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Part 1

Mining Frequent Patterns

1.1 Lecture – 1/28/2008

1.1.1 General

• Get in the habit of consulting the course web page once per week (or so). In particular, homework
assignments and handouts will be distributed via the course web page.

• At our discretion, we can pick up a copy of Witten’s book. In that text, we’ll mostly use the
chapter that covers WEKA. However, WEKA’s documentation also includes that chapter.

• Handouts will be posted for one week only, then pulled. Be sure to take copies.

• We will have one in-class exam, and one final paper/project. There will not be an in-class final
exam.

There will be no class on Wed. 1/30/2008.

We will have a makeup class on Saturday 2/23/2008, from 10:00 – 12:30.

1.1.2 What is Data Mining?

Data mining was founded in the field of databases. However, it also draws from the disciplines of AI
and statistics. There are the three foundation areas of Data Mining.

DM came about through the desire to extract knowledge from large data sets. However, not all problems
involve large data sets. There are notoriously difficult problems that involve only small amounts of data.

The web is arguably the largest database known to mankind. Some estimates put the size of the web at
∼ 6 hexabytes. (1 hexabyte = 1MM terabytes).

As a field “Data Mining” might be better described by the phrases “knowledge mining”or “knowledge
discovery”.

The main conference for data mining practitioners is KDD (Knowledge Discovery in Data). PKDD and
PAKDD are other significant data mining conferences.

Business Intelligence is data mining applied to business problems. This is one area where AI plays a
role.

Statistics gives us a foundation for making conjectures about data. For example, statistics allows us to
do hypothesis testing, apply confidence intervals, etc.
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1.1.3 A Example of a Data Mining Problem

Suppose we have a grocery store, with 8,000–10,000 items on display. We also have a set of n customers,
c1 . . . cn.

Each time a customer comes into the store, they put a set of items in their shopping basket.

As store owners, we are interested in knowing what items are frequently purchased together. For example,
if people commonly buy milk and bread together, we might want to stock bread near to the milk cooler,
in the hopes that a person buying milk might be inclined to pick up bread.

The challenge in this sort of basket analysis is the number of combinations of items. If we have 10,000
items, then there are

(
10000

2

)
combinations of two items and

(
10000

3

)
. combinations of three items. The

sheer number of combinations make it difficult to (efficiently) identify those sets that occur frequently.

Another challenge – figuring out which patterns are “interesting”.

1.1.4 The Data Mining Process

The data mining process can be broken down into three phases:

1. Data preparation (takes about 85% of the time)
2. Data Mining Proper (10% of the time)
3. Data Post Processing (5% of the time)

Data Preparation

Data preparation is the most time consuming steps. Data preparation may include any of the following
activities:

• Cleaning of data. Data needs to be consistent, and the data needs to be valid. Data Quality is a
related issue.

• Data integration. We might take data from several different sources, and merge it into a common
schema.

• Data Transformation. Broadly speaking, we deal with two categories of data: numerical data and
nominal (categorical) data.

Nominal data is usually unordered – for example, a set of colors.

Numerical data can be turned into categorical data. For example, we might use a set of ranges
as categories. Some algorithms only handle categorical data, which necessitates a numerical to
categorical transformation.

Data Mining Proper

We choose an algorithm, and apply it to the data.

Data Post-Processing

During the post-processing stage, we evaluate the results of stage 2 (data mining proper). For example,
if data mining reveals patterns, we might want to compare these with historic data, to see if the patterns
show changes in activity.

During the post-processing stage, we’ll also figure out how to present the data mining results. The key
to good presentation is doing it in such a way that the results can be used for decision making.
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1.1.5 What Kinds of Data do We Mine

• Relational database data.

• Data in data warehouses and data marts.

• transaction database data

• Specialized data; for example, textual or multimedia data.

• Data streams. In a stream, data appears only once; you do not have the opportunity to make a
second pass to re-examine it. An example: network utilization for a cellular provider.

• Temporal data. For temporal data, we’re usually looking for patterns that appear at regular
intervals.

There are specialized methods for each of these different data types.

The most important types of data mining:

• Frequent patterns
• data classification
• data clustering

Frequent Patterns

We’ve already seen one example of frequent pattern analysis – the shopping basket problem. We might
also be looking for patterns in graphs (i.e., given a collection of graphs, which sub-graphs appear most
often?).

Classification

Suppose we worked for a credit card company. We might be interested in finding factors that correspond
to an individual’s credit worthiness. What makes a person a good credit risk vs a bad credit risk?

For example:

Cust # annual income owns house? # kids married? risk
49 $80,000 no 2 no Bad risk
79 $77,000 yes 0 yes Good risk

Given a data set like this, we’d like a way to predict values for the “risk” column.

When developing an algorithm, we typically “train” the algorithm on a small portion of the data, then
see how well the trained algorithm does on the full data set.

10x cross validation is one training technique. We split the data into 10 portions; then see how well each
10% portion predicts the other 90%.

Clustering

Consider Figure 1.1.

Figure 1.1 shows data points in three clusters. Intuitively, we have little difficulty forming the groups.
However, this turns out to be difficult as an algorithmic problem. In an algorithmic context, we have to
give precise definitions for “similar” and “dissimilar”, and the “distance” between points. We also have
to give a precise statement as to how different clusters need to be.
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Figure 1.1: Data Points in Three clusters

When clustering, do not assume that our intuition for 2–3 dimensions holds for larger numbers of
dimensions. It doesn’t.

1.1.6 To-Do

• Read the first four chapters of Han and Kamber.
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1.2 Notes from Chapter 1 – 1/30/2008

Mining frequent data patterns typically yields a set of association rules, which have the form

buys(X, computer)⇒ buys(X, software) [support = 1%, confidence = 50%]

In this example, X represents a customer, and the rule states that 50% of customers that buy computers
also buy software.

Confidence denotes how often the implication is true.

Support denotes the percentage of events that support the rule. In this example, the rule occurred in
1% of purchase transactions.

We can write the rule more concisely as

computer ⇒ software [1%, 50%]

More formally, support is the probability that X and Y occur in the same transaction.

support(X ⇒ Y ) = P (X ∪ Y )

Confidence is the measure of certainty for a particular association:

confidence(X ⇒ Y ) = P (Y |X)

Recall that P (Y |X) is the probability of Y , given X:

P (Y |X) =
P (Y X)
P (X)

=
P (Y ) · P (X)

P (X)
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1.3 Lecture – 2/4/2008

1.3.1 Frequent Rule Sets and Association Rules

You have a set of customers, 1 . . . n.

Each customer j, (1 ≤ j ≤ n) puts some set of items into a shopping basket. T (j) is the set of items
purchased by customer j.

We use I to denote the store inventory. For example, we might have

I = {bread, butter, yogurt, cookies, diapers, chips, beer}

The set of items for one customer transaction (shopping purchase) might be

T (j) = {bread, butter, milk}

In general, T can be though of as a function that maps sets to the power set of I.

T : {. . .} → P(I)

A supermarket might have a database of customer transactions, like the one shown in Table 1.1.

j T (j)
t1 { bread, yogurt }
t2 { cookies, chips, beer }
t3 { butter }
t4 { bread, butter, yogurt }
...

...

Table 1.1: Customer transactions

This database will have the restriction that T (j) 6= ∅.

The Challenge: Find itemsets which occur with a minimum frequency µ in the set T . This is a
challenge since the number of customers, j, can be in the millions, and the set I can have tens of
thousands of items.

Let L be a set of items. The support count of L is the number of transactions such that L ⊆ T (j):

suppcountT (L) =
∣∣{j | L ⊆ T (j)}

∣∣ (1.1)

Support count leads to the definition of support :

supportT (L) =
suppcountT (L)

N
(1.2)

Where N denotes the number of transactions.

Note that 0 ≤ supportT (L) ≤ 1.

Suppose we have two itemsets, L and K. We use the notation

LK = L ∪K (set union)

Support count gives us an estimation of the conditional probability whereby a transaction that contains
L will also contain K:

0 ≤ suppcountT (KL)
suppcountT (L)

≤ 1 (1.3)
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We also have a confidence level for each association rule L⇒ K:

confidence =
supportT (KL)
supportT (L)

(1.4)

The confidence level c tells us how often a transaction that contains L will also contain K. Note: we
assume that L ∩K = ∅.

The rule “L⇒ K” is called an association rule.

Every association rule comes with support and confidence values:

L⇒ K :

 supportT (L) support of the rule
supportT (KL)
supportT (L)

confidence of the rule
(1.5)

Finding frequent item sets is the core of finding association rules.

In Table 1.1, we saw one way of representing transactions. In some cases, it will be more convenient
to represent the sets as binary data: one row for each customer, and one column for each item. For
example:

bread butter yogurt cookies diapers chips beer
t1 1 0 1 0 0 0 0
t2 0 0 0 1 0 1 1

Table 1.2: Binary Set Representation

Let I be the set of items.

We say that L ⊆ I is a µ-frequent item set in T if supportT (L) ≥ µ.

If there are 10,000 items then there are 210,000 different itemsets. There are too many combinations to
handle with brute force.

1.3.2 Ryman Trees

Ryman trees give us a way to enumerate subsets with a tree. Figure 1.2 shows a Ryman tree for a set
of 4. The numbers 1, 2, 3, 4 represent elements of a set.

Ø

1 2 3 4

1,3 1,41,2 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

Figure 1.2: Ryman Tree for |I| = 4

A few things to note about Figure 1.2

• The root is the empty set

• Level one has subsets of size 1. In general, level k has subsets of size k.
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• Each node contains (a) all elements of its parent node and (b) elements that are greater than all
elements of its parent node.

For example, node {1,2} has children {1,2,3} and {1,2,4}; while node {2,3} has one child, {2,3,4}.

Theorem 1.3.2.1: If K is a set at level k of a Ryman Tree, then there are two sets L, M , at level
(k − 1) such that

1. K = LM

2. L ∩M is a common ancestor of L,M , at level k − 2.

3. L and M are uniquely determined with properties (1) and (2).

Example 1.3.2.2: In Figure 1.2, let K = {1,2,4}. The set L = {1, 2}; the set M = {1, 4}; the set
L ∩M = {1}.

Assume k ≥ 2. We have

|K| = k

K = ia1 , ia2 . . . iak−2iak−1iak where a1 < a2 < . . . an−1 < an

L = ia1 , ia2 . . . iak−2iak−1

M = ia1 , ia2 . . . iak−2iak

Note that

• L and M differ by exactly one element
• K is at level k
• L, M are at level k − 1
• L ∩M are at level k − 2.

See first course handout for more on Ryman trees.

1.3.3 Apriori Algorithm for Finding Frequent Item Sets

Suppose we have itemsets U, V ⊆ I. If U ⊆ V , then supportT (V ) ≤ supportT (U). This is called the
apriori property .

Let’s define some notation:

FµT : the set of µ-frequent itemsets
FµT,r : the set of µ-frequent itemsets that have r elements

FµT =
⋃
r≥1

FµT,r

Prior to generating the set FµT,r we’ll need to generate a candidate set , CµT,r.

CµT,r : a collection of candidate sets with support µ, containing r elements

The general sequence of the apriori algorithm is

CµT,1  F
µ
T,1  C

µ
T,2  F

µ
T,2  . . . CµT,r = ∅

The output is FµT =
⋃
FµT,r−1.

The apriori algorithm has two (alternating) phases: evaluation and apriori-gen.
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• Apriori-gen goes from FµT,k  C
µ
T,k+1

• Evaluation goes from CµT,k  F
µ
T,k

The evaluation phase involves a database scan. The apriori-gen phase does not.

Apriori-gen creates CµT,k+1, which is a superset of FµT,k: FµT,k ⊆ C
µ
T,k+1.

Suppose we have the itemsets shown in Figure 1.3.

L k+1

k

k−1W

U V

Figure 1.3: Apriori example

Level k shows FµT,k = {U, V }.

At level k + 1, we have L ⊆ CµT,k+1.

L has two subsets at the prior level: U and V .

U and V are direct descendants of W .

Suppose L were a frequent set. Then U , V , which are subsets of L would also be frequent. In addition,
every other subset of L would also be frequent.

1.3.4 A Quick Summary of the Apriori Algorithm

Input Level k, confidence µ, and FµT,k.

Output CµT,k+1

Procedure
Set CµT,k+1 = ∅

For every pair U, V ∈ FµT,k such that there is a W ∈ FµT,k−1, and U = Wi and V = W ′i ; add
L = UV to CµT,k+1.

Remove from CµT,k+1 all sets which contain a subset with k elements not in FµT,k
CµT,k+1 may not be a frequent set, but it contains all of the frequent sets. CµT,k+1 becomes the input to
the evaluation phase.
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1.4 Lecture – 2/6/2008

1.4.1 Apriori Algorithm

The Apriori algorithm’s purpose is to compute FµT of µ-frequent itemsets. Recall that

FµT =
⋃
r>1

FµT,r

The Apriori algorithm consists of two alternating processes: generation (apriori gen) and evaluation.

CµT,r is the set of candidate item sets that have r items. Apriori starts with CµT,1 - the set of candidate
1-sets.

The apriori algorithm proceeds in the following manner

CµT,1
evaluation
 FµT,1

apriori-gen
 CµT,2  F

µ
T,2  . . . FµT,r−1  C

µ
T,r = ∅

For each FµT set, we’ll need to scan the data set in order to determine which candidate items are frequent.
The algorithm terminates when the candidate set CµT,r becomes empty.

Example 1.4.1.1 (Apriori Algorithm): Suppose we have the set I = {i1, i2, i3, i4, i5}, along with
the following transactions:

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1

We want to find frequent item sets with µ = 0.25. Here are the steps:

1. We find C0.25T,1 . This consists of all 1-sets, so

C0.25T,1 = {{i1}, {i2}, {i3}, {i4}, {i5}}

2. Next we do an evaluation step to find F0.25
T,1 . All 1-sets occur at least twice (2/8 = 0.25), so nothing

is removed in this step. We have

F0.25
T,1 = {{i1}, {i2}, {i3}, {i4}, {i5}}

3. Next, we do a generation step to find C0.25T,2 . We’ll use a Rymon tree to generate all two-sets.
Although we haven’t drawn it, our generation steps are always using Rymon trees.

4. Next, we do an evaluation step to find F0.25
T,2 . We’ll show this with a table:
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2-set support remarks
{i1, i2} 3
{i1, i3} 2
{i1, i4} 1 (remove: not enough support)
{i1, i5} 3
{i2, i3} 5
{i2, i4} 2
{i2, i5} 3
{i3, i4} 2
{i3, i5} 3
{i4, i5} 2

The first column of our table shows the output of C0.25T,2 . As noted above, {i1, i4} is not part of
F0.25
T,2 since that set has support 0.125 < µ.

5. Next, we have another generate step, producing C0.25T,3 .

3-sets remarks
{i1, i2, i3}
{i1, i2, i4} See note 1
{i1, i2, i5}
{i1, i3, i4} See note 1
{i1, i3, i5}
{i2, i3, i4}
{i2, i3, i5}
{i2, i4, i5}
{i3, i4, i5}

Note 1: the sets {i1, i2, i4} and {i1, i3, i4} are not part of C0.25T,3 . Note that {i1, i4} was pruned
because it did not have enough support. Since {i1, i4} does not have sufficient support, no superset
of {i1, i4} will have sufficient support.

6. Next, we do an evaluation step to find F0.25
T,3 . Below, we show the C0.25T,3 sets along with their

support values.

3-sets support remarks
{i1, i2, i3} 2
{i1, i2, i5} 1 remove: 0.125 < 0.25
{i1, i3, i5} 1 remove: 0.125 < 0.25
{i2, i3, i4} 2
{i2, i3, i5} 3
{i2, i4, i5} 2
{i4, i4, i5} 2

Thus, F0.25
T,3 contains 5 elements:

F0.25
T,3 = {{i1, i2, i3}, {i2, i3, i4}, {i2, i3, i5}, {i2, i4, i5}, {i4, i4, i5}}

7. Next, we’re back to a generation stage for C0.25T,4 .

4-sets remarks
{i1, i2, i3, i4} see note below
{i1, i2, i3, i5}
{i2, i3, i4, i5}

{i1, i2, i3, i4} is not in C0.25T,4 , since it is a superset of {i1, i4}. The output of this step is

C0.25T,4 = {{i1, i2, i3, i5}, {i2, i3, i4, i5}}
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8. Next, an evaluation step for F0.25
T,4 .

4-sets support remarks
{i1, i2, i3, i5} 1 remove: 0.125 < 0.25
{i2, i3, i4, i5} 2

This gives

F0.25
T,4 = {{i2, i3, i4, i5}}.

9. Finally, we have a generation step to product Cµ0.25T, 5. Because {i2, i3, i4, i5} is not extendable,
we have

Cµ0.25T, 5 = ∅

And the algorithm terminates.

10. The final set of frequent items it

4⋃
r=1

F0.25
T,r =

{{i1}, {i2}, {i3}, {i4}, {i5},
{i1, i2}, {i1, i3}, {i1, i5}, {i2, i3}{i2, i4}, {i2, i5}, {i3, i4}, {i3, i5}{i4, i5}
{i1, i2, i3}, {i2, i3, i4}, {i2, i3, i5}, {i2, i4, i5}, {i4, i4, i5}
{i2, i3, i4, i5}}

�

There are many opportunities to optimize the Apriori algorithm, which we’ll study later on.

As the example illustrates, the Apriori algorithm proceeds level-wise. This will be an important trait to
remember.

1.4.2 An Upper Bound on Apriori’s Database Scanning

Suppose we have a collection of itemsets. As noted earlier, if a given itemset is frequent, then every
subset of that item set will also be frequent.

Suppose P ∈ FµT ; then P is µ-frequent.

Now suppose Q ⊆ P . This tells us that Q ∈ FµT , whereby Q is µ-frequent.

The property of begin µ-frequent is inherited by subsets; we call this a hereditary property .

Definition 1.4.2.1 (Border): Let C be a collection of item sets. The set BD(C) is the border of C:

BD(C) = {U | T ⊂ U → T ∈ C and U ⊂ Z → Z /∈ C} (1.6)

Definition 1.4.2.2 (Positive Border): The positive border of C is defined as

BD+(C) = BD(C) ∩ C (1.7)
= {U ∈ C | T ⊂ U → T ∈ C and U ⊂ Z → Z /∈ C} (1.8)

Definition 1.4.2.3 (Negative Border): The negative border of C is defined as

BD−(C) = BD(C)− C (1.9)
= {U /∈ C | T ⊂ U → T ∈ C and U ⊂ Z → Z /∈ C} (1.10)
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In the worst possible case, apriori will perform

|FµT |+ |BD
−(FµT )|

scans. |FµT | comes from the successful queries (the ones with enough support), and |BD−(FµT )| comes
from the unsuccessful queries (those without enough support).

1.4.3 Partially Ordered Sets

Definition 1.4.3.1 (Partial Order): A partial order is a relation 6 that has three properties

1. x 6 x for all x in S. (Reflexivity)

2. x 6 y and y 6 x implies x = y. (Anti-Symmetry)

3. x 6 y and u 6 z implies x 6 z. (Transitivity)

Example 1.4.3.2 (Divides as a partial order): Let S be the set of natural numbers. We define the
relation m|n as “m divides n”. Specifically, m|n if there is a k such that n = km.

Example 1.4.3.3 (Set Inclusion as a Partial Order): The relation ⊆ is a partial order.

P ⊆ P
P ⊆ Q and Q ⊆ P implies P = Q

P ⊆ Q and Q ⊆ T implies P ⊆ T

Example 1.4.3.4 (Infix as a partial order): We write u 6 v to mean “u is an infix of v”. This
relation also satisfies the criteria of a partial order:

u 6 u

u 6 v and v 6 u implies u = v

u 6 v and v 6 w implies u 6 w

We can come up with many other examples. For example A 6 B to mean “A is a subgraph of B”.

Standard Ways of Representing Partial Orders

The standard way to represent a partial order is

(S,6)

Where S is a set and 6 is the partial order relation. We call (S,6) a partially ordered set or poset .

Suppose u 6 v but u 6= v. We write u < v, which is a strict partial order .

Definition 1.4.3.5 (Open and Closed Interval): Let u, v ∈ S. Then

{t ∈ S | u < t < v} is the open interval (u, v)
{t ∈ S | u 6 t 6 v} is the closed interval [u, v]

Example 1.4.3.6: Suppose S = {1, 2, 3, 4, 5, 6, 7, 8}, and our poset is (S, |).

The interval [2, 8] is {k | 2|k and k|8}. Therefore

[2, 8] = {2, 4, 8}
(2, 8) = {4}
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Definition 1.4.3.7 (Cover): We say that u covers v if u < v and (u, v) = ∅. In Example 1.4.3.6, 4
covers 2.

We use the notation u ≺ v to mean “u covers v”.

We can use a Hasse Diagram of a poset to illustrate cover. There is an edge from u to v if u ≺ v. The
Hasse Diagram for example 1.4.3.2 is shown in Figure 1.4.

8

7 3 2

1

5

6 4

Figure 1.4: Hasse Diagram on ({1 . . . 8}, |)

As another example, Figure 1.5 shows a Hasse diagram for ({a, b, c},⊂). Figure 1.5 also happens to be
a lattice.

{a,b,c}

Ø

{b}{a} {c}

{b,c}{a,c}{a,b}

Figure 1.5: A lattice

Consider the two sets S and U , as shown in Figure 1.6.

S

U

Figure 1.6: A lattice

We say that t is an upper bound of U if u 6 t for every u ∈ U .

The set US is the set of upper bounds of U . Note that if U ⊆ V , then Us ⊇ V s.

We say that t is a lower bound of U if t 6 u for every u ∈ U .

The set U i is the set of lower bounds. Note that if U ⊆ V , then U i ⊇ V i.

The set U ∩ Us has at most one element. Likewise for U ∩ U i.

|U ∩ Us| ≤ 1

|U ∩ U i| ≤ 1
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If p ∈ U ∩ Us, then p is the largest element of U . Note that it’s possible to have U ∩ Us = ∅.

Similarly, if q ∈ U ∩ U i, then q is the smallest element of U .

The set Us ∩ (Us)i contains at most one element. If z = Us ∩ (Us)i, then z is the least upper bound of
U . We call z the supremum of U , written supU , or

∨
U .

If p = U i ∩ (U i)s , then p is the greatest lower bound of U . We call p the infimum.

