) = d(C12, Ck)
d(x′, y) = d(C2, Ck) = d(C12, Ck)

4.9.2 Nussinov-Jacobson Algorithm

Nussinov’s algorithm provides a good basis for understanding how to model RNA folding structures.
However, the algorithm is unrealistically simple: it allows foldings that would never occur in nature, and
it does not consider the molecular stability of the structure.

Several people have devised improved versions of Nussinov’s algorithm. We’ll examine one called the
Nussinov-Jacobson Algorithm.

The Nussinov-Jacobson Algorithm seeks to produce coilings that store a minimal amount of energy.
We’ll assign energy weightings to the different base pairs:
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• C −G is the most stable. We assign an energy of −6.
• A− U is less stable. We assign an energy of −5
• G− U is least stable. We assign an energy of −1.
• For any other pairing, we assign an energy of 0.

Given a folding, we will algebraically sum the energies of the base pairs that are linked together. The
most plausable coiling has the smallest energy.

As before, let x = x1 . . . xL. Let E(i, j) denote the energy of xi . . . xj . There are four recurrences for the
Nussinov-Jacobson algorithm.

Figure 4.23 shows an unpaired i. In this case, E(i, j) = E(i+ 1, j).

i

ji+1

Figure 4.23: unpaired i

Figure 4.24 shows an unpaired j. In this case, E(i, j) = E(i, j − 1).

i

j

j−1

Figure 4.24: unpaired j

Figure 4.25 shows an i,j pair. Here, E(i, j) = E(i+ 1, j − 1) + a(i, j). The definition of a(i, j) appears

i+1 j−1

i j

Figure 4.25: i, j pair
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in equation (4.9.1).

a(i, j) =


−6 if ij is GC (or CG)
−5 if ij is AU (or UA)
−1 if ij is GU (or UG)
0 otherwise

(4.9.1)

Finally, Figure 4.26 show a bifuration. Here, E(i, j) = mini<k<j(E(i, k) + E(k + 1, j))

k

i j

k+1

Figure 4.26: bifurcation

Put together, these give the recurrence in equation (4.9.2).

E(i, j) = min


E(i+ 1, j)
E(i, j − 1)
E(i+ 1, j − 1) + a(i, j)
mini<k<j(E(i, k) + E(k + 1, j))

(4.9.2)

The Nussinov-Jacobson algorithm works like the Nussinov algorithm, but with the following differences:

• Base pairs are weighted by potential energy, rather than the simple fact that the are a base pair.
• Because we seek to minimize energy, we use min of energy values rather than max of number of

base pairs.

4.9.3 For Next Class

Read over the variant of the Nussinov algorithm that uses a Stochastic Context-Free Grammar (the
parse tree will show the coiling structure).
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Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one stating the title, year, authors,
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and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make
the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.
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6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
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10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration”
(or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC
site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Docu-
ment.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
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