1.4.4 Logistics

Check the course web site over the weekend. Our second handout should be posted on Sunday, along
with our first homework assignment.

Data mining seminar is held on Fridays at 13:00 in the web lab.
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1.5 Lecture – 2/11/2008

1.5.1 Posets and Bounds

Let (S,6) be a poset, and let K ⊆ S

KS : is an upper bound of K

KI : is a lower bound of K

K ∩KS : has at most one element

K ∩KI : has at most one element

Also

(a, b) : is the open interval a < i < b

[a, b] : is the closed a ≤ i ≤ b

Example 1.5.1.1: Let K = (0, 1) over R.
KS = [1,∞].
K ∩KS = ∅.

Example 1.5.1.2: Let K = [0, 1] over R.
KS = [1,∞]
K ∩KS = {1}

Say we form KS ∩ (KS)I . This set contains at most one element.

Let t ∈ KS ∩ (KS)I . Then t = supK; t is the supremum of K.

For example, sup[0, 1] = 1.

Likewise, KI ∩ (KI)S contains at most one element.

Let s ∈ KI ∩ (KI)S . Then, s = inf K; s is the infimum of K.

Example 1.5.1.3: Let M be a set; P(M) is the power set of M , and (P(M),⊆) is a poset.

Suppose A,B ∈ P(M).

sup{A,B} = A ∪B
inf{A,B} = A ∩B

Suppose t = KS ∩ (KS)I . Then t = supK. t has to be an upper bound, and t has to be the smallest
upper bound.

A ⊆ A ∪B and B ⊆ A ∪B. Therefore A ∪B is an upper bound.

Suppose A ⊆ C and B ⊆ C. Then A ∪B ⊆ C and A ∪B is a least upper bound.

Example 1.5.1.4: Consider the poset (N, |). Every {m,n} has a supremum and infimum.

Suppose p = sup{m,n}. Then m|p and n|p.
If q is such that m|q and n|q, then p|q.

p is the least common multiple of m,n.

inf{m,n} = gcd(m,n)

For some sets, every pair {m,n} has both a supremum and an infimum. However, not all sets have this
property.
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Definition 1.5.1.5 (Lattice): Let (S,6) be a poset such that for every x, y there both a sup{x, y}
and an inf{x, y}. Then (S,6) is said to be a lattice.

(P(M),⊆) and (N, |) are examples of lattices.

Definition 1.5.1.6 (Complete Lattice): Let (S,6) be a poset. If, for every subset T of S, there is
supT and inf T , then (S,6) is a complete lattice.

Lattice theory is an entire branch of mathematics. In this course, we’re only going to skim the surface
of it.

Notation

supT : can also be written
∨
T

inf T : can also be written
∧
T

sup{x, y} : can also be written x ∨ y
inf{x, y} : can also be written x ∧ y

1.5.2 Closures

Let (S,6) be a complete lattice. A closure is a mapping

K : S → S (1.11)

that satisfies three criteria.

1. x 6 K(x)

2. x1 6 x2 implies K(x1) 6 K(x2)

3. K(K(x)) = K(x)

for every x1, x2, . . ., xn ∈ S.

Definition 1.5.2.1 (Monotonicity): Suppose we have a function f : S → S such that

x1 6 x2 implies f(x1) 6 f(x2)

We say that f has the property of monotonicity .

Definition 1.5.2.2 (Anti-Monotonicity): Suppose we have the function g : S → S such that

x1 6 x2 implies g(x1) > q(x2)

Then we say that g has the property of anti-monotonicity .

Definition 1.5.2.3 (Galois Connection): Suppose we have two anti-monotonic functions

f : S → S

g : S → S

We can observe four properties

1. x1 6 x2 implies f(x1) > f(x2).

2. x1 6 x2 implies g(x1) > g(x2).
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3. x 6 f(g(x))

4. x 6 g(f(x))

A pair of mappings with these four properties is called a Galois Connection.

Claim 1.5.2.4: If f and g form a Galois Connection, then

K(x) = f(g(x)) and
H(x) = g(f(x))

are closures.

Example 1.5.2.5: Suppose we have posets (S,6) and (U,6) and functions f : S → U and g : U → S.

Let’s say that f , g satisfy the following properties:

1. s1 6 s2 implies f(s1) > f(s2)

2. u1 6 u2 implies g(u1) > g(u2)

3. s 6 g(f(s))

4. u 6 f(g(u))

In this case,

K(S) = g(f(s)) is a closure on S

H(U) = f(g(u)) is a closure on U

f and g are called the Galois Connection between (S,6) and (U,6).

s 6 g(f(s)) implies s 6 K(s)
u 6 f(g(s)) implies u 6 H(u)

Suppose s1 6 s2. Then,

f(s1) > f(s2) anti-monotonicity
g(f(s1)) 6 g(f(s2)) anti-monotonicity

Recalling that K(s) = g(f(s)), we can say that

x1 6 x2 implies K(s1) 6 K(s2)

Similarly, suppose u1 6 u2. Then

g(u1) > g(u2) anti-monotonicity
f(g(u1)) 6 f(g(u2)) anti-monotonicity

Therefore

H(u1) 6 H(u2)

Next, consider s 6 g(f(s)). From this, we can derive

f(s) >f(g(f(s)))
f(s) = f(g(f(s)))
g(u) = g(f(g(u)))
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So,

g(f(s)) = g(f(g(f(s))))
= K(s)
= K(K(s)) since K(s) = g(f(s))‘

Suppose s ∈ S, and K(s) = K(K(s)). Therefore s is closed.

If t is closed and s 6 t, then K(s) < t. K(s) 6 K(t) = t. Therefore t is closed.

1.6 Frequent Item Sets

Now, let’s look at how Galois Connections can be applied to the problem of mining frequent item sets.

Recall our model of a transactional dataset. We have a set of transactions T (1), T (2), . . ., T (n). Each
T (i) is associated with a set of items.

Let

D = {1, 2, . . . , n} be the set of transaction ids
I = {i1, . . .} be the set of items

Suppose E ⊆ D. E is a subset of transactions.

{T (k) | k ∈ E} is the set of items that appear in E’s transactions.

We define

itemsT (E) =
⋂
{T (k) | k ∈ E} (1.12)

itemsT (E) is the set of items that appear in every transaction T (k) ∈ E.

Now, let H ⊆ I be a set of items. We define

tidsT (H) = {l ∈ D | H ⊆ T (l)} (1.13)

tidsT (H) is the set of transactions that contain the set of items H.

tidsT (H) and itemsT (E) constitute a Galois Connection:

itemsT (E) : P(D)→ P(I) (1.14)
tidsT (H) : P(I)→ P(D) (1.15)

Note that tidsT (H) is the set of transactions that contain H. Therefore:

suppcountT (H) =
∣∣tidsT (H)

∣∣ (1.16)

Let’s verify that tidsT (H) and itemsT (E) to indeed form a Galois Connection. We examine the four
properties of a Galois connection.

• Suppose E1 ⊆ E2. Then itemsT (E2) ⊆ itemsT (E1). The ∩ causes the anti-monotonicity.

• Suppose H1 ⊆ H2. This implies that tidsT (H2) ⊆ tidsT (H1). Since H1 is contained in H2, the
support for H2 will be less than the support of H1.

• E ⊆ tidsT (itemsT (E)). This is pretty straightforward to see
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• H ⊆ itemsT (tidsT (H)). This is also pretty straightforward.

Therefore, the sets items and tids form a Galois Connection.

• tidsT (itemsT (E)) is a closure on P(D).

• itemsT (tidsT (H)) is a closure on P(I). (This is the more interesting property).

Suppose H is closed. Then H = itemsT (tidsT (H)) and H ⊂ L. (Note: proper subset).

We would like to prove that suppcountT (L) < suppcountT (H).

For the sake of contradiction, suppose that suppcountT (H) = suppcountT (L). That would imply∣∣tidsT (H)
∣∣ =

∣∣tidsT (L)
∣∣

which in turn would imply tidsT (H) ⊇ tidsT (L), and tidsT (H) = tidsT (L).

Because, H is closed

H = itemsT (tidsT (H)) = itemsT (tidsT (L))

This implies the closure of L = H, and contradicts H ⊂ L.

Therefore, if H is closed, then any superset of H has less support than H does.

If every superset of H has a smaller level of support, then this implies that H is closed.

If H is such that H ⊂ L, then suppcountT (L) < suppcountT (H).

Suppose U is an arbitrary set, and we take the closure of U :

tidsT (U) = tidsT (itemsT (tidsT (U)))

Then ∣∣tidsT (U)
∣∣ = suppcountT (U)

The support of a set is equal to the support of its closure.
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1.7 Lecture – 2/13/2008

1.7.1 The FP-Tree Algorithm

The FP-Tree (Frequent Pattern Tree) algorithm is an alternative to Apriori. Apriori requires several
scans of the data set, which can be expensive. FP-Tree, on the other hand, requires only two scans.

FP-Tree was invented by Jiawei Han.

FP-Tree uses a form of data compression. The algorithm’s primary data structure is a compressed
representation of the transactional data set.

Basic idea: we build the FP-Tree, and then Mine it for patterns.

Rather than giving a formal definition for FP-Tree, we’ll do it by example.

Consider the following data set, over eight transactions and five data items.

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1

We’re looking for frequent patterns with a minimum support count of 3.

Step 1: Scan the data set, and determine the support count for each item ij (1 ≤ j ≤ n).

item support count
i1 5
i2 6
i3 5
i4 2
i5 5

Step 2: Sort the items by decreasing support count.

item support count
i2 6
i1 5
i3 5
i5 5
i4 2

Step 3: Scan the data set a second time. As we do this scan, we’ll construct the FP-Tree as follows:

• The root of the tree is λ

• For each transaction T (k), sort T (k)’s items by descending support count.

• Build a path from the root of the tree, where each node in the path corresponds to T (k)’s sorted
item set.

• When adding a node to the FP-Tree, give it a count of 1. We traversing an existing node, increment
its support count.

So, each FP-Tree node corresponds to an item ij , and each node is ornamented with the number of times
ij appeared on that particular path.
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Below, we have our transactions, along with their sorted data sets:

T (k) item set
T (1) {i2, i1}
T (2) {i2, i3}
T (3) {i1, i5}
T (4) {i1, i5}
T (5) {i2, i3, i5}
T (6) {i2, i1, i3, i5, i4}
T (7) {i2, i1, i3}
T (8) {i2, i3, i5, i4}

Figure 1.7 shows the corresponding FP-Tree.

2

2

i1 i3

i1

i5

i5i3

i5 i4

i4

λ

2

1

1

3

6

3

2

1

2i

Figure 1.7: FP-Tree for step 3

Step 4: Along with the FP-Tree, create a two-column table where

• Column one contains the name of an item ij

• Column two contains a pointer to a linked list that strings together all occurrences of ij in the
FP-Tree.

This table is shown in Figure 1.8

One thing to take note of in Figure 1.8 – if you follow the pointer chain for a particular item, and add
the counts together, then you’ll get the support count for that item.

Also note: i4 does not have sufficient support (µ = 3), so we can remove i4 from the tree immediately.

In general, when we remove infrequent items from an FP-Tree, we’ll be removing from the leaves up.

Figure 1.9 shows the FP-Tree with i4 removed.

Step 5: Build Conditional FP-Trees
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Figure 1.8: FP-Tree with Table of Cross Pointers
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Figure 1.9: FP-Tree, after removing i4

Step 5 is where we start mining the information in the FP tree.

From step 4, we see that i5 has a support count of 5; therefore i5 is a frequent item.

Our next task is to build a conditional FP Tree for i5.

We note that i5 appears on three paths:

• {i2, i1, i3, i5}. i5 leaf has a count of 1.
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• {i2, i3, i5}. i5 leaf has a count of 2.

• {i1, i5}. i5 leaf has a count of 2.

Next, we take the conditional prefix of these paths (all nodes up to, but not including i5). We take the
i5 count, and assign that to each prefix node.

• {i2, i1, i3}. All nodes have count 1.

• {i2, i3}. All nodes have count 2.

• {i1}. All nodes have count 2.

Why do we assign counts in that manner? Consider {i2, i3, i5}. i5 has count two. Therefore, i2 occurs
twice with i5 on this path, and i3 occurs twice with i5 on this path.

Once we have these conditional paths (and their associated counts), then we construct an FP-Tree from
them. The FP-Tree construction is exactly what we’ve seen before, except for the fact that some nodes
will have counts > 1.

The conditional FP-Tree for i5 is shown in Figure 1.10.

i3

i1

i3

λ

i2

i1

i3

1

21

3 i 22

i1

Figure 1.10: Conditional FP-Tree for i5.

The cross-link table in Figure 1.10 shows three items: {i2, i1, i3}. There is implicitly an i5 included in
each of these, so we’re really looking at three two-item sets: {i2, i5}, {i1, i5}, and {i3, i5}.

As before, we can sum counts across the pointer chain to find support counts:

itemset support count
{i2, i5} 3
{i1, i5} 3
{i3, i5} 3

We can continue, this process, to generate a conditional FP tree for {i3, i5}.

i3 gives us two prefix paths:

• {i2, i1}. Each node has a count of 1.

• {i2}. Each node has a count of 2.

The conditional FP-tree for {i3, i5} is shown in Figure 1.11.

From Figure 1.11, we can find support counts for 3-sets.
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i1
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i2

i1

1

i3 2

Figure 1.11: Conditional FP-Tree for {i3, i5}

itemset support count
{i2, i3, i5} 3
{i1, i3, i5} 1

Of course, {i1, i3, i5} is not frequent, so we wouldn’t include it in the list of frequent item sets.

{i2, i3, i5} is frequent. However, a conditional FP-Tree for {i2, i3, i5} has only a λ node, so there’s no
sense in continuing along that path.

1.7.2 Vertical Database Formats

So far, we’ve looked at data sets where transactions are represented by rows, and items are represented
by columns. This arrangement is called a horizontal format .

There is also a vertical format , where rows represent items. For each item, we keep a list of tids that
purchased that item. For example:

item transaction set
i1 {T (1), T (3), T (4), T (6), T (7)}
i2 {T (1), T (2), T (5), T (6), T (7), T (8)}
i3 {T (2), T (5), T (6), T (7), T (8)}
i4 {T (6), T (8)}
i5 {T (3), T (4), T (5), T (6), T (8)}

Note that this format immediately gives us the support count for each single item.

Of course, we can use separate columns for each transaction.

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8)
i1 1 0 1 1 0 1 1 0
i2 1 1 0 0 1 1 1 1
i3 0 1 0 0 1 1 1 1
i4 0 0 0 0 0 1 0 1
i5 0 0 1 1 1 1 0 1

This representation has a nice property. With each item ij , we associate a bitmap that represents the
set of transactions purchasing ij .

Suppose we want to find the support count of a two-set {ij , ik}. We can do this by AND-ing a pair of
bitmaps – this is a very fast operation.

The vertical format was invented by M. Zaki, in a data mining algorithm called ECLAT.
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1.7.3 Association Rules

Frequent item sets can be used to find association rules. This is one of the main reasons for finding
frequent item sets.

Definition 1.7.3.1 (Association Rule): An association rule is a pair of item sets X, Y such that
X ∩ Y = ∅. If Z is a frequent item set, then Z = X ∪ Y .

Association rules must satisfy two criteria:

supportT (XY ) ≥ µ µ is the minimum support count
supportT (XY )
supportT (X)

≥ c c is the minimum confidence

Association rules are written X ⇒ Y .

supportT (XY ) is the support of X ⇒ Y .
supportT (XY )
supportT (X) is the confidence of X ⇒ Y .

Confidence values satisfy the inequality

0 ≤ confT (X ⇒ Y ) ≤ 1

Confidence works much like conditional probability:

P (Y |X) =
P (XY )
P (X)

Suppose we are seeking a set Z such that Z is frequent: supportT (Z) ≥ µ.

To find association rules with high confidence, we need to find X ⊂ Z such that supportT (X) is small.

supportT (Z)
supportT (X)

≥ c

If an association rule X ⇒ Z −X has support ≥ c, then we refer to it as a strong rule.

For an itemset, how many association rules are there? Short answer: lots!

Let Z = X ∩ Y , where k = |X| and n = |Z|.

There are
(
n
k

)
ways to choose X, and 2n−k ways to choose Y . Of course, k can also vary from 1 ≤ k ≤

n− 1. The total number of association rules derivable from Z is
n−1∑
k=1

(
n

k

)
· 2n−k (1.17)

An approximation of this value:

(1 + x)n =
n∑
k=0

(
n

k

)
· xn−k a recurrence relation

3n = 2n + 1 +
n−1∑
k=1

(
n

k

)
· 2n−k taking x = 2

≈ 3n − 2n − 1

By choosing appropriate support and confidence levels, we can prevent an explosion of (meaningless)
association rules.
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1.7.4 Compression and Data Patterns

If a set of data has any kind of embedded structure, then compression will reduce the size of the data.
The more structure, the larger the reduction tends to be. Zip, zlib, etc all rely on this property.

If a set of data compresses well, does this mean that it is more likely to contain interesting patterns than
a set of data which does not compress well?

One might hypothesize this to be the case, but it is an open question.
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1.8 FP-Trees – 2/16/2008

Helpful Pointers

Here’s a nice paper about FP-Trees: http://doi.acm.org/10.1145/335191.335372.

@article{335372,
author = {Jiawei Han and Jian Pei and Yiwen Yin},
title = {Mining frequent patterns without candidate generation},
journal = {SIGMOD Rec.},
volume = {29},
number = {2},
year = {2000},
issn = {0163-5808},
pages = {1--12},
doi = {http://doi.acm.org/10.1145/335191.335372},
publisher = {ACM},
address = {New York, NY, USA},
}

http://doi.acm.org/10.1145/335191.335372
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1.9 Lecture – 2/20/2008

1.9.1 Optimizations for the Apriori Algorithm

We’ve studied the Apriori algorithm in prior lectures. Apriori is the basis for many algorithms, but it
does have a disadvantage: it requires repeated scans of the data set (lots of IO). Fortunately, there are
ways to (a) allow apriori to handle larger data sets and (b) make apriori more efficient.

Horizontal Partitionings

Horizontal partitioning won’t make apriori faster, but it will allow you to handle larger data sets. The
basic procedure is as follows:

• Split the data set into n (horizontal) pieces.

• Find frequent items in each individual piece

• Assemble the final set of frequent items.

If H is frequent in the database as a whole, then H must be frequent in at least one of the horizontal
partitions.

Why is this true? Suppose we have p1, . . . pn and q1, . . . qn, where all pi and qi are ≥ 0. We have the
following inequality

min
{
p1

q1
, . . . ,

pn
qn

}
≤ p1 + · · ·+ pn
q1 + · · ·+ qn

≤ max
{
p1

q1
, . . . ,

pn
qn

}
(1.18)

Let

M = max
{
p1

q1
, . . . ,

pn
qn

}
(1.19)

We know that
pi
qi
≤M for 1 ≤ i ≤ n (1.20)

Therefore,

pi ≤M · qi for 1 ≤ i ≤ n (1.21)

and

(p1 + · · ·+ pn) ≤M · (q1 + · · ·+ qn) (1.22)
p1 + · · ·+ pn
q1 + · · ·+ qn

≤M (1.23)

In terms of horizontal partitioning, that tells us

suppcountDB(H)
dbsize

≤ max
{

suppcountDB(p1)
s1

, . . . ,
suppcountDB(pn)

sn

}
≥M (1.24)

Horizontal partitioning allows us to process the data in chunks.

1.9.2 Speeding Up Apriori

Let’s look at three techniques for making Apriori faster.
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Sampling

Instead of analyzing the entire data set, we can mine a sample of it. In this case, were are sampling
transactions – all columns are included. We’ll use results from the sample to draw conclusions about
the full data set.

The danger in sampling: the sample chosen may not accurately reflect the data set as a whole.

Pruning Transactions

We can speed up Apriori by pruning transactions that do not contain k-frequent itemsets. For example,
if T (k) does not contain a frequent 2-itemset, then there’s no sense in looking for a frequent 3-itemset
in T (k).

This approach allows passes to go successively faster, and it doesn’t compromise accuracy.

Hashing Schemes

We can use hashing to search for several k-frequent itemsets at once. (In this context, we mean “several
values of k”).

Suppose we are looking for µ = 0.5 frequent itemsets in the the following data:

T (k) itemset
T (1) {i1, i2}
T (2) {i2, i3}
T (3) {i1, i5}
T (4) {i1, i5}
T (5) {i2, i3, i5}
T (6) {i1, i2, i3, i4, i5}
T (7) {i1, i2, i3}
T (8) {i2, i3, i4, i5}

In this example, we’ll find frequent 1-itemsets and 2-itemsets in a single pass.

The trick: we apply a hashing function. Here, we’ll use

h(ip, iq) = (10× p) + q mod 7

For each itemset, we’ll compute h(ip, iq) for all pairs of item. For example, given {i1, i2, i3}, we’ll hash

h(i1, i2) = (10 + 2) mod 7 = 5
h(i1, i3) = (10 + 3) mod 7 = 6
h(i2, i3) = (20 + 3) mod 7 = 2

Since our hash function is mod 7, we’ll need seven buckets. Each bucket will have (a) a count of the
number of items in that bucket, and (b) a list of the 2-sets.

bucket count contents
0 4 {i3, i5}, {i1, i4}, {i3, i5}, {i3, i5}
1 3 {i1, i5}, {i1, i5}, {i1, i5}
2 5 {i2, i3}, {i2, i3}, {i2, i3}, {i2, i3}, {i2, i3}
3 4 {i2, i4}, {i4, i5}, {i2, i4}, {i4, i5}
4 2 {i2, i5}, {i2, i5}
5 3 {i1, i2}, {i1, i2}, {i1, i2}
6 4 {i1, i3}, {i3, i4}, {i1, i3}, {i3, i4}
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Since we are looking for a support count of ≥ 4, we can immediately throw out any bucket with less
than four items. From there, we’d go through the remaining buckets and figure out the support counts
of the other 2-sets.

1.9.3 Measures of Interestingness

Often, we find frequent itemsets in order to find association rules. For even a modest number of frequent
itemsets, we can generate a huge number of association rules. How can we better understand the
association rules? Also, how can we find association rules that are more “interesting”.

Interestingness of a Rule

Suppose we have X ⇒ Y . We already know of two measures:

supportT (X ⇒ Y ) = supportT (XY )

confT (X ⇒ Y ) =
supportT (XY )
supportT (X)

When finding association rules, we’re typically look for those which satisfy a minimum confidence c and
minimum support µ.

Suppose we treat X and Y as random variables where

IX =

{
1 if a customer buys X
0 otherwise

IY =

{
1 if a customer buys Y
0 otherwise

For strong support, IX and IY need not be correlated.

IX and IY are referred to as indicator variables.

IX has a value distribution of

IX :
(

1 0
p 1− p

)

(The top row represents values. The bottom row represent probabilities).

A Case Study In Correlation

This example comes from Section 5.4.1 of the text. Our class example used mustard and
sausages instead of games and videos, but the presentation was basically the same.

Suppose we have 10,000 transactions where

• 6,000 customers purchase computer games
• 7,500 customers purchase videos
• 4,000 customers purchase both
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We have

supportT (games⇒ videos) =
4, 000
10, 000

= 0.4

confT (games⇒ videos) =
4, 000
6, 000

= 0.66

games ⇒ videos is a strong rule (high support and confidence). But it’s also misleading. Support is
only an estimate of correlation between games and videos.

To address this weakness, we can use (several) correlation measures. One example is lift :

lift(X,Y ) =
P (X ∪ Y )
P (X) · P (Y )

=
P (Y |X)
P (Y )

=
confT (X ⇒ Y )

supportT (Y )

Lift measures the amount by which an increase in X increases Y . For our video/game example:

lift(games, videos) =
confT (games⇒ videos)

supportT (videos)

=
0.66
0.75

= 0.88

In this case, lift is < 1, which indicates a negative correlation.

In general:

• If lift(X,Y ) < 1, then X and Y are negatively correlated.

• If lift(X,Y ) > 1, then X and Y are positively correlated.

• If lift(X,Y ) = 1, the X and Y are independent.

This is pretty easy to understand with a little manipulation:

lift(X,Y ) =
P (X ∪ Y )
P (X) · P (Y )

lift(X,Y ) · (P (X)P (Y )) = P (XY )

Lift is kind of like a scaling factor that associates the independent probabilities to the join probability.

Note: in class we got a different definition of lift; the reciprocal of what’s in the text:

lift(X,Y ) =
P (X) · P (Y )
P (X ∪ Y )
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Indicator Variables

If X as an event, then the indicator variable for X is

IX =

{
1 if X occurs
0 otherwise

If P (X) = p, then

IX :
(

1 0
p 1− p

)

Suppose IX follows a binomial distribution.

E(IX) = p the expected probability

Variance is

var(IX) = E((IX − E(IX))2)

Covariance is

covar(IX , IY ) = E(IXIY )− E(IX)E(IY )
= P (XY )− P (X)P (Y )

Correlation is

corr(IX , IY ) =
covar(IXIY )√
var(IX)var(YY )

Multi-Level Association Rules

Suppose we have a database of courses and students:

C1 C2 . . . C500
S1
S2
...

And, we’d like to find association rules of the form X1X2 ⇒ Y1Y2Y3: if a student takes X courses, what
Y courses to they take?

With 500 courses, there are a huge number of rules:
(
500
2

)
·
(
498
3

)
.

Aside from the sheer number of rules, the level of detail is also hard to manage.

However, we can classify courses according to a hierarchy – computer science courses, physics courses,
management courses, etc. This gives us a concept hierarchy like the one shown in Figure 1.12.

When mining, we can replace courses with their classifications. For example, “CS110” becomes “Com-
puter Science”, and we do the mining with “Computer Science”.

These are called multi-level rules.

Going from the leaves to the root, we typically expect the level of support to increase.
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UMB

CAS

CS110 CS899 PHYS101 PHYS341

Computer Science Physics

MKT260 ACT201 ACT224MKT101

AccountingMarketing

CM

Figure 1.12: Concept Hierarchy for University Courses
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1.10 Notes from Handout #2 – 2/25/2008

1.10.1 Association Rules

For the association rule X ⇒ Y ,

• Both X and Y must be nonempty: X 6= ∅, Y 6= ∅.

• X and Y must be disjoint: X ∩ Y = ∅.

An association rule holds if we have supportT (X ⇒ Y ) ≥ µ and confT (X ⇒ Y ) ≥ c. Rules must meet
our requirements for support and confidence.

Given a Frequent item set Z, we find association rules by examining all proper subsets X of Z. Rules
have the form

X ⇒ Z −X

such that X ⇒ Z −X has the desired confidence c and support µ.

An association rules with 100% confidence is referred to as an exact association rule.
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1.11 Lecture – 2/25/2008

1.11.1 Clarifications on Lift

(This is a second presentation of the material given at the end of our last lecture. See page 35 or so).

For an association rule X ⇒ Y , we define lift as

lift(X,Y ) =
supportT (XY )

supportT (X) · supportY (Y )
(1.25)

Covariance is

covar(IX , IY ) = E(IX , IY )− E(IX)E(IY ) (1.26)

Say we have an event X, and X occurs with probability p. The indicator variable IX is

IX :
(

1 0
p 1− p

)
(1.27)

The expected value of IX is E(IX) = p.

The variance of IX is

var(IX) = p · (1− p) (1.28)

The support of an itemset X is the probability of having X ⊆ T (i) for a randomly chosen transaction
T (i).

Suppose we have

supportT (X) = p

supportT (Y ) = q

supportT (XY ) = r

The correlation of IX and IY is

corr(IX , IY ) =
covar(IX , IY )√

var(IX) ·
√

var(IY )
(1.29)

If IXY is

IXY :
(

1 0
r 1− r

)
(1.30)

then,

corr(IX , IY ) =
r − pq√

p(1− p) ·
√
q(1− q)

=
pq · (lift(X ⇒ Y )− 1)√
p(1− p) ·

√
q(1− q)

note that lift is
r

pq

If lift(X ⇒ Y ) > 1, then we have positive correlation.

If lift(X ⇒ Y ) < 1, then we have negative correlation.



Part 2

Clustering

2.1 Lecture – 2/25/2008

Clustering groups similar objects into sets named clusters, such that dissimilar objects belong to different
sets.

This definition is somewhat vague. For example, it doesn’t say how dissimilarity is measured. It also
doesn’t say if clusters can overlap, or if they have to be disjoint.

2.1.1 Measuring Dissimilarity

Suppose we have two objects, o1, o2 ∈ S, and we want to measure the dissimilarity between o1 and o2.

Formally, a dissimilarity measure is a function

d : S × S → R≥0 (2.1)

So, d(o1, o2) is the dissimilarity between o1 and o2.

Requirements for a dissimilarity function:

(DISS1) d(o, o) = 0 Objects have zero dissimilarity with themselves.
(DISS2) d(o1, o2) = d(o2, o1) Dissimilarity measures must be symmetric.

These are the minimum requirements for a dissimilarity measure. It’s common to impose two additional
requirements:

(DISS3) d(o1, o2) ≤ d(o1, o′) + d(o′, o2)
(DISS4) d(o1, o2) = 0 implies o1 = o2

(DISS3) is the triangular axiom.

If d satisfies (DISS1), (DISS2), and (DISS3), then we call d a semi-metric.

If d satisfies (DISS1)–(DISS4), then d is a metric.

For clustering, we’ll typically prefer metrics or semi-metrics.

39
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Data That is Typically Clustered

• Vectors in Rn

• Sets which are subsets of a given set. The representations used for sets tend to work for general
binary data (i.e., you can represent a set as a bit string)

• Sequences of symbols over a given alphabet

• Categorical data. Categorical data is data without a natural value order (e.g., color).

2.1.2 Examples of Dissimilarity Measures

You can think of dissimilarity measures as distance measures – we’re measuring how “far apart” two
objects are.

Euclidean Distance

Let x and y be two vectors:

x = (x1, . . . , xn)
y = (y1, . . . , yn)

The euclidean distance between x and y is

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.2)

This is a fairly common distance measure.

Minkovski Distance

Minkovski distance is

dp(x, y) =

(
n∑
i=1

|xi − yi|p
) 1
p

(2.3)

Minkovski distance is a metric for p ≥ 1.

Note that d2(x, y) (taking p = 2) is the same as the Euclidean distance.

Manhattan Distance

The Manhattan Distance is Minkovski distance for p = 1

d1(x, y) =
n∑
i=1

|xi − yi| (2.4)

How would this look for vectors of length 2?

d1(x, y) = |x1 − y1|+ |x2 − y2|
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(x1,x2)

(y1,y2)

Figure 2.1: Manhattan Distance

Figure 2.1 shows the Manhattan distance between x and y. The distance is the length of the dashed line
between x and y.

Why is this called Manhattan Distance? If you were in Manhattan and wanted to go from x to y, you’d
have to walk along a path like the dotted line.

Canberra Distance

The Minkovski distance does something interesting as p approaches infinity. Lets look at limp→∞ dp(x, y).

Starting with

dp(x, y) =

(
n∑
i=1

|xi − yi|p
) 1
p

Lets factor out the largest |xi − yi| value:

dp(x, y) = max
1≤i≤n

|xi − yi| ·
(

1 +
∑

rpj

) 1
p

Above, rj has the form |xj − yj | (but not the maximum value). All rj are ≤ 1.

As p tends to infinity, 1
p tends to zero, and (

∑
rpj ) tends to 1.

So, we have the Canberra Distance:

d∞ = max
1≤i≤n

|xi − yi| (2.5)

2.1.3 Spheres and Distance Measures

We can define spheres in terms of dp(x, y) measures.

If c is the center of the sphere and r is the radius, then we can define a sphere as

Sd2(c, r) = {x | d(c, x) ≤ r} (2.6)

d2(x, y) corresponds to the way we normally think of a sphere. The outer shell has distance r from c.
Figure 2.2 shows a sphere for Sd2(0, r).

For d1(x, y) our sphere is

Sd1(c, r) = {(x1, x2) | |x1|+ |x2| ≤ r} (2.7)
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c

r

r

r

r

Figure 2.2: Sphere defined by d2(0, r)

c

r

r

r

r

Figure 2.3: Sphere defined by d1(0, r)

This is shown in Figure 2.3

For d∞(x, y) our sphere is

Sd∞(0, r) = {(x1, x2) | max{x1, x2} ≤ r} (2.8)

This sphere is shown in Figure 2.4.

r

c r

r

r

Figure 2.4: Sphere defined by d∞(0, r)

Moral of the story – the way we intuitively think of things in two or three dimensions does not hold for
larger numbers of dimensions!

2.1.4 Dissimilarity Measures for Sets

Most dissimilarity measures for sets will also work for binary data. When working with binary data, 1
is like being in the set, and 0 is like being out of the set.

A common dissimilarity measure for sets is symmetric difference

d(P,Q) = |P ⊕Q|
= |(P −Q) ∪ (Q− P )|

In Figure 2.5, the symmetric difference is represented by the shaded area. Note that P ∩Q is not part
of the symmetric difference.



CS738 Class Notes 43

P Q

Figure 2.5: Symmetric Difference of P and Q

Is d(P,Q) a similarity? It’s pretty easy to see that

d(P, P ) = 0
d(P,Q) = d(Q,P )

But d(P,Q) ≤ d(P,R) + d(R,Q) – that’s a little trickier to prove.

First, we note that ⊕ is associative: P ⊕ P = ∅

Now,

d(P,Q) ≤ d(P,R) + d(R,Q)
|P ⊕Q| ≤ |P ⊕R|+ |R⊕Q| this is what we need to prove

P ⊕Q = (P ⊕R)⊕ (R⊕Q)
⊆ (P ⊕R) ∪ (R⊕Q)

therefore

|P ⊕Q| ≤ |P ⊕R|+ |R⊕Q|

Steinhaus Transform of d

Suppose we pick a fixed point u. The Steinhaus Transform of d is

du(x, y) =
d(x, y)

d(x, y) + d(x, u) + d(u, y)
(2.9)

Above, we’ll have 0 ≤ du(x, y) ≤ 1.

du(x, y) is a dissimilarity, since

du(x, x) = 0
du(x, y) = du(y, x)

Let’s prove that du(x, y) also satisfies the triangular axiom.

First observe that if a ≤ b, then

a

a+ k
≤ b

b+ k
for k ≥ 1

Why?

ab+ ak ≤ ba+ bk cross multiply
ak ≤ bk
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Let’s look at

d(x, y) ≤ d(x, z) + d(z, y)

Applying the definition of du(x, y):

du(x, y) =
d(x, y)

d(x, y) + d(x, u) + d(u, y)

≤ d(x, z) + d(z, y)
d(x, z) + d(z, y) + d(x, u) + d(u, y)

=
d(x, z)

d(x, z) + d(z, y) + d(x, u) + d(u, y)
+

d(z, y)
d(x, z) + d(z, y) + d(x, u) + d(u, y)

≤ d(x, z)
d(x, z) + d(x, u) + d(u, z)

+
d(z, y)

d(z, y) + d(z, u) + d(u, y)
= du(x, z) + du(z, y)

Note: going from the third line to the fourth line, we make use of our earlier observation: a
a+k ≤

b
b+k

for a ≤ b and k ≥ 1.

We can apply the Steinhaus Transform to our set dissimilarity measure:

d(x, y) = |x⊕ y|

du(x, y) =
|x⊕ y|

|x⊕ y|+ |x⊕ u|+ |u⊕ y|

Suppose we choose u = ∅.

du(x, y) =
|x⊕ y|

|x⊕ y|+ |x|+ |y|

=
|x⊕ y|

2 · |x ∪ y|

This measure satisfies the triangular axiom, and takes values.

0 ≤ du(x, y) =
|x⊕ y|

2 · |x ∪ y|
≤ 0.5

A variation on this, called the Jaccard Coefficient

|x⊕ y|
|x ∪ y|

(2.10)

takes values in the range [0.0, 1.0].

Finally, we can also measure dissimilarity relative to the set S itself. This is like the Steinhaus Transform,
but we’re using the set S instead of a single element u.

dS(x, y) =
|x⊕ y|

|x⊕ y|+ |x|+ |y|

=
|x⊕ y|

2|S − (x ∩ y)|

2.1.5 Logistics

• Download R and WEKA. Start getting familiar with them.

• Our makeup class will tentatively be the first Saturday after spring break. We’ll finalize the date
later.



CS738 Class Notes 45

2.2 Lecture – 2/27/2008

A dissimilarity needs to satisfy two requirements:

d(x, x) = 0 (2.11)
d(x, y) = d(y, x) (2.12)

However, it’s common to impose additional requirements:

d(x, y) ≤ d(x, z) + d(z, y) triangular inequality (2.13)
d(x, y) = 0 implies x = y definedness property (2.14)

• If d satisfies (2.11) and (2.12), then d is a dissimilarity.

• If d satisfies (2.11), (2.12), and (2.13), then d is a semi-metric (also called a quasi-metric)

• If d satisfies (2.11), (2.12), (2.13), and (2.14), then d is a metric.

Let d be a dissimilarity (not a semi-metric). We define Dα as

Dα(x, y) = d(x, y)α

There is always an α > 0 such that Dα is a semi-metric.

We won’t give a proof here. For α = 0, it is trivially true. We can also find α by

α = min
x,y∈S

d(x, y)

Such that d(x, y)α ≤ d(x, z)α + d(z, y)α for every z ∈ S.

α tells us how much d behaves like a semi-metric. (semi-metrics have α = 1.)

2.2.1 Ultrametrics

An ultrametric is a function

d : S × S → R≥0

Ultrametrics satisfy three properties:

d(x, y) = 0 iff x = y (2.15)
d(x, y) = d(y, x) (2.16)
d(x, y) ≤ max{d(x, z), d(z, y)} for every z (2.17)

Equation (2.17) is referred to as the ultrametric inequality. The ultrametric inequality implies the
triangular inequality.

Suppose we have a tree where all leaves are equidistant from the root – an equidistant tree. The length
of the path between any two trees is an ultrametric.

Consider the tree in Figure 2.6

We have

d(x, y) = d(x, u) + d(u, y)
d(x, z) = d(x, u) + d(u, v) + d(v, z)
d(y, z) = d(y, u) + d(u, v) + d(v, z)
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a+b

x y z

u

v

a a

b

Figure 2.6: A tree with three leaves

In Figure 2.6, a and b represent distances. So

d(x, u) = d(u, y)
d(v, x) = d(v, z)

d(x, y) = 2a
d(x, z) = 2a+ 2b
d(y, z) = 2a+ 2b
d(x, y) ≤ max{d(x, z), d(z, y)}

Notice that two of our three distances, d(x, y), d(x, z), d(y, z), are the same. This always happens with
an ultrametric.

Every triangle in an ultrametric-space is an isosceles triangle. Consider Figure 2.7.

p q

r

Figure 2.7: An Isosceles Triangle

There are three distances: d(p, q), d(p, r), and d(q, r). Let d(p, q) be the smallest distance. If d(p, q) is
the smallest, then

d(p, q) ≤ d(p, r)
d(p, q) ≤ d(q, r)

Using the ultrametric property,

d(p, r) ≤ max{d(p, q), d(q, r)} = d(q, r) since d(p, q) is smallest
d(q, r) ≤ max{d(p, q), d(p, r)} = d(p, r) since d(p, q) is smallest

So, d(p, r) ≤ d(q, r) ≤ d(p, r). Therefore d(p, r) = d(q, r).

2.2.2 Clustering

When it comes to clustering, there is no free lunch. There are lots of different approaches – each are
suited to different tasks, or to different kinds of data.
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A Taxonomy of Clustering Algorithms

Clustering algorithms may be

Exclusive or Non-Exclusive Exclusive algorithms do not allow groups to overlap. Non-Exclusive
algorithms allow groups to overlap (typically at the periphery of groups).

Supervised or Unsupervised Unsupervised algorithms have no operator involvement. Supervised
algorithms allow an operator to specify constraints for the clustering process. For example, a
constraint might be “a and b cannot be part of the same cluster” or “a and b must be part of the
same cluster”.

There are also semi-supervised clustering algorithms.

In addition to these categories, there are also

• Hierarchical algorithms. Some work bottom-up; some work top-down.

• Means-based (and medoid-based) algorithms.

• Density-based algorithms.

Some Clustering Formalisms

For clarity, we should define a few terms.

Definition 2.2.2.1 (Clustering): A clustering on a set of objects is partition of that set of objects.

Definition 2.2.2.2 (Partition): A partition on a set S is a finite collection of non-empty subsets of
S: {B1, B2, . . . , Bn}, such that

B1 ∪B2 ∪ . . . ∪Bn = S

Bi ∩Bj = ∅ if i 6= j

The Bi are called blocks of the partition. A partition is a collection of blocks.

Figure 2.8 shows an example of a partition.

3B1

B2
B4

B5

B6

B

Figure 2.8: A partition with six blocks

For a given set S, there are a large number of possible clusterings (Stirling’s number).

Let parts(S) be the set of all partitions on S. How can we define an ordering on clusters?

Let π, δ ∈ parts(S). We say that π < δ if every block of π is included in a block of δ. In other words,
blocks of δ are unions of blocks of π.

Let c be a block of δ:

c = {xi1 , . . . , xip}

such that

xi1 ∈ Bi1 , . . . , xip ∈ Bip
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Then c ⊆
⋃p
l=1Bil , and each Bil ∈ c.

The smallest partition has one element per block. The largest partition is a single block that contains
all elements.

Let S = {x1, . . . , xn}.

αS = {{x1}, {x2}, . . . , {xn}} the smallest partition
ωS = {S} the largest partition

2.2.3 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms build clusters with either an increasing, or a decreasing sequence of
partitions. In other words, hierarchical algorithms start with αS or ωS . The algorithms produce a
sequence of clusters (typically, there will be a parameter that says when to stop).

Hierarchical algorithms can be

Agglomerative These start with αS and build larger clusters. In R, agglomerative clustering is done
by agnes.

Divisive These start with ωS and divide it into smaller clusters. In R, divisive clustering is done by
diana.

Aside – in older literature, clusters are sometimes called “OTUs” – OTU stands for “Operational Tax-
onomical Unit”. This term comes from the field of biology.

Hierarchical clustering uses a matrix of distances (between clusters). Given a set S with n elements,
an agglomerative algorithm starts with an n × n matrix M . M is symmetric, and has zeros along the
diagonal. The zeros come from the dissimilarity rule d(x, x) = 0.

With each step, we combine (or divide) clusters, forming a new matrix M . We have to rebuild M in
each step.

2.2.4 Measuring Distance Between Clusters

There are several ways to measure the distance between clusters.

Single-Link Technique

With the single-link technique, distance between clusters C1 and C2 is given by the two closest objects,
x ∈ C1 and y ∈ C2. We use min d(x, y) as the distance between clusters.

Figure 2.9 shows the single-link technique.

y
1 C2

x
C

Figure 2.9: Single-Link Technique

The single-link technique tends to produce elongated clusters.
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Complete-Link Technique

The complete technique uses the two furthest objects, x ∈ C1, y ∈ C2. The distance between clusters is
max d(x, y).

Figure 2.10 shows the complete-link technique.

y1 C2x
C

Figure 2.10: Complete-Link Technique

Other Techniques

We can determine the distance between clusters using an average distance. Suppose xi ∈ C1 and yi ∈ C2.
The distance is∑

d(xi, yi)
|C1| · |C2|

Centroids provide another measure of cluster distance. Let S be a set S ∈ Rn. The centroid of set B a
vector

c =
∑
{x | x ∈ B}
|B|

The centroid is the block’s “center of gravity”. Typically, the centroid will not correspond to a real
object.

Medoids provide yet another measure. A medoid is the object in a cluster C whose average distance to
all other objects in C is minimal. The mediod always corresponds to an object.
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2.3 Lecture – 3/3/2008

2.3.1 Hierarchical Clustering

Hierarchical clustering works in one of two ways:

• We start with small clusters and build larger and larger ones (Agglomerative clustering)

• We start with a large cluster and build smaller and smaller ones (Divisive clustering)

We will focus on Agglomerative clustering first. We start with singleton sets, and combine them to form
larger clusters.

If our set of objects is S = {x1, . . . , xn}, we will start with αS = {{x1}, . . . , {xn}}.

Suppose we are on iteration t of the clustering process. We select two clusters, U and V to combine. In
iteration t+ 1, U and V will be replaced with a new cluster W , where W = U ∪ V .

For this discussion, we’ll assume that our objects line in a metric space Rn.

2.3.2 A quick Aside

For reference, I’ve dug up a few formulas from one of my old Linear Algebra books.

‖(x1, . . . , xn)‖ =
√
x2

1 + x2
2 + · · ·+ x2

n length or absolute value of a vector

p− q = ‖p− q‖ distance between two points in n space
p · q = p1q1 + p2q2 + · · ·+ pnqn dot product
p · q = ‖p‖ · ‖q‖ cos θ another way to find dot product

‖x‖2 = x · x for any vector x

‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2

2.3.3 Now, Back to Clustering ...

We treat points as vectors in n-space. The euclidean distance between u and v is

d(u,v) = ‖u− v‖
d2(u,v) = ‖u− v‖2

= (u− v,u− v)

u · v = ‖u‖ · ‖v‖ · cos θ

u · u = ‖u‖2

Our basic goal is to find two clusters, U and V , and combine them to form a new cluster W . Figure
2.11 shows the general idea.

How do we choose U and V ?
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U V

W

Figure 2.11: Forming W from U and V

We define cU as the centroid of U . The centroids of U , V , W are

cU =
∑
{x | x ∈ U}
|U |

cV =
∑
{x | x ∈ V }
|V |

cW =
∑
{x | x ∈W}
|W |

When combining clusters, one of the measures that interests us is the sum of the squared errors of the
cluster, or sse(W ). sse tells us how “tight” the cluster is.

sse(U) =
∑
{d2(x, cU ) | x ∈ U} (2.18)

sse(U) is small for a tight cluster.

We can manipulate cW in the following way:

cW =
∑
{x | x ∈W}
|W |

=
∑
{x | x ∈ U}+

∑
{x | x ∈ V }

|U |+ |V |

=
|U |
|W |
·
∑
{x | x ∈ U}
|U |

+
|V |
|W |
·
∑
{x | x ∈ V }
|V |

=
|U |
|W |

cU +
|V |
|W |

cV

When combining U and V , we are interested in minimizing

sse(W )− sse(U)− sse(V ) (2.19)

sse(W ) is

sse(W ) =
∑
{d2(x, cW ) | x ∈W}

d2(u,v) = (u,u)− 2(u,v) + (v,v)

= ‖u‖2 − 2(u · v) + ‖v‖2

Using the fact that W = U ∪ V , we can re-write (2.19) as

sse(W )− sse(U)− sse(V )

=
∑
{d2(o, cW ) | o ∈W} −

∑
{d2(o, cU ) | o ∈ U} −

∑
{d2(o, cV ) | o ∈ V }
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Looking only at the terms∑
{d2(o, cW ) | o ∈W} −

∑
{d2(o, cU ) | o ∈ U}

We can do the following∑
{d2(o, cW ) | o ∈W} −

∑
{d2(o, cU ) | o ∈ U}

=
∑
{‖o‖2 | o ∈ U} − 2

∑
o∈U

o, cW + |U | · ‖cW ‖2 −

(∑
{‖o‖2 | o ∈ U} − 2

∑
o∈U

o, cU + |U | · ‖cU‖2
)

= |U | · (‖cW ‖2 − ‖cU‖2)−
∑
o∈U

(o, cW − cU )

= |U | · (‖cW ‖2 − ‖cU‖2)− 2|U |(cU , cW − cU )

= |U | · (‖cW ‖2 − ‖cU‖2)− 2|U |((cU , cW )− ‖cU‖2)

We can do a similar thing for V .

Putting the U and V parts (V not shown) together, we have

ssu(W ) = |U | · (‖cW ‖2 − ‖cU‖2)− 2|U |((cU , cW )− ‖cU‖2)

+ |V | · (‖cW ‖2 − ‖cV ‖2)− 2|V |((cV , cW )− ‖cV ‖2)

= |W | · ‖cW ‖2 + |U | · ‖cU‖2 − 2|U |(cU , cW ) + |V | · ‖cV ‖2 − 2|V |(cV , cW )

Note that

|U |(cU , cW ) + |V |(cV , cW )
= (|U |cU + |V | · cV, cW )
= (|W |, ·cW , cW )

= |W | · ‖cW ‖2

Going back to (2.19), we have

sse(W )− sse(U)− sse(V )

= |U | · c2
U + |V | · c2

V − |W | · c2
W

=
(
|U | − |U |

2

|W |

)
c2
U +

(
|V | − |V |

2

|W |

)
c2
V −

2|U ||V |
W

cUcV

= |U |
(
|W | − |U |
|W |

)
c2
U + |V |

(
|W | − |V |
|W |

)
c2
V −

2|U ||V |
|W |

cUcV

=
|U | · |V |
|W |

c2
U +

|U | · |V |
|W |

c2
V +

2|U | · |V |
|W |

c2
Uc2

V

=
|U | · |V |
|W |

(cU − cV )2

After all of this derivation, the important equation to remember is

sse(W )− sse(U)− sse(V ) =
|U | · |V |
|U |+ |V |

(cU − cV )2 (2.20)
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2.3.4 Hierarchical Clustering - a high-level overview

We will look at several hierarchical clustering algorithms. These follow a common pattern:

Input: A set of objects S, where |S| = n, and a distance matrix D.
Output: A hierarchy of clusters

Method:

• Define D1 = D
• For k = 1 to n, do

– Choose clusters U , V according to a specific criteria
– Fuse clusters U and V into W
– Create the distance matrix Dk+1 by computing the distances d(W,Q) for Q 6= U ,
Q 6= V

With each iteration, we’ll

• remove the matrix rows and columns for U and V
• add a row and column for W

In this process, our interesting choices are

• The criteria for choosing U and V
• The method for computing distances

We will study five methods for computing distances:

1. Single Link (sl)
2. Complete Link (cl)
3. Group Average Method (gav)
4. Centroid Distance Method (cd)
5. Ward method (ward)

These distance measures are defined as follows:

sl(u, v) = min{d(u, v) | u ∈ U, v ∈ V } (2.21)
cl(u, v) = max{d(u, v) | u ∈ U, v ∈ V } (2.22)

gav(u, v) =
∑
{d(u, v) | u ∈ U, v ∈ V }

|U | · |V |
(2.23)

cd(u, v) = (cU − cV )2 (2.24)

ward(u, v) =
|U | · |V |
|U |+ |V |

(cU − cV )2 (2.25)
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2.4 Lecture – 3/5/2008

2.4.1 Agglomerative Cluster Example with sl

Let’s work out an agglomerative clustering example. In this example, we will use the set of objects
S = {o1, . . . , o7}, where oi ∈ R2

Figure 2.12 shows our set of objects.

7

1 2 3 4 5 6 7

6

5

4

3

2

o

1

1 o2

o3

o4

o5

o6

o7

Figure 2.12: Set of objects S

For this example, we’ll use Manhattan distance. We will join clusters using the single link measure

d(u, v) = min{d(u, v) | u ∈ U, v ∈ V }

First we find D1, the distance matrix for αS .

D1 o1 o2 o3 o4 o5 o6 o7

o1 0 1 3 6 8 11 10
o2 1 0 2 5 7 10 9
o3 3 2 0 3 5 8 7
o4 6 5 3 0 2 5 4
o5 8 7 5 2 0 3 4
o6 11 10 8 5 3 0 3
o7 10 9 7 4 4 3 0

o1 and o2 are the closest clusters (smallest distance), so we’ll fuse them to form o12. Next, we construct
the next distance matrix D2

D2 o12 o3 o4 o5 o6 o7

o12 0 2 5 7 10 9
o3 2 0 3 5 8 7
o4 5 3 0 2 5 4
o5 7 5 2 0 3 4
o6 10 8 5 3 0 3
o7 9 7 4 4 3 0

For our next step, we have several options for picking clusters to merge. For example o12 and o3 have
distance 2, but so do o4 and o5. We’ll merge o12 with o3. Next, we construct the distance matrix D3
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D3 o123 o4 o5 o6 o7

o123 0 3 5 8 7
o4 3 0 2 5 4
o5 5 2 0 3 4
o6 8 5 3 0 3
o7 7 4 4 3 0

In our next step, we have one chose: merge o4 and o5. We merge these clusters and form D4.

D4 o123 o45 o6 o7

o123 0 3 8 7
o45 3 0 3 4
o6 8 3 0 3
o7 7 4 3 0

In our next step, we have choices for which clusters to merge (several have distance 3). We’ll merge o6

and o7, and construct the distance matrix D5.

D5 o123 o45 o67

o123 0 3 7
o45 3 0 3
o67 7 3 0

Next, we’ll join o45 and o67, and form the distance matrix D6.

D6 o123 o4567

o123 0 3
o4567 3 0

Finally, we merge these to form the last cluster, yielding matrix D7.

D7 o1234567

o1234567 0

A few things to note about this process

• When we merge two clusters, we remove two rows and two columns, and add one row and one
column. The rest of the matrix is unchanged.

• With each step, the minimum distance (smallest matrix cell value) is non-decreasing.

Why are distances non-decreasing? Let ci and cj be two clusters, which we fuse to form cr. Using a
single link distance:

crl = min{cil, cjl}

The distances are non-decreasing, because you can’t get values which are smaller than the values you
already have.

We can use this clustering to construct a dendrogram. The dendrogram for this cluster is shown in
Figure 2.13.

Figure 2.13 shows how the clusters were formed. It’s worth noting the role that height plays. For
example, the cluster between o1 and o2 appears at height 1 – that was the distance between o1 and
o2 when they were merged. Similarly, o12 is joined with o3 at height 2, because that was the distance
between o12 and o3 when they were merged.

Let’s define δ(u, v) as the height of the least common ancestor of u and v. For example, δ(o1, o3) = 2
and δ(o1, o6) = 3.
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Figure 2.13: Dendrogram for cluster with sl

δ is an ultrametric. δ is also the largest ultrametric such that δ(u, v) ≤ d(u, v).

δ is called the sub-dominant ultrametric of d.

2.4.2 Agglomerative Cluster Example with cl

Let’s repeat the example using the complete-link criteria for computing distance. Recall that complete
link is

cl(u, v) = max{d(u, v) | u ∈ U, v ∈ V }

Here is D1 (it’s the same as D1 in our last example).

D1 o1 o2 o3 o4 o5 o6 o7

o1 0 1 3 6 8 11 10
o2 1 0 2 5 7 10 9
o3 3 2 0 3 5 8 7
o4 6 5 3 0 2 5 4
o5 8 7 5 2 0 3 4
o6 11 10 8 5 3 0 3
o7 10 9 7 4 4 3 0

We use the same criteria for joining clusters: pick the pair with the smallest distance. We join o1 and
o2 (distance = 1) and form D2.

D2 o12 o3 o4 o5 o6 o7

o12 0 3 6 8 11 10
o3 3 0 3 5 8 7
o4 6 3 0 2 5 4
o5 8 5 2 0 3 4
o6 11 8 5 3 0 3
o7 10 7 4 4 3 0

Next, we join o4 and and o5 (distance 2) and form D3.

D3 o12 o3 o45 o6 o7

o12 0 3 8 11 10
o3 3 0 5 8 7
o45 8 5 0 5 4
o6 11 8 5 0 3
o7 10 7 4 3 0

Next, we join o6 and o7 (distance = 3) and form D4.
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D4 o12 o3 o45 o67

o12 0 3 8 11
o3 3 0 5 8
o45 8 5 0 5
o67 11 8 5 0

Next, we join o12 and o3 (distance = 3), and form D5.

D5 o123 o45 o67

o123 0 8 11
o45 8 0 5
o67 11 5 0

Next, we join o45 and o67 (distance = 5), and form D6.

D5 o123 o4567

o123 0 11
o4567 11 0

And finally, we join the last pair of clusters (distance 11) to form D7.

D5 o1234567

o1234567 0

The dendrogram for this clustering is shown in Figure 2.14.
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Figure 2.14: Dendrogram for cl cluster

Once again, we see a property of monotonicity of cluster distances. If we have ci and cj of Dk, and we
merge ci, cj into cr in Dk+1, then

crl = max{cil, cjl}

cil and cjl appears in Dk, and crl appears in Dk+1. These are arbitrary points, so no distance in Dk+1

can be less than a distance in Dk.

One interesting aspect of dendrograms in the way they give us flexibility for choosing the granularity of
clusters.
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Figure 2.15: Granularity of a Dendrogram

Consider the dendrogram in Figure 2.15.

The horizontal lines (a), (b), and (c) are “between” unit heights. If we “cut” the dendrogram at (a), we
have seven clusters. If we cut the dendrogram at (b) we have 6 clusters. If we cut the dendrogram at
(c), we have four clusters.

2.4.3 k-Means Clustering Algorithm

k-Means is another popular clustering algorithm. Unlike agglomerative clustering, k-Means requires the
number of clusters as input to the algorithm.

Input A set of points S, a distance function d, and a number of clusters k (where k ≤ |S|).

Method

• Randomly choose k points c1, . . . , ck in Rn. These are the initial “centroids” of the
clusters. There is no connection between c1, . . . , ck and the set of objects in S.

• Repeat until no change
– Assign each of the objects o1, . . . , on to one of the “centroids”. This forms an

initial clustering.
– Recompute the centroids, based on distances from the real objects.

We can construct an assignment matrix. The rows are objects o1, . . . on, and the columns are clusters
c1, . . . , ck. A cell of the matrix, bij is

bij =

{
1 if oi is assigned to bj
0 otherwise

Note: when choosing a distance function for k-Means, you must choose a real distance measure. k-Means
will not work if d is not a real distance.

2.4.4 Misc.

Try drawing four points on a sheet of paper, such that the distance between each pair of points is one.
It’s not possible to do. ∴ it’s hard to represent multi-dimensional data on flat paper.
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2.5 Lecture – 3/10/2008

2.5.1 The k-Means Clustering Algorithm

One of the inputs to k-means is k, the number of clusters. In some cases, you’ll know k in advance. In
other cases, you may arrive at k by trial and error – try several k and take the value which produces the
best results.

Assume we have objects {o1, . . . on}, and centroids {c1, . . . ck}.1 Both o and c are vectors in Rm.

Initially {c1, . . . ck} are chosen at random (they don’t correspond to real objects).

We use a matrix B to keep track of assignments of objects to clusters. In B, we have one row per object,
and one column cluster. Matrix cells have the value

bij =

{
1 if oi is assigned to cluster Uk, having centroid ck

0 otherwise

Once we make an initial assignment of objects to clusters, we

• Recompute the centroids, based on assignment of objects to clusters

• Re-assign objects to the closest centroid

In pseudocode,

while (stopping criteria is not met) {
assign object to the cluster with the closest centroid
recompute the centroids

}

We can measure the “tightness” of a cluster using the sum of the squared error∑
o∈Uj

‖o− cj‖2

The more central cj is, the smaller the squared error will be.

We can also measure the squared error for all clusters

F (cjl ) =
k∑
j=1

∑
o∈Uj

‖o− cj‖2 (2.26)

We can rewrite (2.26) to use B instead of set membership.

F (cjl ) =
k∑
j=1

n∑
i=1

bij‖oi − cj‖2 (2.27)

Our goal is to choose centroids that minimize F (cjl ). Our optimality criteria is

∂F (cjl )

∂cjl
= 0

1The superscripts denote different set members, not exponentiation.
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Let oi = (oi1, . . . , o
j
m) and cj = (cj1, . . . , c

j
m). oi and cj are both vectors in m-space. The squared error

between o and c is

‖oi − cj‖2 =
m∑
l=1

(oil − c
j
l )

2

We can rewrite F (cjl ) further

F (cjl ) =
k∑
j=1

n∑
i=1

bij

m∑
l=1

(oil − c
j
l )

2

=
k∑
j=1

n∑
i=1

m∑
l=1

bij(oil − c
j
l )

2

To minimize, we fix j and l (i is variable).

∂F (cjl )

∂cjl
= −

n∑
i=1

2bij(oil − c
j
l ) = 0

n∑
i=1

bij · oil =
n∑
i=1

bij · cjl

n∑
i=1

bij · oil = cjl

∑
i=1

bij

The final equality is valid for 1 ≤ l ≤ m.

cj
∑
i=1 bij =

∑n
i=1 bij · oi gives us equality on components. To find the new centroid, we use

cj =
∑n
i=1 bij · oi∑n
i=1 bij

(2.28)

By (2.28) the new centroid is just the average (center of gravity) of the cluster.

Once we have found new centroids, then we reassign objects to clusters.

Common stopping criteria for k-means:

• We stop after a specific number of iterations

• We stop when F (cjl ) falls below a certain threshold

The time complexity of k-means is Θ(nkt) – where n is the number of objects, k is the number of clusters,
and t is the number of iterations.

Note again that k-means groups around centroids, and centroids are not real objects.

k-means yields good clusters (they’re locally optimal), but not necessary the best (globally optimal)
clusters.

2.5.2 Partitions Around Medoids (PAM)

The PAM (partitions around medoids) algorithm is superficially like k-means. The most obvious differ-
ence is that k-means uses centroids (not real objects) as cluster centers, while PAM uses medoids (which
are real objects). Like k-means, PAM requires k to be given in advance.

PAM works in two phases:
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Building Phase During the building phase, we’ll try to find the most central objects. We aim to
choose k objects that are most centrally located.

If S is the set of objects, and L is the set of objects chosen by the building phase, then R = S −L
is the set of unchosen objects.

Swapping Phase During the swapping phase, we swap selected (L) and unselected (R) objects. We
aim to improve the centrality of medoids.

The swapping phase continues as long as we see improvement.

Figure 2.16 shows the set S, the selected set L, and one object x ∈ R.

S

x

L

Figure 2.16: Set S with selected objects L and x ∈ R

For a discrete set, the distance between L and x can be given by

d(L, x) = min
t∈L

d(t, x)

d(L, x) = 0 if x ∈ L

How do we choose the first member of L? We can find the object oi with the minimum distance to all
other objects. If we have a distance matrix D, then oi is the objects whose row has the smallest sum.
In other words oi is the object that minimizes

∑n
j=1 dij . (dij is a cell of D).

Now, we have L = {oi}. Next, we pick o ∈ R such that
∑
o′∈R−{o} d(o, o′) is minimal. This is basically

what we did with oi, but we disregard oi when choosing o.

During the swapping phase, we need to decide whether to swap oi and oh. We’ll need to consider every
other object oj and consider the cost of the swap.

Let cihj be the cost to swap oi and oh with respect to oj . The total cost of the swap is
∑n
j=1 cihj . We

will only make swaps whose cost is negative.

Note that d(oj , L) ≤ d(oj , oi). We have the following cases to consider:

• d(L, oj) < d(oh, oj) < d(oj , oi). In this case oj is closer to something else (not L). So cihj = 0.

• d(oh, oj) < d(L, oj) < d(oi, oj). oj is closer to oi than L. cihj = d(oh, oj)− d(L, oj).

• d(L, oj) = d(oi, oj). Let e(oj) between the distance between oj and the second closest object in L.

cihj = min{d(oh, oj), e(oj)} − d(L, oj).

2.5.3 Misc.

What is an infimum?

Consider the interval [0, 1] this set has a least element, and that least element is also the infimum.

Now consider the interval (0, 1]. This set has no least element. inf(0, 1] = 0. If we think of the interval
as a continuous set, 0 /∈ (0, 1].
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2.6 PAM Notes – 3/11/2008

2.6.1 PAM notes, from Prof. Simovici’s handout

PAM is a fairly robust algorithm. Where k-means minimizes the sum of the squared errors, PAM tries
to minimize the sum of the errors.

For PAM, we start with

• A set S of objects (|S| = n).

• A parameter k, which specifies the number of clusters

• An n× n distance matrix D.

Medoids are supposed to assume the most central positions in their respective clusters.

During the building phase, we choose an initial set of k medoids. Let L be the set of medoids, and
R = S − L be the set of non-medoids.

1. The first medoid is the one with a minimal
∑n
i=1 dij . Once we find this medoid,we add it to L (L

now has one element).

2. We select the rest of the medoids in L by using a merit function M(o).

M(o) =
∑

o′∈R−{o}

max{d(L, o′)− d(o, o′), 0} (2.29)

How does this work. Suppose d(o, o′) < d(L, o′). Adding o to L (the medoid set) benefits clustering
from the point of view of o′, because d(L, o′) will diminish.

On the other hand, if d(o, o′) ≥ d(L, o′), then there is no benefit from the point of view of o′.

The tricky thing here: for each object o /∈ L, we’re examining the distance between o and every
other o′ in R− {o}.

The building phase halts when |L| = k.

During the swapping phase, we try to improve the clustering by exchanging objects in L with objects in
R = S − L.

For the swapping phase:

• oi is an object in L
• oh is an object not in L
• oj is an arbitrary object not in L

We consider the cost C(oi, oh) of swapping oi and oh. The contribution cihj of oj to the cost of swapping
oi and oh is as follows:

• If d(oi, oj) > d(o, oj) and d(oh, oj) > d(o, oj) for any o ∈ L− {oi}, then the cost is zero.

• If d(oi, oj) = d(L, oj), then we define e(oj) to be object in S that is second-closest to o.2 The cost
contribution is

cihj = min{d(oh, oj), e(oj)} − d(oi, oj)

• If (a) d(oi, oj) > d(L, oj) (there is some object in L that is closer to oj than oi), and (b) d(oh, oj) <
d(L, oj) (oj is closer to oh than any medoid object in L), then the cost is given by3

cihj = d(oh, oj)− d(S, oj)
2Is this really S?
3Why S again. Isn’t d(S, oj) = 0?
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The overall cost of the swap is

C(oi, oh) =
∑
oj∈R

cihj

The pair that minimizes C(oi, oh) is selected. If C(oi, oh) < 0, then the swap is carried out. All potential
swaps are considered.

In pseudocode:

construct the set L of k medoids
do

compute the cost C(oi, oh) for all oi ∈ L and oh ∈ R.
find the pair (oi, oh) that produces the minimum m = C(oi, oh)
swap (oi, oh)

until (m > 0)

PAM’s runtime complexity is Θ(n4), which makes it impractical for large data sets.

2.6.2 PAM Notes – from Han

Han’s swapping criteria appear below. In his presentation, oj is a representative node (oj ∈ L), p is
non-representative object being examined, and orandom is a random non-representative object.

Case 1 p belongs to oj . If oj is replaced by orandom as a representative object, and p is closer to some
other representative object oi, then reassign p to oi.

Case 2 p belongs to oj . If oj is replaced by orandom as a representative object and p is closest to
orandom, then reassign p to orandom.

Case 3 p belongs to oj . If oj is replaced by orandom as a representative object, and p is still closer to
oj , then no change of assignment takes place.

Case 4 p belongs to oi. If oj is replaced by orandom as a representative object, and p is closest to
orandom, then p is assigned to orandom.
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2.7 Lecture – 3/12/2008

2.7.1 Graph Clustering

We can use a complete graph G = (V,E) to represent distances between objects. Each edge (u, v) of G
is labeled with the distance between u and v: k = d(u, v).

Since G is a complete graph, there is an edge between every (u, v) pair.

Let S = {o1, . . . , on} be our set of objects. We’ll use the same distance matrix that we’ve used for some
prior examples:

D1 o1 o2 o3 o4 o5 o6 o7
o1 0 1 3 6 8 11 10
o2 1 0 2 5 7 10 9
o3 3 2 0 3 5 8 7
o4 6 5 3 0 2 5 4
o5 8 7 5 2 0 3 4
o6 11 10 8 5 3 0 3
o7 10 9 7 4 4 3 0

Table 2.1: Distance matrix for Graph Clustering Examples

We say that u ∼ v if there is a path from u to v, including the path of length zero. ∼ is an equivalence
relationship on vertices:

u ∼ u
u ∼ v → v ∼ u
u ∼ v, v ∼ w → u ∼ w

This equivalence class is called the connected component of u.

A few more definitions:

Definition 2.7.1.1 (Clique): K is a clique if, for every u, v ∈ K we have (1) (u, v) ∈ E, and (2) K is
maximal.

Definition 2.7.1.2 (Threshold Graph): A threshold graph Gk is a graph consisting of

Gk = (V, {(u, v) | d(u, v) ≤ k})

Gk contains all vertices, but only those edges that are ≤ k. Of course, as k increases, we include more
edges.

We can use threshold graphs for clustering. We’ll describe two approaches: single-link and complete-link.

2.7.2 Single-Link Graph Clustering

• For our first iteration, we form G0. This graph has no edges, just seven nodes (see Table 2.1).
This gives seven clusters:

G0 : {o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}

G0 is shown in Figure 2.17.



CS738 Class Notes 65

1 o2

o3

o4

o5o6

o7

o

Figure 2.17: G0 for single-link

• For G1, we add one edge: (o1, o2). This gives us a strongly connected component, and a new
cluster.

G1 : {o1, o2}, {o3}, {o4}, {o5}, {o6}, {o7}

G1 is shown in Figure 2.18.
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Figure 2.18: G1 for single-link

• Next, we form G2, using all edges of length ≤ 2. This adds (o2, o3) and (o4, o5). The new set of
clusters is

G2 : {o1, o2, o3}, {o4, o5}, {o6}, {o7}

G2 is shown in Figure 2.19.
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Figure 2.19: G2 for single-link

• Next, we form G3, using all edges of length ≤ 3. This adds (o1, o3), (o3, o4), (o5, o6), and (o6, o7).
G3 has one strongly connected component, so the process terminates:

G3 : {o1, o2, o3, o4, o5, o6, o7}

G3 is shown in Figure 2.20.
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Figure 2.20: G3 for single-link

Single-link graph clustering continues as long as the number of connected components decreases.

2.7.3 Complete-Link Graph Clustering

With single-link graph clustering, we formed clusters from connected components. In complete link
graph clustering, we form clusters from cliques.

The general idea: if P , Q are disjoint cliques in Gk, and P ∪Q is a clique in Gk+1, then P , Q are fused
together.

Because G is a complete graph, we are guaranteed to wind up with a single link. When we form Gm for
m = max dij we have all edges of the complete graph.

• G0 is the same as the single link case: each vertex is in a cluster by itself.

G0 : {o1}, {o2}, {o3}, {o4}, {o5}, {o6}, {o7}

• G1 gives a single clique (Figure 2.21).

1 o2

o3

o4

o5o6

o7

o

Figure 2.21: G1 for complete-link

G1 : {o1, o2}, {o3}, {o4}, {o5}, {o6}, {o7}

• G2 has two cliques (Figure 2.22)

G2 : {o1, o2}, {o3}, {o4, o5}, {o6}, {o7}

• Next, we form G3 (Figure 2.23).

G3 gives us two new clusters: {o1, o2, o3} and {o6, o7}. Note that o5 is already part of a cluster,
so we don’t have a {o5, o6} cluster.

G3 : {o1, o2, o3}, {o4, o5}, {o6, o7}
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Figure 2.22: G2 for complete-link
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Figure 2.23: G3 for complete-link

• G4 adds edges (o4, o7) and (o5, o7) (Figure 2.24). Note that we cannot join {o4, o5}, {o6, o7}, since
there is no (o4, o6) edge.
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o7
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Figure 2.24: G4 for complete-link

G4 = G3 : {o1, o2, o3}, {o4, o5}, {o6, o7}

• G5 is next. We add edges (o2, o4), (o3, o5), and (o4, o6) (Figure 2.25).

G5 gives us a new cluster from the clique {o4, o5, o6, o7}.

G5 : {o1, o2, o3}, {o4, o5, o6, o7}

• G6 comes next (Figure 2.26). We add the edge (o1, o4), but there’s no change in the clusters. In
order to fuse {o1, o2, o3} with {o4, o5, o6, o7}, we’ll need a clique containing all seven nodes.

• G7 comes next (Figure 2.27). We add the edges (o2, o5) and (o3, o7).

• G8 is next (Figure 2.28). We add edges (o1, o5) and (o3, o6).
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Figure 2.25: G5 for complete-link
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Figure 2.26: G6 for complete-link
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Figure 2.27: G7 for complete-link
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Figure 2.28: G8 for complete-link

• G9 is next (Figure 2.29). We add edge (o2, o7).

• G10 is next (Figure 2.30). We add edge (o2, o6) and (o1, o7).
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Figure 2.29: G9 for complete-link
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Figure 2.30: G10 for complete-link

• Finally, we form G11, giving us a single clique (Figure 2.31).

G11 : {o1, o2, o3, o4, o5, o6, o7}

1 o2

o3

o4

o5o6

o7

o

Figure 2.31: G11 for complete-link (one clique)

With complete-link graph clustering, clusters tend to appear later in the process (we need more edges
to form the cliques).

2.7.4 Density-Based Clustering Algorithms

The clustering algorithms we’ve studied so far tend to produce circular (or ellipsoidal) clusters. Density-
based clustering can discover irregularly shaped clusters.

One of the most prominent density-based algorithms is DBSCAN . The algorithm was introduced in
KDD96, in a paper by M. Ester.

DBSCAN uses two parameters, ε and µ.
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Let q be a point. The neighborhood of q is the set of objects within distance ε of q. We denote this
with Nε(q). The neighborhood is a circle, with q at the center, and ε as the radius. This is illustrated
in Figure 2.32.

q

ε (q)
ε

N

Figure 2.32: Nε(q)

Density-based clustering recognizes three types of objects:

Core Objects o is a core object if the number of points in Nε(o) ≥ µ.

Border Objects p is a border object if p ∈ Nε(o) for some object o. p itself is not a core object.

Noisy Objects Noisy objects are those which are neither core nor border objects. In general, we don’t
include noisy objects in clusters.

Definition 2.7.4.1 (Directly Reachable): p is directly reachable from q if p is a core object, and
p ∈ Nε(q).

Note that p is directly reachable from q, q may not be directly reachable from p. Directly reachable is a
reflexive relation, but not a symmetric one.

Definition 2.7.4.2 (Density Reachable): p is density reachable from q if there exists a sequence of
objects r1, . . . , rn such that r1 = q, ri+1 is directly reachable from ri, and rn = p.

This is a sequence of core objects, with the possible exception of the last one. Density reachable is not
symmetric, but it is transitive.

Definition 2.7.4.3 (Density Connected): Two objects u, v are density connected if there is an ob-
jects o, such that u, v are density reachable from o.

A set C of core objects is a cluster if

1. For all u, v, if u ∈ C and v is density reachable from u, then v ∈ C.

2. For all u, v ∈ C, u and v are density connected

The general idea behind density-based clustering is the following: we find a core object. We then build a
cluster from the core object, extending the cluster as long as there are density reachable objects. When
there are no more density reachable points, we stop.

This process makes the selection of ε very important. ε must be smaller than the smallest distance
between clusters (otherwise, we’ll wind up combining the clusters).

For more detailed clusters, smaller ε are better.

2.7.5 To-Do

Find (and read) a paper on DBSCAN. (We’ll need this for hw2 problem 3).
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2.8 Notes on Density-Based Clustering – 3/23/2008

Notes from

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International
Conference on Knowledge Discovery and Data Mining (KDD-96).

2.8.1 Density-clustering concepts

Within each cluster, the point density is higher than for areas outside the cluster. Areas of low density
are called noise; noisy areas are not part of any clusters.

Basic idea - for each point in a cluster, the neighborhood for a given radius needs to contain at least a
minimum number of points.

The shape of a neighborhood is determined by a distance function d(p, q). For example, euclidean
distance creates spheres and Manhattan distance creates rectangles.

Definition 2.8.1.1 (ε-neighborhood): The ε-neighborhood of a point p, denoted Nε(p) is the set of
points

Nε(p) = {q ∈ D | d(p, q) ≤ ε} (2.30)

So, all points q within radius ε of p.

Within a cluster, there are two kinds of points: core points and border points

core point A core point is a point p within a cluster such that |Nε(p)| ≥ minpts.

border point A border point is a point p within a cluster such that |Nε(p)| < minpts.

Intuitively, border points sit on the edge of clusters, and core points sit somewhere in the middle.

Definition 2.8.1.2 (directly density-reachable): A point p is directly density-reachable from point
q with respect to ε and minpts if

1. p ∈ Nε(q), and
2. |Nε(q)| ≥ minpts (core point condition)

Directly density reachable is symmetric for core points, but asymmetric for core points and border points.

Definition 2.8.1.3 (Density-reachable): A point p is density reachable from a point q with respect
to ε and minpts if there is a chain of points p1, . . . , pn, where

1. p1 = q,
2. pn = p, and
3. pi+1 is directly density-reachable from pi.

Density reachable is transitive. Density reachable is not symmetric in general, but it is symmetric for
core points.

Two border points of the same cluster may not be density reachable from each other, because the core
point condition may not hold for both of them. However, there must be a core point of the cluster such
that both border points are density reachable from the core point.

Definition 2.8.1.4 (Density-Connected): A point p is density connected to a point q, with respect
to ε, minpts if there is a point o, such that

1. p is density-reachable from o with respect to ε and minpts, and
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2. q is density-reachable from o with respect to ε and minpts.

Definition 2.8.1.5 (Cluster): A cluster C is a non-empty subset of points that meets the following
conditions

1. For all points p, q; if p ∈ C and q is density-reachable from p, then q ∈ C. (Maximality property)
2. For all p, q ∈ C; p is density connected to q. (Connectivity)

Note that each cluster must have at least minpts points, because the second condition requires the
existence of a core point.

Lemma 2.8.1.6: Let p be a point in the database D, where |Nε(p)| ≥ minpts (a core point). Let O be
a set of points such that for each o ∈ O, o ∈ D and o is density-reachable from p. O is a cluster with
respect to ε and minpts.

Lemma 2.8.1.7: Let C be a cluster, and let p be any point in C with |Nε(p)| ≥ minpts (again, p is
core point). Then, C equals the set O, where ∀o ∈ O, o is density-reachable from p.

2.8.2 DBSCAN Algorithm

The basic idea of the DBSCAN algorithm:

• we pick a point p, and find all points that are density-reachable from p. If p is a core point, the
we’ve found a cluster.

• if p is a border point, then no points are density reachable from p, and DBSCAN visits the next
point in the database.

The DBSCAN algorithm consists of two main procedures.

procedure DBSCAN(SetofPoints, Eps, minpts) {
ClusterId = nextId(NOISE);
for i in (1 to SetOfPoints.size()) {
Point = SetOfPoints.get(i)
if (Point.ClusterId == UNCLASSIFIED) {

if (expandCluster(SetOfPoints, Point, ClusterId, Eps, minpts) {
ClusterId = nextId(ClusterId);

}
}

}
}
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procedure ExpandCluster(SetOfPoints, Point, ClusterId, Eps, minpts) {
seeds = SetOfPoints.regionQuery(Point, Eps)
if (seeds.size < minpts) {
/* not a core point */
SetOfPoints.changeClusterId(point, NOISE)
return FALSE

}

/* Point is a core point */
SetOfPoints.changeClusterId(seeds, ClusterId)
seeds.delete(Point)

while (seeds is not EMPTY) {
currentP = seeds.first();
result = SetOfPoints.regionQuery(currentP, Eps)
if (result.size() >= minpts) {
for (i = 1 to result.size) {

resultP = result.get(i)
if (resultP.clusterId in (UNCLASSIFIED, NOISE)) {

seeds.append(resultP)
}
SetOfPoints.changeClusterId(resultP, ClusterId)

}
}
seeds.delete(currentP)

}

return TRUE
}
The call SetofPoints.regionQuery(Point, Eps) returns the set of points in Nε(p).

If a point p is assigned a clusterId of NOISE, we allow p’s clusterId to be changed later, if p is density-
reachable from some other point in the database.

2.8.3 Determining ε and minpts

• We define a function k-dist(p). Given a point p, k-dist returns the distance between p and p’s k-th
nearest neighbor.

• We sort points in descending order of their k-dist values.

• Say we choose an arbitrary point p, and set ε = k-dist(p) and minpts = k. Then all points q with
k-dist(q) ≤ k-dist(p) will be core points.

• If we can find a threshold point with the maximal k-dist value in the thinnest cluster, then we have
the desired values for ε and minpts.

For 2-dimensional data, the authors recommend the following:

• Use 4 as the value for minpts.

• Compute and display the 4-dist graph of points in the database.

• The user can select a threshold point from the graph (which defines minpts and ε; or, the user can
specify what percentage of the points are noise, and the system can find a threshold point based
on the noise percentage.
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2.9 Lecture – 3/25/2008

2.9.1 DBSCAN and Density-Based Clustering

DBSCAN starts with a set of points and a distance metric d. DBSCAN recognizes three types of points

1. Core points
2. Border points
3. Noise

Clusters consist of core points and border points. Noise is not included in any cluster.

DBSCAN uses two parameters:

1. ε - the radius of a point’s neighborhood
2. µ - this is minpts in Ester’s paper

Nε(p) is a closed sphere of radius ε centered around point p. Informally, p belongs to a cluster if Nε(p)
contains a minimum number of points.

The core point condition is Nε(p) ≥ µ.

The choice of µ, ε is largely heuristic.

A cluster C can have several core points, but not all p ∈ C need be core points.

If q is a point in a cluster and Nε(q) < µ, then q is a border point.

A point q is directly reachable from p if q ∈ Nε(p).

A point q is reachable from p if there a a sequence of points r1, . . . , rn such that (1) r1 = p, (2) rn = q,
and ri+1 is directly reachable from ri for 1 ≤ i ≤ n − 1. Note that points r1, . . . , rn−1 must be core
points; rn may be a core point or a border point.

Figure 2.33 illustrates the difference between directly-reachable and reachable points.

Directly Reachable

2 rn−1

p q

p q
Reachable

r

Figure 2.33: Directly Reachable vs Reachable Points

Two points, p and p′ are density connected if there is a point q such that p is reachable from q and p′ is
reachable from q. Figure 2.34 shows an example of density connected points.

p

q
p’

Figure 2.34: Density Connected Points

A cluster is a set of points C that satisfies two conditions:

1. If u ∈ C and v is reachable from u, then v ∈ C.
2. If u, v ∈ C, then u, v are density connected.
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The distance between two clusters C, C ′ is

d(C,C ′) = min{d(x, y) | x ∈ C, y ∈ C ′} (2.31)

Choosing µ and ε

Let δ(p) be the distance from p to p’s k-th nearest neighbor. δ(p) is the radius of a sphere that includes
k points.

Next, we arrange the points by decreasing of δ(p). If we graph δ(p) vs points, we can look for an “elbow”
in the curve. The elbow gives us ε. Points where δ(p) < ε are core points. The rest are noise (and maybe
some border points). Figure 2.35 illustrates the basic idea.

Noise

(p)

ε

points

Core Pointsδ

Figure 2.35: Illustration of selecting ε

The choice of k becomes µ. In practice, k = µ = 4 tends to work well.



Part 3

Classification

3.1 Lecture – 3/24/2008

3.1.1 An overview of Classification

Classification is inherently based on past experience.

A model is an algorithm that does classification.

A training set is a set of existing data that is used to train the model.

The process of constructing a model is called “learning the classifier” (via the training set).

After using the model with the training set, we then move to test data sets. We apply the model to
the test set, and see if it correctly classifies members of the test set. This procedure is called supervised
learning .

Often, we do tenfold cross validation; we repeat the testing process ten times, each with a different ten
percent of the data. Typically, the average of these ten runs becomes the model parameters.

Once we have a model, then we can apply it to real data.

3.1.2 Entropy of a Random Distribution

Suppose we have a set of objects, and split up the set into classes. Figure 3.1 shows a division where the
majority of objects fall into two regions. Figure 3.2 shows a division where objects are evenly distributed
among regions.

Figure 3.1: Objects concentrated in two groups

76
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Figure 3.2: Objects Even Distributed Among Groups

Suppose we have a random variable X:

X :
(
x1 . . . xn
p1 . . . pn

)
(3.1)

Each pi ∈ [0, 1] (or more likely, (0, 1)). Since X is a probability distribution
∑n
i=1 pi = 1.

The entropy of the distribution is

H(p1, . . . , pn) = −
n∑
i=1

pi · log2 pi (3.2)

The formula for H is credited to Claude Shannon.

For example, suppose p1 = p2 = 0.5. Then H(p1, p2) = 0.5 + 0.5 = 1.

Now, suppose p1 = p2 = · · · = pn = 1
n . Then

H(
1
n
,

1
n
, . . .) = −n · 1

n
log2

1
n

= − log2

1
n

This represents the maximum amount of non-determinism you can have in a classification question.

dlog2 ne is the maximum number of questions needed to classify an object.

3.1.3 Convex Functions

A convex function is one that “holds water”.

Convex functions have positive second derivatives. If f(x) is a convex function, then f ′′(x) > 0

Figure 3.3 shows a convex function f .

Let’s pick two points, x1, x2. If we pick a point u such that x1 ≤ u ≤ x2, then u can be written as

u = tx1 + (1− t)x2

u = t(x1 − x2) + x2

t =
x2 − u
x2 − x1

for t ∈ [0, 1].

u is called a convex combination of x1, x2.
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u1 x2

f(x 1)

f(x 2)

x

Figure 3.3: A convex function f

The convex curve of f is always below the chord (x1, f(x1)) to (x2, f(x2)).

An example of a convex function:

f(x) = x ln(x)
f ′(x) = ln(x) + 1

f ′′(x) =
1
x
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3.2 Lecture – 3/26/2008

3.2.1 Convex Functions

Given a probability distribution X,

X :
(
x1 . . . xn
p1 . . . pn

)
The entropy of X is

H(X) = −
n∑
i=1

pi log2 pi (3.3)

Note: in what follows, any time we say log n, we really mean log2 n; base two is implicit.

The more concentrated the values of X are, the lower the entropy.

The highest entropy is H(X) = − log 1/n, which occurs when all pi are equal.

If f ′′(x) > 0, then f is a convex function (it holds water).

Let’s take two points, x1, and x2, and a point in the middle, tx1 + (1− t)x2 (for t ∈ [0, 1]):

x1 ≤ tx1 + (1− t)x2 ≤ x2

For a convex function f , we have the inequality

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (3.4)

Equation (3.4) is the base case for the Jensen Inequality .

Let’s say we have a convex function f , and a probability distribution (t1, . . . , tn). All ti > 0 and
∑
ti = 1.

We can prove

f

(
n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi) (3.5)

Equation (3.5) is the Jensen Inequality.

We prove the Jensen Inequality using induction on n.

Proof: For the base case, n = 2, which is just the definition of a convex function. Assuming that the
inequality holds for n, we just need to prove that it holds for n+ 1.

For n+1, we have t1, t2, . . . , tn−1, tn, tn+1 = 1. Along with ti, we also have values x1, x2, . . . , xn−1, xn, xn+1.

Looking at the left side of the inequality, we have

f

(
n+1∑
i=1

tixi

)
= f(t1x1 + . . .+ tn−1xn−1 + tnxn + tn+1xn+1)

= f

(
t1x1 + . . .+ tn−1xn−1 + (tn + tn+1) ·

(
tnxn + tn+1xn+1

tn + tn+1

))
In the second line, we’ve done a little factoring of the last two terms, nothing more.

Using the inductive hypothesis, we can write

f

(
t1x1 + . . .+ tn−1xn−1 + (tn + tn+1) ·

(
tnxn + tn+1xn+1

tn + tn+1

))
≤ t1f(x1) + t2f(xn) + . . . tn−1f(xn−1) + (tn + tn+1)f

(
tnxn + tn+1xn+1

tn + tn+1

)



80 CS738 Class Notes

Let’s focus on the last term:

f

(
tnxn + tn+1xn+1

tn + tn+1

)
= f

(
tn

tn + tn+1
xn +

tn+1

tn + tn+1
xn+1

)
≤ tn
tn + tn+1

f(xn) +
tn+1

tn + tn+1
f(xn+1)

≤ tnf(xn) + tn+1f(xn+1)

�

Let’s look at a convex function:

f(x) = x log x

= x
lnx
ln 2

f ′(x) =
1

ln 2
(lnx+ 1)

f ′′(x) =
1

ln 2
1
x

f ′′(x) > 0, so x is concave.

Let’s apply the Jensen Inequality to f(x), where t1 = t2 = . . . = tn = 1/n.

Let X be a probability distribution where x1 = p1, . . ., xn = pn.

f(1/n) ≤
n∑
i=1

pi log pi

nf(1/n) ≤
n∑
i=1

pi log pi

−
n∑
i=1

pi log pi ≤− n
1
n

log
1
n

= − log n

This represents the maximum entropy. (For the last line, we multiplied each side by -1 and flipped the
inequality.)

3.2.2 Two-Probability Distributions

Let’s consider the case of two probability distributions, (p1, . . . , pn), (q1, . . . , qn), where pi, qi > 0 and∑n
i=1 pi =

∑n
i=i qi = 1.

We have
n∑
i=1

pi log
pi
qi
> 0 (3.6)

Equation 3.6 is called the Kullback-Leibler Inequality .

First, note the graph of y = lnx, and the tangent line y = 1 · (x− 1). lnx is always below the tangent
line. (See Figure 3.4.)
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Figure 3.4: y = lnx and tangent

Since lnx always falls below the tangent, we know that lnx ≤ x− 1. Let’s replace x with qi
pi

ln
qi
pi
≤ qi
pi
− 1

pi ln
qi
pi
≤ qi − pi

n∑
i=1

pi ln
qi
pi
≤

n∑
i=1

qi −
n∑
i=1

pi = 0

n∑
i=1

pi ln
qi
pi
≤ 0

Therefore,

n∑
i=1

pi ln
pi
qi
≥ 0

(Above, pay attention to p1
qi

vs qi
pi

.)

If each pi = qi, then
∑
pi ln pi

qi
= 0.

Back to entropy. Recall our definition H(X) = −
∑n
i=1 pi log pi.

Conditional probability is

P (A|B) =
P (A ∧B)
P (B)

If B is fixed (known), then P (A|B) acts like an ordinary probability distribution.
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Say we have two probability distributions, X and Y

X :
(
x1 . . . xn
p1 . . . pn

)
Y :

(
y1 . . . ym
q1 . . . qm

)

Note that X and Y have different numbers of elements.

Of course P (X = xi) = pi, and P (Y = yj) = qj .

If we pair X and Y up, then we have (X,Y ) = (xi, yj).

How does (X,Y ) look as a probability distribution?

XY :
(
x1y1 . . . xiyj . . . xnym
r11 . . . rij . . . rnm

)
rij is the probability of the conjunction of two events, so rij = P (X = xi ∧ Y = yj), and

n∑
i=1

m∑
j=1

rij = 1

If P (X = xi ∧ Y = yj) = P (X = xi) · P (Y = yj) for every i, j, then we say that x, y are independent.
However, in real world data, it’s quite common to have some level of dependency between X and Y .

The question we consider next: how do we evaluate entropy when X and Y are not independent?

Definition 3.2.2.1 (Conditional Entropy): The conditional entropy of X dependent on Y is

H(X|Y = yj) = −
n∑
i=1

P (X = xi|Y = yj) logP (X = xi|Y = yj) (3.7)

This measures the entropy of X, assuming that Y is known.

If we take (3.7) and sum across the different Y values, then we have

H(X|Y ) =
m∑
j=1

P (Y = yj) ·H(X|Y = yj) (3.8)
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Let’s work with H(X|Y ).

H(X|Y ) =
m∑
j=1

P (Y = yj) ·H(X|Y = yj)

= −
m∑
j=1

P (Y = yj) ·
n∑
i=1

P (X = xi|Y = yj) logP (X = xi|Y = yj)

= −
n∑
i=1

m∑
j=1

P (Y = yj) · P (X = xi|Y = yj) logP (X = xi|Y = yj)

= −
n∑
i=1

m∑
j=1

P (Y = yj) ·
P (X = xi ∧ Y = yj)

P (Y = yj)
log

P (X = xi ∧ Y = yj)
P (Y = yj)

= −
n∑
i=1

m∑
j=1

P (X = xi ∧ Y = yj) · log
P (X = xi ∧ Y = yj)

P (Y = yj)

= −
n∑
i=1

m∑
j=1

P (X = xi ∧ Y = yj) · [log(P (X = xi ∧ Y = yj))− log(P (Y = yj))]

= −

 n∑
i=1

m∑
j=1

P (X = xi ∧ Y = yj) · log(P (X = xi ∧ Y = yj))


+

 n∑
i=1

m∑
j=1

P (X = xi ∧ Y = yj) · log(P (Y = yj))


= H(X,Y ) +

n∑
i=1

m∑
j=1

P (X = xi ∧ Y = yj) · logP (Y = yj)

= H(X,Y ) +
m∑
j=1

(
n∑
i=1

P (X = xi ∧ Y = yj)

)
· logP (Y = yj)

= H(X,Y )−
m∑
j=1

P (Y = yj) · logP (Y = yj)

= H(X,Y )−H(Y )

Therefore, H(X|Y ) = H(X,Y )−H(Y ).

Also

H(X,Y ) = H(X|Y ) +H(Y )
= H(Y |X) +H(X)

H(X,Y ) is the joint entropy of X and Y .

Next, we’ll prove that

H(X,Y ) ≤ H(X) +H(Y )
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Proof: First note that
∑m
j=1 rij = pi and

∑n
i=1 rij = qj .

−
n∑
i=1

m∑
j=1

rij log rij ≤ −
n∑
i=1

pi log pi −
m∑
j=1

qj log qj

≤ −
n∑
i=1

m∑
j=1

rij log pi −
n∑
i=1

m∑
j=1

rij log qj

= −
n∑
i=1

m∑
j=1

rij log piqj

Therefore

−
n∑
i=1

m∑
j=1

rij log rij ≤ −
n∑
i=1

m∑
j=1

rij log piqj

and
n∑
i=1

m∑
j=1

rij log rij −
n∑
i=1

m∑
j=1

rij log piqj ≥ 0

and
n∑
i=1

m∑
j=1

rij log
rij
piqj

≤ 0

The last line is equivalent to the Kullback-Leibler Inequality. �

3.2.3 To-Do

• Do a little research on the topic of “Information Theory”. It will provide some useful background
information.

One good book on information theory is Information Theory, Inference and Learning Algorithms
by David MacKay, pub. Cambridge University Press, ISBN 0521642981.

• Track down the “Play Tennis Data Set”. We’ll be using this for classification problems.
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3.3 Lecture – 3/31/2008

3.3.1 Classification

Table 3.1 shows a set of data called the ‘play tennis’ data set. We’ll use this to work out a classification
example.

Outlook Temp Humidity Wind Play
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rainy mild high weak yes
5 rainy cool normal weak yes
6 rainy cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes

10 rainy mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rainy mild high strong no

Table 3.1: Play Tennis Data Set

Our objective: given this training set of tennis data, we’d like to understand what days are good (and
what days are not good) for playing tennis.

Given the cardinality of the different data attributes, there are 36 possible values. We have 14 values –
these 14 values will serve as a training set . We use use the training set to construct a classifier that can
be applied to the more general data set.

In this example, “Play” is the class attribute. Play is the attribute that we’re trying to understand.

Our example will use supervised classification. An expert has provided class assignments for each row
of the training set.

If we find that one attribute determines the class, then our job is easy. That attribute becomes the
predictor and we’re done. In real life, this is extremely rare.

Also, if we find that the class attribute only takes on one value, then our job is also done. With a
single-valued class attribute, there’s no way to split the data set. Again, this is rarely the case.

Our example will use the ID3 classification algorithm. C4.5 is another popular classification algorithm.
In Weka, these are called “ID3” and “J48” respectively.

Recall our definition of entropy

H(p1, . . . , pn) = −
n∑
i=1

pi log pi (3.9)

(When we say log, log2 is implicit).

Suppose we had the probability distribution

Play:
(

yes no
9/14 5/14

)
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Then, the entropy is

H(9/14, 5/15) = −
(

9
14

log
9
14

+
5
15

log
5
14

)
= 0.94

Note: given a zero probability, we’ll adopt the convention that 0 · log 0 = 0.

3.3.2 ID3 Algorithm Example

ID3 picks one attribute, and splits the decision tree along that attribute. With each split, we seek to
maximize the entropy gain. For example, we choose the attribute A that maximizes

H(play)−H(play|A)

The equation we want to maximize is

H(play)−H(play|A) = H(play) +H(A)−H(play ∧A)

On the right hand side, H(play) is a constant, so we only need to work with H(A)−H(play ∧A).

Split 1

We have four attributes A to consider: outlook, temperature, humidity, and wind. First, we calculate
the entropy of the individual attributes.

H(outlook) = H(sunny, overcast, rain)
= H(5/14, 4/14, 5/14)
= 1.577

H(temp) = H(hot,mild, cool)
= H(4/15, 6/15, 4/15)
= 1.556

H(humidity) = H(high,normal)
= H(7/14, 7/14)
= 1

H(wind) = H(strong,weak)
= H(6/14, 8/14)
= 0.985

Note: for these entropy calculations, all that we have done is to count the number of times that each
attribute value appears in the data set.

Next, we compute the joint entropy H(A ∧ play) for each of the four A above.

First, we count up the joint frequencies

outlook play freq
sunny yes 2
sunny no 3
overcast yes 4
overcast no 0
rain yes 3
rain no 2
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temp play freq
hot yes 2
hot no 2
mild yes 4
mild no 2
cool yes 3
cool no 1

humidity play freq
high yes 3
high no 4
normal yes 6
normal no 1

wind play freq
weak yes 6
weak no 2
strong yes 3
strong no 3

From these frequencies, we compute the joint entropies

H(outlook ∧ play) = H(2/14, 3/14, 4/14, 3/14, 2/14)
= 2.270

H(temp ∧ play) = H(2/14, 2/14, 4/14, 2/14, 3/14, 1/14)
= 2.467

H(humidity ∧ play) = H(3/14, 4/14, 6/14, 1/14)
= 1.788

H(wind ∧ play) = H(6/14, 2/14, 3/14, 3/14)
= 1.877

Finally, we compute H(A)−H(play ∧A):

attribute entropy gain
outlook 1.577− 2.270 = −0.693
temp 1.566− 2.467 = −0.911
humidity 1− 1.788 = −0.788
wind 0.985− 1.877 = −0.892

Outlook has the largest entropy gain, so we’ll perform the split on that attribute. Notice that this forms
a partition of the data. This is shown in Figure 3.5.

[outlook]

D

3,7,12,13 4,5,6,10,141,2,8,9,11

sunny overcast rain

(Y=2, N=3) (Y=4, N=0) (Y=3, N=2)

Figure 3.5: Data set partitioned on outlook

In Figure 3.5 the numbers in the boxes represent row numbers. Below each box are the Play assignments.
For outlook = overcast, we have homogeneity of the class attribute values (all yes). This tells us that
“outlook = overcast” is a leaf, and we don’t need to divide it further.
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For reference, we’ll refer to these sets as Ssunny, Sovercast, and Srain.

Split 2A

We apply ID3 recursively to the tree. At each step in the recursion, we ignore attributes that have
already been used to partition a parent node.

For our next step, we’ll split Ssunny. It’s essentially the same process, but we don’t consider “outlook”.

For convenience, we’ll isolate the subset of data that applies to Ssunny. This data is in Table 3.2.

Temp Humidity Wind Play
1 hot high weak no
2 hot high strong no
8 mild high weak no
9 cool normal weak yes

11 mild normal strong yes

Table 3.2: Ssunny data

First, we find the entropy of the attributes Temp, Humidity, and Wind (using only the data in table
3.2).

H(temp) = H(hot,mild, cool)
= H(2/5, 2/5, 1/5)
= 1.521

H(humidity) = H(high,normal)
= H(3/5, 2/5)
= 0.970

H(wind) = H(weak, strong)
= H(3/5, 2/5)
= 0.970

Next, we find the joint entropy H(A ∧ play) for each of these three attributes.

temp play freq
hot yes 0
hot no 2
mild yes 1
mild no 1
cool yes 1
cool no 0

humidity play freq
high yes 0
high no 3
normal yes 2
normal no 0

wind play freq
weak yes 1
weak no 2
strong yes 1
strong no 1
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The joint entropies are:

H(temp ∧ play) = H(2/5, 1/5, 1/5, 1/5)
= 1.921

H(humidity ∧ play) = H(3/5, 2/5)
= 0.970

H(wind ∧ play) = H(1/5, 2/5, 1/5, 1/5)
= 1.921

Finally, we compute the entropy gain, H(A)−H(play ∧A).

attribute entropy gain
temp 1.521− 1.921 = −0.4
humidity 0.970− 0.970 = 0
wind 0.970− 1.921 = −0.951

Here, “humidity” has the highest entropy gain, so we use that to split. The split is shown in Figure 3.6.

[humidity]

D

3,7,12,13 4,5,6,10,141,2,8,9,11

sunny overcast rain

(Y=2, N=3) (Y=4, N=0) (Y=3, N=2)

[outlook]

9,111,2,8

(Y=0, N=3) (Y=2, N=0)

high normal

Figure 3.6: After split of Ssunny

Note that both of the new nodes in Figure 3.6 are homogeneous with respect to their Play values.
Therefore, we are done with those.

Split 2B

Next, we’ll work on splitting Srain. Again, we’ll isolate ourselves to the subset of data that interests us.
This subset appears in Table 3.3

Temp Humidity Wind Play
4 mild high weak yes
5 cool normal weak yes
6 cool normal strong no

10 mild normal weak yes
14 mild high strong no

Table 3.3: Srain data subset
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As before, we’ll start by finding the entropy for the three attributes Temperature, Humidity, and Wind.

H(temp) = H(mild, cool)
= H(3/5, 2/5)
= 0.970

H(humidity) = H(high,normal)
= H(2/5, 3/5)
= 0.970

H(wind) = H(weak, strong)
= H(3/5, 2/5)
= 0.970

Next, we’ll determine the frequencies for the joint entropy computations:

temp play freq
mild yes 2
mild no 1
cool yes 1
cool no 1

humidity play freq
high yes 1
high no 1
normal yes 2
normal no 1

wind play freq
weak yes 3
weak no 0
strong yes 0
strong no 2

Next, we find the joint entropies

H(temp ∧ play) = H(2/5, 1/5, 1/5, 1/5)
= 1.921

H(humidity ∧ play) = H(1/5, 1/5, 2/5, 1/5)
= 1.921

H(wind ∧ play) = H(3/5, 2/5)
= 0.970

Finally, we compute the entropy gain.

attribute entropy gain
temp 0.970− 1.921 = −0.951
humidity 0.970− 1.921 = −0.951
wind 0.970− 0.970 = 0

Here, “wind” gives us the highest entropy gain, so we’ll split on that. The new tree is shown in Figure
3.7

All leaves of Figure 3.7 are homogeneous. So, we’re done.
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[wind]

D

3,7,12,13 4,5,6,10,141,2,8,9,11

sunny overcast rain

(Y=2, N=3) (Y=4, N=0) (Y=3, N=2)

[outlook]

9,111,2,8

(Y=0, N=3) (Y=2, N=0)

high normal

[humidity]

4,5,10 6,14

(Y=3, N=0) (Y=0, N=2)

weak strong

Figure 3.7: After split of Srain

Rule Generation

This decision tree gives us several rules for classification. For example:

(outlook = overcast)⇒ (play = yes)
(outlook = sunny) ∧ (humidity = high)⇒ (play = no)

3.3.3 ID3 Caveats

When splitting, ID3 tends to favor attributes with more values. The decisions at the lower levels can be
dicey, since you work with smaller and smaller sample sizes.

Models that fit the training set well may work badly for real data, due to over-fitting (a.k.a “fitting to
the training set”). This problem is not unique to ID3.
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3.4 Lecture – 4/2/2008

3.4.1 Decision Trees and ID3

Last class, we worked through an example of decision tree construction (see page 85). In our example,
all leaves were homogeneous. This will not always be the case – some data sets will produce leaves that
are not homogeneous.

Our example used an algorithm called ID3, which was the first algorithm developed for constructing
decision trees. ID3 is based on the notion of comparing entropy gain of attributes vs the entropy of the
class.

H(C)−H(C|A) entropy gain
=H(C) +H(A)−H(A ∧ C)

Also recall

H(C ∧A) = H(C|A) +H(A)

Let’s rewrite entropy gain, using the definition of conditional entropy

H(C)−H(C|A)

= H(C)−
∑
j

P (A = aj) ·H(C|A = aj)

If there are many attributes, then the
∑
j P (A = aj) ·H(C|A = aj) term will be large. Therefore, ID3

favors attributes that generate lots of splits (high cardinality).

3.4.2 C4.5

C4.5 is another decision tree algorithm. For the most part, C4.5 is an improved version of ID3. It was
created by Quinlan.

C4.5 uses (3.10) instead of entropy gain.

H(C)−H(C|A)
H(A)

(3.10)

3.4.3 Weka

Weka uses an input file format called ARFF. For our next homework assignment, we’ll need to write an
ARFF format converter.

By default, Weka assumes that the last attribute is the class attribute.

Alongside decision tree construction, one of the by-products that Weka produces is a confusion matrix .
For example, when constructing a decision tree for the tennis set with 10x cross validation, Weka gives
the confusion matrixa b

8 1
1 4


What is this telling us? For the ‘a’ (yes) values, cross validation got eight of them right, and one of them
wrong. The wrong value (b) is called a false negative from a’s perspective (or a false positive from b’s
perspective).

Likewise, four of the b’s were right, and one was wrong.



CS738 Class Notes 93

3.4.4 Numeric vs. Nominal Attributes

ID3 and C4.5 only work with nominal attributes. A nominal attribute takes on a discrete set of unordered
values. Of course, numeric attributes are ordered and not discrete.

We’ll discuss numeric attributes in a little while.

3.4.5 Entropy and the Gini Index

Entropy is

H(p1, . . . , pn) = −
n∑
i=1

pi log2 pi

Why is entropy useful? Entropy measure how values are distributed. Entropy is at its maximum when
all pi are equal. Entropy is zero if some pi = 1 and all other pj = 0 (for j 6= i).

There are other measures that accomplish the same goal.

Consider, Hβ , which is called generalized entropy .

Hβ(p1, . . . , pn) =
1

1− 21−β

(
1−

n∑
i=1

pβi

)
for β > 1 (3.11)

General entropy is the invention of Havrda and Charvat.

If we take the limit of Hβ as β → 0,

lim
β→0

Hβ(p1, . . . , pn) = lim
β→1

−
∑
i p
β
i ln pi

21−β ln 2
L’Hospital’s Rule

= −
∑
i

pi
ln pi
ln 2

−
∑
i

pi log2 pi

The term −
∑
i pi log2 pi is our definition of entropy.

Our definition of entropy H is really just a special case of generalized entropy.

Next, let’s look at Hβ for β = 2.

H2(p1, . . . , pn) = 2

(
1−

n∑
i=1

p2
i

)
Gini Index (3.12)

Equation (3.12) is called the gini index .

The Gini index works like entropy. It’s largest when values are uniform, and zero when pi = 1 and
pj = 0 for j 6= i.

3.4.6 CART Method

The CART method uses the Gini index. Cart can handle both numeric and nominal attributes.
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Some manipulation of Hβ :

Hβ(p1, . . . , pn) =
1

1− 21−β ·

(
1−

n∑
i=1

pβi

)

=
1

1− 21−β ·

(
n∑
i=1

pi −
n∑
i=1

pβi

)
since sum of pi = 1

=
∑n
i=1 pi − p

β
i

1− 21−β

CART was invented by Breiman.

CART’s splitting is similar to ID3 and entropy gain, but it’s based on a different principle.

CART always does binary splits.

For numerical splits, we’ll try a series of possible split values within the range of the attribute. For each
possible split value, we compute a Gini index. The Gini indexes determine what the split point is.

The gini index for a class attribute:

Gini(C) = 1−
(

9
14

)2

−
(

5
14

)2

(3.13)

For Gini,

Gini(C) =
n∑
j=1

(
P (A = aj)2 · Gini(C|A = aj)

)
(3.14)

CART chooses split points that maximize the Gini gain.

Nominal attribute take a little more work, since we have to consider all possible split points.

3.4.7 Convex Functions

Consider the function

h(x) = x− xβ for x ≥ 0, β ≥ 1

h′(x) = 1− βxβ−1

The function h(x) is shown in figure 3.8

h(x) is a concave function that crosses the x-axis at (0, 0) and (1, 0). Note: if we make a chord between
any pair of points in the range 0 < x < 1, h(x) will lie above that chord.

Convex functions have properties that are similar to convex functions (just upside down). For one,

h(p1x1, . . . , pnxn) ≥ p1h(x1) + . . .+ pnh(xn)

Say p1 = p2 = . . . = pn = 1/n. Then

h(x1 + . . .+ xn)
n

≥ 1
n

(h(x1) + . . .+ h(xn))

h(1/n) ≥ 1
n

(h(p1) + . . .+ h(pn))

n · h(1/n) ≥ h(x1) + . . .+ h(xn)
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0.0 0.5 1.0 1.5 2.0

-1
.0

0.
0

0.
5

1.
0

h(x) = x - x^b

x

y

Figure 3.8: Graph of h(x) = x− xβ

3.4.8 Misc Notes

Derivatives for exponents

(ax)′ = ax lnx (3.15)

3.4.9 Next Class

• Start reading over Näıve Bayes classification, Perceptrons, and Neural Networks.

• Between now and Monday, check the course web site for new handouts.
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3.5 Lecture – 4/7/2008

3.5.1 Näıve Bayes Classifiers

Bayes classification is based on work by Thomas Bayes (1702-1761).

We have a definition of conditional probability

P (A|B) =
P (A ∧B)
P (B)

for P (B) 6= 0

If B is fixed, this behaves like any other probability.

Like P (A|B), we can have P (B|A), the probability of B conditioned by A:

P (B|A) =
P (B ∧A)
P (A)

Equation (3.16) is known as the Bayes Formula

P (B|A) · P (A) = P (A|B) · P (B) (3.16)

There is also a “chain rule” for conditional probability. Consider

P (A|B ∧ C) · P (B|C) · P (C) (3.17)

If we expand these terms, using the definitional of conditional probability, we have

P (A|B ∧ C) · P (B|C) · P (B)

=
P (A ∧B ∧ C)
P (B ∧ C)

· P (B ∧ C)
P (C)

· P (C)

=P (A ∧B ∧ C)

The chain rule of conditional probability is

P (A ∧B ∧ C) = P (A|B ∧ C) · P (B|C) · P (C) (3.18)

Of course, (3.18) can be carried out to arbitrary lengths.

If A, B are independent, then P (A ∧B) = P (A)P (B).

Also,

P (A|B) = P (A) if A, B independent
P (B|A) = P (B) if A, B independent

3.5.2 Bayes Classifiers and Data Mining

For data mining, assume that we have a dataset D (for classification), and a set of classes C =
{c1, . . . , cn}.

Our data set has attributes A1, . . . , An, along with a class attribute.

A! . . . An C
...

...
...

...
a1 . . . an ci
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In principle, D is a subset of the cartesian product of attributes. D does not contain every tuple of
(A1 × . . .×An).

Given a tuple (b1, . . . , bn) 6∈ D, our job is to classify it. In the context of Bayes theorem, we need to
chose a class c which maximizes

P (C|b1, . . . , bn) (3.19)

Note again that (b1, . . . , bn) is not part of the data set (if it we’re part of the dataset, then the class
would be known, and we could simply look it up).

We can say

P (C|b1, . . . , bn) · P (b1, . . . , bn) = P (b1, . . . , bn|C) · P (C) (3.20)

or equivalently

P (C|b1, . . . , bn) =
P (b1, . . . , bn|C) · P (C)

P (b1, . . . , bn)
(3.21)

For a given row (i.e., the one we are attempting to classify), P (b1, . . . , bn) is fixed. Therefore, we need
to find a C that maximizes

P (b1, . . . , bn|C) · P (C) (3.22)

To perform the classification, we make the following hypothesis.

Hypothesis 3.5.2.1: b1, . . . , bn are independent in the presence of C. In other words,

P (b1, . . . , bn|C) = P (b1|C) · P (b2|C) · · · · · P (bn|C) (3.23)

Equation (3.23) is the fundamental assumption of Näıve Bayes Classifiers. This assumption is not always
realistic, but it tends to work well in practice.

Example 3.5.2.2 (Näıve Bayes Classification): Recall our “play tennis” data set.

Outlook Temp Humidity Wind Play
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rainy mild high weak yes
5 rainy cool normal weak yes
6 rainy cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes

10 rainy mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rainy mild high strong no

We wish to classify a new tuple: (sunny, cool, high, strong).

First, we find the probabilities of the class attribute:

P (play = yes) =
9
14

P (play = no) =
5
14
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Next, we find the conditional probability of each attribute:

P (outlook = sunny|play = yes) =
2
9

P (outlook = sunny|play = no) =
3
5

P (temp = cool|play = yes) =
3
9

P (temp = cool|play = no) =
1
5

P (humidity = high|play = yes) =
3
9

P (humidity = high|play = no) =
4
5

P (wind = strong|play = yes) =
3
9

P (wind = strong|play = no) =
3
5

Next, we combine the conditional probabilities:

P (sunny ∧ cool ∧ high ∧ strong|play = yes) · P (play = yes) =
2
9
· 3

9
· 3

9
· 3

9
· 9

14

=
2

378
= 0.005291

P (sunny ∧ cool ∧ high ∧ strong|play = yes) · P (play = no) =
3
5
· 1

5
· 4

5
· 3

5
· 5

14

=
36

1750
= 0.020571

The probability for “play = no”, is larger, so we classify this tuple as “no”. �

3.5.3 Weaknesses in Näıve Bayes Classification

Suppose we had an attribute that wasn’t in our data set. For example, outlook = snow. In this case,
our data set would give us

P (outlook = snow|play) = 0

Because ‘snow’ does not appear in the data set, we are guaranteed to get a probability of zero.

One strategy for handling this is Laplace Correction. Suppose we have a class c and a value v, which
occurs nv times. Then

P (v|c) =
nv
n
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If v is underrepresented in the data set, then P (v|c) will be artificially small. However, prior knowledge
may indicate a larger probability: v is not rare – but v happens to be rare in our data set.

Instead, we can use

nv +mp

n+m
(3.24)

where m is the simulated sample size (obtained from prior knowledge). If m > n, then (3.24) will tend
to p.

This problem appears in other classification techniques, but the effect is (often) less pronounced than
what we see with Näıve Bayes classifiers.

Näıve Bayes classifiers are easier to implement than decision trees (ID3, etc), and they tend to produce
very good results.

3.5.4 Bayesian Networks

Suppose we have a set of factors, x1, . . . , xn, along with an associated set of probabilities. Bayesian
networks are a graphical way to represent this using conditional probabilities.

Recall our chain rule formula

P (A ∧B ∧ C) = P (A|B ∧ C) · P (B|C) · P (C)

This is represented in Figure 3.9.

C

B

A

Figure 3.9: A very simple Bayesian Network

You can read this as “C determines B”, and “B, C determines A”.

If A is independent of B in the presence of C, then

P (A|B ∧ C) = P (A|C)

Example 3.5.4.1: Figure 3.10 shows another example of a Bayesian Network. The boxes are events,
and the arrows indicate causality. For example “lightning causes thunder”, and “storm causes lightning”.

Figure 3.10 is qualitative: given x, it shows how x may have been caused by y.

To make the graph quantitative, we need to add more information. For example: Fire has three “parent”
nodes: Lightning, Storm, and Campfire. Campfire has two parent nodes: Tourist and Storm.

To turn this graph into a Bayesian Network, we need to assign conditional probabilities to each edge.
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Thunder

Lightning

Storm

Forest Fire

Campfire

Tourist

Figure 3.10: A Bayesian Network for Forest Fires

For example:

P (campfire = yes|storm = yes ∧ tourist = yes)
P (campfire = no|storm = yes ∧ tourist = yes)
P (campfire = yes|storm = no ∧ tourist = yes)
P (campfire = no|storm = no ∧ tourist = yes)
P (campfire = yes|storm = yes ∧ tourist = no)
P (campfire = no|storm = yes ∧ tourist = no)
P (campfire = yes|storm = no ∧ tourist = no)
P (campfire = no|storm = no ∧ tourist = no)

Above, campfire acts as our class. There are two attribute (storm and tourist) and 2n+1 different
probabilities. �

The process of finding these probabilities is iterative, and uses “gradient descent”.

Let h be a network. We want to find P (D|h).
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3.6 Notes on Laplacian Correction

(This comes from p. 315 of Han)

Suppose we have 1000 tuples where

• 10 tuples have income = high
• 990 tuples have income = medium
• 0 tuples have income = low

With no correction, we have probabilities

P (income = high) =
10

1000
= 0.01

P (income = med) =
990
1000

= 0.99

P (income = low) =
0

1000
= 0

To perform Laplacian correction, we assume that there is one additional tuple per category. For this
example, we’d assume three additional tuples: one low, one medium, and one high. This brings our total
number of tuples to 1,003.

The corrected probabilities are

P (income = high) =
10 + 1

1000 + 3
=

11
1003

= 0.11

P (income = med) =
990 + 1
1000 + 3

=
991
1003

= 0.988

P (income = low) =
0 + 1

1000 + 3
=

1
1003

= 0.001

The corrected probabilities are “close” to their uncorrected counterparts, but they avoid the zero prob-
ability issue.
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3.7 ARFF Notes – 4/9/2008

(These notes come from pp. 53–58 of Witten and Frank.)

In ARFF files, the character % denotes a comment.

The header of an ARFF file contains

• The relation name (@relation)
• A set of attributes (@attribute)
• Data section (@data)

There are four types of attributes:

• Nominal
• Numeric
• String
• Date

Nominal attribute declarations contain a brace-enclosed list of attribute values.

Date attributes must be given in ISO-8601 format (in strftime terms, that’s %Y-%m-%dT%H:%M:%S).

String attributes are enclosed in quotes. Embedded quotation marks should be backslash-escaped.

ARFF uses one line per record.

ARFF uses a single question mark to represent missing values.

Here’s an example of an ARFF File

% Here is some weather data
@relation weather

@attribute outlook { sunny, overcast, rainy }
@attribute temperature numeric
@attribute humidity numeric
@attribute windy { true, false }
@attribute play? { yes, no }

@data
%
% Data rows follow
%
sunny, 85, 85, false, no
sunny, 80, 80, true, no
overcast, 83, 86, false, no
rainy, 70, 96, false, yes
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3.8 Lecture – 4/9/2008

3.8.1 Bayesian Networks

A Bayesian network is a directed graph whose nodes are random variables X1, . . . , Xn.

For each node Xi, there is a set of nodes Xji , . . . , Xjp which are the immediate predecessors of Xi, such
that j1, . . . jp < i. In other words, if you were to number the nodes of a Bayesian Network, then the
numbering would be consistent with a topological sort.

Also, for each node Xi and each set of parents Xji , . . . , Xjp , we are given the conditional probability

P (Xi = xi|Xj1 = xji , . . . , Xjp = xjp)

Figure 3.11 shows a simple example of a Bayesian Network, where

• R means “it rained”,
• F means “forgot to turn the sprinkler off”
• WW means “Watson’s grass is wet”, and
• WH means “Holmes’ grass is wet”.

(Holmes has a sprinkler system, Watson does not).

R F

WHWW

Figure 3.11: A very simple Bayesian Network

Let’s consider WH . The parent nodes give us four combination of variables: R ∧ F , R ∧ F , R ∧ F , and
R ∧ F . WH itself can take on two values: WH and WH .

This gives us two probability tables

R ∧ F R ∧ F R ∧ F R ∧ F
WH 0.5 0.6 0.3 0.1
WH 0.5 0.4 0.7 0.9

R R
WH 0.9 0.05
WH 0.1 0.95

Note that each column sums to one. This captures (for example) the notion that

P (WH |R ∧ F ) + P (WH |R,F ) = 1

For further discussion, we’ll re-draw our little Bayesian Network with more abstract names.

In this model,

P (U = u ∧X = x ∧ Z = z ∧ Y = y)
=P (Z = z|X = x ∧ U = u) · P (Y = y|U = u) · P (U = u) · P (X = x)
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In other words, the values of Y and Z are conditionally independent of nodes which are not their
ancestors. In other words,

P (Z = z|U = u ∧X = x ∧ Y = y)
=P (Z = z|X = x ∧ U = u)

Or equivalently,

P (Z = z|X = x ∧ Y = y ∧ U = u)

=
P (Z = z ∧X = x ∧ U = u ∧ Y = y)

P (X = x ∧ U = u ∧ Y = y)

=
P (Z = z) · P (X = x ∧ U = u)

P (X = x ∧ U = u)

Let’s look at Y :

P (U = u ∧X = x ∧ Z = z ∧ Y = y)

=
P (Z = z ∧X = x ∧ U = u)

P (X = x ∧ U = u)
· P (Y = y ∧ U = u)

P (U = u)
· P (U = u) · P (X = x)

Since U and X are parent nodes and independent of one another,

P (U = u ∧X = x ∧ Z = z ∧ Y = y)

=
P (Y = y ∧ U = u) · P (X = x)

P (X = x) · P (U = u)

=
P (Y = y ∧ U = u)

P (U = u)

From the last line, it follows that

P (Y = y|X = x ∧ U = u ∧ Z = z) = P (Y = y|U = u)

3.8.2 Finding Probabilities in Bayesian Networks

The previous example give us an idea of how the probabilities work. But how do we find these numbers
when we have a bunch of read data? (A real Bayesian Network might have hundreds of nodes.)

One of the simplest methods is something called the gradient ascent method (sometimes called “gradient
descent method” in the literature).

Suppose you have y = f(x) where f(x) is both continuous and differentiable, like the one shown in
Figure 3.12. The function shown in Figure 3.12 has four points of inflection, and four local extremum.

Suppose f is a very complex function, where it will be difficult to find all of the roots. We will estimate
where local extreme points are.

• We pick an x0, and find f ′(x0).

• f ′(x0) is the slope of a tangent line

• Next, pick an x1, where x1 = x0 − η · f ′(x0)

• Find f(x1) and f ′(x1). Now, we have another tangent line.

• We keep repeating the process until f ′(xi) ≈ f ′(xi+1). That’s a local minimum.
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y = f(x)

Figure 3.12: A continuous, differentiable function

x0x

y = f(x)

1

Figure 3.13: f(x) with x0, x1, and tangent lines

Figure 3.13 shows f(x) with points x0, x1, and their tangent lines.

Let’s look at another example (an ellipse)

f(x, y) =
x2

4
+
y2

9
+ 15

We’ll pick a pair of points (x0, y0), and another pair (x1, y1).

Expanding the derivative as a Taylor Polynomial gives:1

f(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) + Θ((x− x0)2 + (y − y0)2)

The growth is

f(x, y)− f(x0, y0) =
(
∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

)
· (x− x0, y − y0) +R((x− x0)2 + (y − y0)2)

(R is a remainder that tends towards zero.)

The gradient of f is

grad f(x0,y0) =
(
∂f

∂x
,
∂f

∂y

)
(x0,y0)

So,

∆f = grad f(x0,y0) · (x− x0, y − y0) +R

For functions of one argument, the gradient is the derivative.

Gradient descent gives approximate solutions, but they tend to work pretty well.
1Hopefully I’ve gotten this right
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3.8.3 Finding Probabilities of a Bayesian Network

We start with a data set D and a hypothesis h. h is the totality of all coefficients of the network.

We want to maximize P (D ∧ h), where

P (D ∧ h) =
∏
d∈D

P (D = d|h)

Assume our network consists of nodes Yi whose parents are nodes Ui, as shown in Figure 3.14.

i

Yi

U

Figure 3.14: Node Yi with parents Ui

We also have probabilities

P (Yi = yij |Ui = uik)

Above, note that Ui really represents a tuple of parents. (We could write them out explicitly, but the
notation is cleaner if we just treat Ui like a tuple). Yi represents a single node.

The probabilities are represented as a contingency table

Ui = uik . . .
...

Y = yj wijk . . .
...

Maximizing P (D|h) is equivalent to maximizing lnP (D|h). Instead of multiplying probabilities, we add
logarithms.

lnP (D|h) = ln
∏
d∈D

P (d|h)

=
∑
d∈D

lnP (d|h)

To find the gradients, we’ll need to compute

∂ lnP (D|h)
∂wijk

where wijk = P (Yi = yij |Ui = uik)

∂P (D|h)
∂wijk

=
∑
d∈D

1
P (D|h)

· ∂P (d|h)
∂wijk

We’ll continue this in the next class.
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3.8.4 Logistics

• hw3 is due on 4/24/2008

• We will have a test, either during the last class in April, or the first class in May

• Shortly after 4/24/2008, the final project will be assigned.
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3.9 Lecture – 4/14/2008

3.9.1 Weight Tables and Bayesian Networks

A Bayesian network is a directed acyclic graph whose nodes correspond to random variables.

For a moment, let’s make the simplifying assumption that all variables are binary. We have a node Xi

whose parents are U1, . . . , Un.

Each cell in Xi’s probability is

wijk = P (Xi = xij |Ui = uik ∧ w)

where w represents the other weights of the network.

If Xi has ri parents, then Xi’s table of probabilities will have 21+ri elements. This comes from ri parents
(each of which represents a binary variable), and the binary value of Xi itself.

Therefore, the number of probabilities in a Bayesian network may be exponential in the number of nodes.
For a “real” network, it’s practically impossible to solve for all of these weights directly.

Suppose our data set is D = {d1, . . . , dm}. Assume that the data elements appear randomly and
independently, such that

P (D|w) =
m∏
l=1

P (dl|w)

We will try to find weights that maximize P (D|w) locally.

However, since we’ll be working with very small numbers, it’s often better to work with logarithms
instead:

lnP (D|w) =
m∑
l=1

lnP (dl|w)

We’ll use a method called gradient ascent . This involves finding the partial derivative:

∂

∂wijk
lnP (D|w) (3.25)

Let’s work with Equation (3.25) a little.

∂

∂wijk
lnP (D|w)

=
∂

∂wijk

m∑
l=1

lnP (dl|w) sum over probabilities

=
m∑
l=1

∂

∂wijk
lnP (dl|w)

=
m∑
l=1

1
P (dl|w)

· ∂P (dl|w)
∂wijk

chain rule for derivatives

Note that wijk = P (xij |wij ∧ w).

Next, let’s work with the ∂P (dl|w)
∂wijk

term in isolation.
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∂P (dl|w)
∂wijk

=
∂

∂wijk

∑
j′,k′

P (dl|w) j′ = xi value, k′ = parent value

=
∂

∂wijk

∑
j′,k′

P (dl|xij′ ∧ uik′ ∧ w) · P (xij′ ∧ uik′ |w) chain rule for conditional probability

=
∂

∂wijk
(P (dl|xij ∧ uij ∧ w) · P (xij ∧ uik|w)) for the actual j and k

=
∂

∂wijk
P (dl|xij ∧ uij ∧ w) · P (xij ∧ wik ∧ w)

P (w)
def. of conditional probability

=
∂

∂wijk
P (dl|xij ∧ uij ∧ w) · P (uik ∧ w)wijk

P (w)
(where did wijk come from?)

Next, let’s combine the two groups of equations:

m∑
l=1

1
P (dl|w)

· ∂P (dl|w)
∂wijk

From earlier

=
m∑
l=1

1
P (dl|w)

· P (dl|xij ∧ uik ∧ w) · P (uik ∧ w)
P (w)

substitute
∂P (dl|w)
∂wijk

=
m∑
l=1

1
P (dl|w)

· P (dl ∧ xij ∧ uik ∧ w)
P (xij ∧ uik ∧ w)

· P (uik ∧ w) (where did P (w) go?)

=
m∑
l=1

1
P (dl|w)

· P (xij ∧ uik|dl ∧ w) · P (dl ∧ w)
P (xij |uik ∧ w) · P (uik ∧ w)

· P (uik ∧ w)

Therefore,

∂

∂wijk
lnP (D|w) =

m∑
l=1

P (xij ∧ wik|dl ∧ w)
wijk

(3.26)

For gradient ascent, we use

wijk ← wijk + η

m∑
l=1

P (xij ∧ wik|dl ∧ w)
wijk

(3.27)

The probabilities of a Bayesian network are computed iteratively. They will converge to a local maximum.

Bayesian Networks can give better results than Näıve Bayes classifiers. However, it’s usually not worth
the trouble.

Further Reading on Bayesian Networks

There is a paper by Heckerman which gives a very good tutorial of Bayesian Networks. It appears to be
this document: ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf

A 1995 Book by Cowell (pub. Springer) is also very good.

ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf
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3.9.2 Neural Networks

Where Bayesian Networks deal with discrete values, Neural Networks can handle data in Rn.

Let’s start by considering a simple example.

w
ei

gh
t

*
*

*

o o

o

height

Figure 3.15: Height vs Weight

Figure 3.15 show a scatterplot of height vs. weight. Suppose we are trying to determine which subjects
are obese. The simplest form of classification is to draw a line, h = aw + b. Subjects above the line are
classified as obese, while subjects below the line are not.

This method of linear separation is simple, but it does not always work. Consider the following: if you
have three points, you can form all possible types of classifications by drawing a line. However, this does
not hold for four points.

Consider the function f(x1, x2) = x1 ⊕ x2 for x1, x2 ∈ {0, 1}. f(x1, x2) = 1 might be categorized as
positive examples, while f(x1, x2) = 0 might be categorized as negative example. This is shown in Figure
3.16.

(−)

(−)

(+)

(+)

Figure 3.16: f(x1, x2) = x1 ⊕ x2

In Figure 3.16, there’s no way to divide the (-) and (+) points using a single line.

The Vapnik-Chervanenkis dimension of classification describes this metric. We have VCdimension(linear)
= 3.

A perceptron is the simplest piece that goes into a neural network. Neural networks are models of neuron.

Figure 3.17 shows a (crude) drawing of a pair of neurons.

Neurons are cells. Thick strands, called axons extend from the nucleus. Thin strands, called dendrites
extend from the axons. The space between dendrites is called a synapse.

Neurons fire if the sum of their input signal exceeds a certain threshold, λ:

• if w1x1 + . . .+ wnxn ≥ λ, the neuron fires.
• if w1x1 + . . .+ wnxn < λ, the neuron does not fire.
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dendrite

axon

axon

synapse

Figure 3.17: Two Neurons

Neural networks try to emulate this behavior.

In general, a neural network has three layers:

1. Input Units
2. A hidden layer
3. Output Units

Figure 3.18 illustrates how these layers are connected.

Output

1

x2

xn

w1

w2

wn

Input

...

w*x f

Hidden

x

Figure 3.18: Neural Network Diagram

In Figure 3.18, the xi’s represent different input nodes. Each input node has a weight, wi.

The input layer feeds into the hidden layer. In the hidden layer, input nodes and weights are summed
together and fed into a function f . The different hidden layer nodes pass their signals to the output
nodes.

The idea behind the hidden layer:

f(x) =

{
1 if w × x > λ

−1 if w × x ≤ λ

or equivalently,

f(x1, . . . , xn) = sign(w − x− λ)

sign(z) =

{
1 if z > 0
−1 if z ≤ 0

sign is not used very often. It is not continuous, and not differentiable. sign is shown in Figure 3.19.

A more common function is the sigmoid function:

h(z) =
1

1 + e−z
(3.28)
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Figure 3.19: Graph of sign(z)

Figure 3.20 shows a graph of Equation (3.28).
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Figure 3.20: Sigmoid function h(z)
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3.10 Some Notes on Derivatives – 4/16/2008

d

dx
xa = axa−1 power rule

d

dx
(f(x) · g(x)) = f ′(x)g(x) + f(x)g′(x) product rule

d

dx

(
f(x)
g(x)

)
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
quotient rule

d

dx
ex = ex

d

dx
lnx =

1
x

d

dx
loga x =

1
ln a · x

d

dx
ax = ax ln a

d

dx
(g(x)k) = kg(x)k−1 · d

dx
g(x)

if y = f(u) and u = g(x), then
dy

dx
=
dy

du

du

dx
chain rule
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3.11 Lecture – 4/16/2008

3.11.1 Neural Networks

A perceptron is a device with a set of inputs x1, . . . , xn, a set of weights w1, . . . wn (one for each input),
a summation device, and a threshold function.

Figure 3.21 shows a perceptron. Perceptrons were predecessors of neural networks.

net

1

x2

xn

wn

w2

w1

Σ signum
o

x

Figure 3.21: Diagram of a perceptron

“net” denotes the output of the summation function

net = w · x =
∑

(xiwi)

The original output function was

o(x1, . . . , xn) =

{
1 if w · x ≥ 0
−1 if w · x < 0

A later variation added a parameter w0, as illustrated in Figure 3.22.

net

1

x2

xn

wn

w2

w1

w0

Σ signum
o

x

Figure 3.22: Diagram of a perceptron with bias

For Figure 3.22, the output function is

o(x1, . . . , xn) =

{
1 if w · x ≥ w0

−1 if w · x < w0

The signum function mimics the firing of a neuron (the neuron fires or it doesn’t). However, signum has
some disadvantages: it is neither continuous nor differentiable.
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But, we can replace signum with functions that are continuous and differentiable. Some common exam-
ple:

f(x) =
1

1 + e−x
sigmoid or “squashing” function

f(x) =
1

1 + e−kx
sigmoid with an extra parameter

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
hyperbolic tangent

A plot of tanh(x) is shown in Figure 3.23.

-10 -5 0 5 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

tanh(x)

x

ta
nh
(x
)

Figure 3.23: Plot of tanh(x)

Our discussion of neural networks assumes the sigmoid function.

One trains a neural network as follows:

• We supply a set of training data in the form (x1, . . . , xn, t), where t is the target output.

• We measure the error at the outputs.

• We adjust the parameters of the network and try again.

Neural networks have three layers: input, hidden and output.
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Output Layer

squash
net−jΣ

j

squashΣ net−k
k

x1

xn

w j1 oj

wkj

ok

w ji

w jn

Input Layer Hidden Layer

Figure 3.24: Block Diagram of a Neural Network

Figure 3.24 shows a diagram of a Neural Network.

In Figure 3.24,

• x1, . . . , xn are inputs.

• j is a node in the hidden layer.

• k is a node in the output layer.

• wji is the weight between input node xi and hidden node j. When giving weights, the first subscript
denotes the destination, and the second subscript denotes the source.

• wjk is the weight between internal node j and output node k.

• oj denotes the output of node j. Similarly, ok denotes the output of node k.

• netj and netk denote the summation functions of nodes j and k respectively.

For training, we define the error E as follows:

E =
1
2

∑
k

(tk − ok)2

Our goal is to minimize E.

How many parameters are we working with. Let’s assume a small neural network with 10 inputs, 4
hidden nodes, and 6 output nodes. This give us (10× 4) + (4× 6) = 40 + 24 = 64 different parameters.

We will minimize E by seeking local minimums, using gradient descent:

wji ← wji − η
∂E

∂wji

From the input to the hidden layer

∂E

∂wji
=

∂E

∂netj
· ∂netj
∂wji

=
∂E

∂netk
wi

since netj depends only upon the weights and inputs.
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If j is an output unit (i.e., a k instead of a j), we have

∂E

∂netj
=
∂E

∂ok
· ∂ok
∂netk

= −(tk − ok) · ok(1− ok)

Where does ok(1− ok) come from? ok comes from node k’s output function:

ok =
1

1 + e−netk

Taking the derivative of this:

f(x) =
1

1 + e−x

f ′(x) =
−1

(1 + e−x)2
· −e−x

=
e−x

(1 + e−x)2

=
1

1 + e−x
− 1

(1 + e−x)2
[how did we get this?]

= f(x)− f(x)2

= f(x)(1− f(x))

Next, let’s look at the hidden layer

Let DS(j) denote the set of nodes that are “downstream” from node j

∂E

∂netj
=

∑
k∈DS(j)

∂E

∂ok
· ∂ok
∂netj

= −
∑

k∈DS(j)

(tk − ok) · ∂ok
∂netj

Let’s look at ∂ok
∂netj

∂ok
∂netj

=
∂ok
∂netk

· ∂netk
netj

= ok(1− ok)

∂netk
netj

=
∂netk
∂oj

· ∂oj
∂netj

= wkj · oj(1− oj)

So,

∂ok
∂netj

= ok(1− ok) · wkj · oj(1− oj)

We computed the partial derivatives from the output layer backwards. That’s why the approach is called
“back propagation”.
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The important equation to remember is

∂E

∂netj
=

∑
k∈DS(j)

(tk − ok) · ok(1− ok) · wkj · oj(1− oj)

To train a neural network, we do the following:

• We apply training data to the inputs

• We observe the outputs

• We calculate the partial derivatives

• We propagate the updates backwards, from output to input

• We repeat the process, until it converges.

Training is usually a time consuming process – there could be hundreds of inputs and dozens of hidden
nodes.

There is no real relationship among weights. For example, they don’t form a probability distribution.
The weights become what the training process makes them become.

3.11.2 To-Do

• Take a look at R’s neural network package (named “neural”)

• Look over vector support machines. We start discussing those in our next lecture.
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3.12 Lecture – 4/23/2008

3.12.1 Instance-Based Classification

We’ve studied several techniques for classification. Up to now, they’ve had the following things in
common

• We start with a training set.
• We build a model from the training set.
• We use the model to classify data

Most of the work happens before we use the model to answer queries. In other words, the work goes
into building the model.

By contrast, an instance-based classifier has the following traits:

• We start with a training set
• No model is built explicitly. The classifier simply stores the training set.
• Classification is done when queries are presented
• Most of the work is done during the query phase

Instance-based classifiers are also referred to as lazy classifiers, since they postpone work to the last
possible moment.

3.12.2 Nearest-Neighbor Classifiers

Nearest Neighbor Classifiers are a type of instance-based classifier. The more general case are k-nearest
neighbor classifiers, or k-NN for short.

k-NN classifiers work on data in Rn.

In Rn we work with distances between vectors x = (x1, . . . , xn) and y = (y1, . . . , yn). Euclidean distance
is the most common distance measure

d(x,y) =

√√√√ n∑
i=i

(xi − yi)2 (3.29)

k-NN assumes that points belong to the same class if they are “close” together.

k-NN classifiers can be thought of as a function f : D → {v1, . . . , vs}, such that f(d) = vi if vi is the
class of d.

A training set T is a set of data containing (1) a set of tuples, and (2) the class associated with each
tuple.

T = {(xk, vk) | vk is the class of xk} (3.30)

The general technique goes like this:

• We have a query q and a number k.

• We look for the k points of the training set that are nearest to q.

• We assign q the predominating class of the k nearest neighbors.

In other words, if δ(a, b) is

δ(a, b) =

{
1 if a = b

0 otherwise
(3.31)
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Then k-NN is

arg max
v

k∑
j=1

δ(v, f(xj)) (3.32)

3.12.3 Good and Bad Points of k-NN

One issue with k-NN is the way that k influences the outcome. Consider Figure 3.25.

0

1

1

1 0
q

Figure 3.25: Sample k-NN Query

Figure 3.25 contains a query q, and training set points. Two of the training set points have class 0 and
three have class 1.

If we have k = 1, then q will be assigned a class of 0, since the 1-nearest neighbor has class 0. However,
if we have k = 5, then q will be given a class of 1, since there are three 1’s but only two 0’s.

Usually k = 1 gives good results.

k-NN is not sensitive to outliers and noise.

k-NN does not perform well if the number of dimensions is too high. Suppose our training set has 50
attributes A1, . . . , A50, along with a class attribute.

It’s quite possible that the class is predominantly determined by 2–3 attributes, while the other 47–48
have little impact. k-NN will treat all attributes as having equal influence.

In other words, objects of the same class can be very far apart geometrically.

Reducing the number of attributes would help . . . but which ones can we eliminate? (This is called the
attribute selection problem).

We could try to bias (weight) the attributes. Bias gives us a distance measure like this:

d(x,y,a) =

√√√√ n∑
i=1

ai(xi, yi)2 (3.33)

Above, a is a vector of weights, such that
∑n
i=1 ai = 1.

3.12.4 The Dimensionality Curse

In this section, we’ll look at some of the issues inherent in dealing with data from Rn for large n.
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Squares in Rn

Consider a unit square:

• In R2 this is the familiar square. Each side has length 1.

• In R3, this is a cube, where each side has length 1.

• In R1, this is a line, with length 1.

In general, a unit cube of dimension n is

Qn(1) =[0, 1]× [0, 1]× . . .× [0, 1] (n times) (3.34)

The center of such a cube is

(0.5, 0.5, . . . , 0.5) (again, n times)

Next, let’s take a look at pairs of opposing corners – the two vertices that are furthest apart.

• In R2, the diagonal of a unit square has length
√

2.

• In R3, the longest diagonal of a unit cube has length
√

3. (We take the
√

2 diagonal from R2 and
go “up” in one dimension).

• In Rn, the longest diagonal has length
√
n.

In Rn, the distance from the center to a face of the square is 0.5. In other words, the faces stay close to
the center, but the corners become very elongated (

√
n

2 from the center).

Sphere’s in Rn

In R2 a sphere is a circle. The circle is all points within distance r of the center. The “volume” of such
a sphere is πr2.

In R3, we have the familiar sphere, whose volume is 4πr3

3 .

In n dimensions, the volume of a sphere is

Vs =
π
n
2 · rn

Γ(n2 + 1)

Where

Γ(a) =
∫ ∞

0

xa−1e−xdx

Γ has the property that Γ(a+ 1) = a · Γ(a).

Γ(1) = 1
Γ(2) = 1
Γ(3) = 2
Γ(4) = 6

Γ(n) is undefined for n ≤ 0

Γ(1/2) =
√
π
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Or more generally,

Γ(n+ 1) = n!

Γ generalizes the factorial function.

Suppose we have two concentric spheres, one with radius r, and one with radius r1, such that r = r1 + δ.
This is shown in Figure 3.26.

1r

r

Figure 3.26: Two concentric spheres with radius r and r1

What portion of the outer sphere lies outside the inner sphere? Let V be the volume of the outer sphere
and v be the volume of the inner sphere. The difference is

V − v
V

=
π
n
2 rn

Γ(n2 + 1)
− π

n
2 rn1

Γ(n2 + 1)

=
rn − rn1
rn

= 1−
(r1
r

)n
= 1−

(
r − δ
r

)n
= 1−

(
1− δ

r

)n
As n grows, V−v

V goes to 1. This means that most of the volume of the outer sphere is concentrated
near the outer edge.

Another Cube Example

Consider the two squares in Figure 3.27.

(p,p)

Figure 3.27: Two squares with a point on the diagonal

In Figure 3.27 we have a square with a diagonal. A point on the diagonal is used to define a smaller
square. What proportion of the larger square’s volume lies outside the inner square?

Assuming in unit square in R2, the difference is

p2

(1− p)2
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In three dimensions, this ratio is

p3

(1− p)3

In n dimensions,

pn

(1− p)n

Suppose we move p to p+ α. And, let’s choose α such that ratio doubles

2 · pn

(1− p)n
=

(p+ α)n

(1− p− α)n

We have

α =
p(1− p) n

√
2 · p(1− p)

1− p+ p n
√

2

=
p(1− p)( n

√
2− 1)

≈ 1

Therefore, a tiny change in α produces a very large change in the volume ratio.

The Moral of this Story

The moral of this story, as n grows, k-NN tends to become extremely unreliable. Your query point will
tend to be near to everything, or near to nothing.

n = 13 is about as far as you want to push k-NN.

3.12.5 Logistics

• We will have a take home final rather than an in-class exam. The final will be distributed on
5/12/2008, and due on 5/14/2008.

• Our final project will involve doing analysis on a large data set, then writing an essay of the results.
We’ll probably use the Mushroom data set (but not necessarily). The final project will be posted
within the next few days.
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3.13 Lecture – 4/28/2008

3.13.1 Evaluating Classifiers

We’ve looked at several different types classifiers. How can we determine when one classifier is better
than another?

Suppose we are working with a binary class, for example:

• Does a patient have disease x, or not?

• Is the guy walking through the airport a terrorist, or not?

In both of these cases, the classifier has a positive class and a negative class.

Let P be the number of (real) positive examples; let N be the number of (real) negative examples; and,
let n = N + P be the number of subjects to be classified.

If we compare the actual classes to the output of our classifier, we get a matrix like this:

Classifier Results
P N

actual P TP FN
results N FP TN

Above,

TP denotes a “true positive”,
FN denotes a “false negative”,
FP denotes a “false positive”, and
TN denotes a “true negative”

The accuracy of classifier M is the number of correct responses.

accuracy(M) =
TP + TN

P +N
(3.35)

The recall (also known as “true positive rate”, or “sensitivity”) is

recall(M) =
TP

P
=

TP

TP + FN
(3.36)

The specificity , or “true negative rate” is

specificity(M) =
TN

N
=

TN

FP + TN
(3.37)

The precision of the classifier is

precision(M) =
TP

TP + FP
(3.38)

Ideally, precision and recall should be close to one.

Some common rearrangements of accuracy:

accuracy(M) =
TP

P +N
+

TN

P +N

=
TP

P
· P

P +N
+
TN

N
· N

P +N

= recall(M) · P

P +N
+ specificity(M) · N

P +N
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Another common measure is the F-measure, which is the harmonic average of precision and recall.

F(M) =
2× precision(M)× recall(M)

precision(M) + recall(M)
(3.39)

It’s desirable for F(M) to be as large as possible.

Why use the harmonic average, rather than the arithmetic or euclidean average? Given a ≤ b, we have

a ≤ 2ab
a+ b

≤
√
ab ≤ a+ b

2
≤ b

Thus, if the harmonic average is raised, the other averages are raised along with it.

Suppose we were to take several classifiers, and plot their true positive rates against their false negative
rates. Figure 3.28 shows an example.

TP/P
3

M0

M2

M1

FP/P

M

Figure 3.28: Comparing Classifiers

In Figure 3.28 we’ve normalized TP and FP by dividing them by P .

The really lousy classifiers will lie on the diagonal line. On the diagonal, you’re no better off than flipping
a coin.

Classifier M1 is better than M0. M1 has a higher rate of true positives, and a lower rate of false positives.
In general, moving “northwest” means the classifier is better.

How do M2 and M3 compare to M0? This is less cut and dry. M2 has fewer false positives, but fewer
true positives (a more conservative classifier). On the other hand M3 has more true positives, but also
more false positives. In this case, there’s no general answer. The choice depends on the cost of making
mistakes.

Classifiers with high recall produce a small number of false negatives.

3.13.2 ROC Curves

If the output of a classifier is a probability, then there is another comparison technique we can use: ROC
curves.

ROC stands for “receiver operating characteristic”. In Weka, they’re called “threshold graphs”.

Näıve Bayes classifiers are built around the formula

P (C+|x1, . . . , xn) ≥ λ
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A Bayes classifier makes a positive choice if the probability is ≥ λ. The decision is based on the parameter
λ.

The basic idea: we plot how the performance of the classifier varies for different values of λ.

Let’s do an example. Suppose we have 20 data instances. Half are classified as positive, and half are
classified as negative.

Instance True Class score = P (C+|x) ≥ λ
1 P 0.900
2 P 0.800
3 N 0.700
4 P 0.600
5 P 0.550
6 P 0.540
7 N 0.530
8 N 0.520
9 P 0.510
10 N 0.505
11 P 0.400
12 N 0.390
13 P 0.390
14 N 0.370
15 N 0.360
16 N 0.350
17 P 0.340
18 N 0.330
19 P 0.300
20 N 0.100

The classifier outputs “P” when the score is greater than λ.

Note that the scores are sorted in descending order. This makes it easy to see the effect of changing
thresholds.

• For λ = 0.9, there is one true positive, and no false positives. Likewise, for λ = 0.8.

• For λ = 0.7, there are two true positives, and one false positive.

Figure 3.29 shows the ROC curve corresponding to this example. The curve was constructed like this:

• We start at (0, 0).

• If the class for the current λ is P , then the classifier has made a true positive judgement. We move
up and plot the point for λ.

• If the class for the current λ is N , then the classifier has made a false negative judgement. We
move right and plot the point for λ.

• We repeat the prior two steps until we’re out of λ values.

Figure 3.30 illustrates how ROC Curves vary according to the quality of the classifier. Curves near the
diagonal are bad. Curves that are primarily in the northwest corner are good.

In general, the larger the area under the curve, the better the classifier.
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Figure 3.29: ROC Curve for 20-element data set
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Best

Bad

Better

Figure 3.30: ROC Curve vs. Classifier Quality
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3.13.3 Ways of Improving Classifiers

Here we are concerned with improving the performance of a group of classifiers, also known as a “classifier
ensemble”.

Boosting is a way to improve performance with small data sets – sets that are too small to use with 10x
cross-validation. There are several variations of this technique, but the one that’s most popular is called
“0.632-boosting”.

Suppose there are d elements in our training set. The probability of choosing an element is 1
d .

With boosting, we select a random element, and this random element becomes part of our training set.
But we’ll also put the random element back into the data set (thereby allowing us to pick it again).

After selecting d random elements with repetition, we’ll have < d elements for our training set.

• 1
d is the probability of picking a random element.

• 1− 1
d is the probability of not picking a random element.

• (1− 1
d )d is the probability of not a picking an element after d attempts.

As d tends to infinity

lim
d→∞

(
1− 1

d

)d
=

1
e

=
1

2.718
≈ 0.368 (3.40)

Therefore, 0.368 of our samples are not picked, but 1− 0.368 = 0.632 of our samples are picked. This is
where the name “0.632 boosting” comes from.

The randomly-chosen 63.2% becomes our training set, and we do cross validation on the rest.

The accuracy of such a classifier will be

accuracy(M) = 0.632× accuracy developed in the 63.2%
+ 0.368× accuracy from the rest of the data set

Bagging and Adaboost

Bagging and Adaboost are two techniques based on boosting.

In bagging , classification is done by consensus. (The classifier ensemble takes a vote.)

In adaboost , the classification is sequential. The output of classifier n influences the decision of classifier
n− 1.
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3.14 Notes from Han, Chapters 6.12 – 6.15

3.14.1 Accuracy Measures

Accuracy measures the percentage of tuples that are correctly classified by a classifier.

The error rate means the percentage of tuples that are incorrectly classified by a classifier.

Sensitivity is the true positive recognition rate.

Specificity is the true negative recognition rate.

What does one do if the class of a tuple cannot be uniquely determined from the data set (i.e., two
tuples with the same values have different classes)? In this case, the classifier could return a probability
distribution instead of a discrete answer.

3.14.2 Ways to Improve Accuracy

Holdout Method In the holdout method, 2/3’s of the data are used for training, and the remaining
1/3 is used to test and evaluate the classifier. Holdout is a pessimistic method, since the classifier
is not trained on the full data set.

Cross Validation The data is partitioned on k folds of equal size. There are k training iterations,
where 1/k of the data is reserved for testing.

Bootstrap Method The data is sampled d times with replacement, and the sampled data is used for
training. The d samples will usually cover 62.8% of the data.

3.14.3 Ensemble Methods

Ensemble methods involve several classifiers. There are two common ensemble methods: bagging and
boosting.

Bagging relies on the majority vote of a set of classifiers.

Boosting is an serial process, where data is analyzed by one classifier at a time. Each tuple is assigned
a weight. After classifier Mi is learned, the weights are adjusted, such that classifier Mi+1 “pays more
attention” to the misclassified tuples. After training, boosting assigns a weight to each classifier, based
on how well that classifier performed.

3.14.4 Model Selection

The t-test is a common method for determining whether one model is better than another.

The null hypothesis: if the two classifiers perform equally well, then the difference in their mean errors
will be zero.

t =
err(M1)− err(M2)√

var(M1 −M2)/k
(3.41)

For k-fold sampling, we use k − 1 degrees of freedom.
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3.14.5 k-NN Classifiers

How can k-NN work for nominal data? Here’s one approach:

• If two attributes are the same, then the distance is zero.

• If two attributes are different, then the distance is one.

• If one or both attributes of a pair are missing, then the distance is one.

(This assumes distances are normalized to the range [0,1]).

How can we handle missing numeric data? Here’s one approach:

• If both numeric attributes are missing, the distance is one (max distance).

• If one attribute is missing, then the distance is max(1−v, v) where v is the attribute that is present.
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3.15 Lecture – 4/30/2008

3.15.1 Bagging

In bagging, we

• Generate (by bootstrapping) a multiplicity of classifiers.

• Present a query to each classifier.

• The class is decided by a majority vote.

Them term “bagging” comes from “bootstrapping” and “aggregation”.

We start with a data set D. With bootstrapping, we build training sets Ti, and testing sets Ui. These
in turn are used to learn classifiers Mi.

The Mi classifiers are similar, but independent. One does not affect any of the others.

3.15.2 Adaboost

Adaboost uses a series of classifiers, where Mi influences Mi+1. Mi+1 focuses on Mi’s mistakes.

If our data set D has |D| = d, then the probability of choosing a random element is 1/d. When going
from Mi to Mi+1, we renormalize the probabilities:

(p1, p2, . . . , pd)⇒
(
w1p1∑
wi
,
w2p2∑
wi
, . . .

wdpd∑
wi

)

The purpose of the weights wi is to make the incorrectly classified elements more prominent. (To actually
implement the weights, we can create copies of tuples, to mirror the weighting.)

The error rate of an Adaboost ensemble will be smaller than the error rate of any individual classifier
in the ensemble.

Adaboost will work with any type of classifier.

Let’s use err(Mi) to denote the error rate of Mi. The Adaboost algorithm is as follows.

1. set i = 1.
2. Extract from D a set of tuples, using equal weightings. The extraction is done with bootstrapping.
3. Construct Mi.
4. if err(Mi) > 0.5; then

(a) set the weights to 1/d
(b) if i > k, then stop. Else go back to step 2

5. if err(Mi) <= 0.5; then
(a) Take the tuples that Mi classified correctly, and multiply their weights by err(M−i)

1−err(Mi)
.

(b) Resample D
(c) increment i
(d) Go back to step 3

Note that 0 ≤ err(Mi) ≤ 1. We reject “bad” classifiers – those whose error rate is no better than random
guessing. It’s not okay to invert the decision of a bad classifier. In most cases, the contingency matrix
will not be symmetric. Better to just get rid of the bad ones.

How does the function err(M−i)
1−err(Mi)

behave? We can get an idea by looking at similar function x
1−x , which

is shown in Figure 3.31.
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Figure 3.31: Plot of x
1−x

Note what’s happening: if the error rate is high, the the weight will be high (asymptotically close to
1). If the error rate is low, the weight will be low (tending towards zero). This places more weight on
incorrectly classified tuples.

Once we’ve constructed our set of classifiers, {M1, . . . ,Mk}, the next step is to “weight them”.

We have classes {c1, . . . , cl}. With each class, we associate a variable vi.

To classify x,

1. For each classifier Mi, 1 ≤ i ≤ k
(a) We present x to classifier Mi.
(b) Mi chooses a class cj .
(c) We set vj = vj + log 1−err(Mi)

err(Mi)
.

2. We output the class that corresponds to the largest v.

What does log 1−err(Mi)
err(Mi)

do? To get an idea, let’s look at a graph of ln 1−x
x , which is shown in Figure

3.32. Classifiers with the lowest error rates have the largest contributions, and classifiers with the highest
error rates have the smallest contributions.

The Adaboost algorithm was developed by Freund and Shapire.
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Figure 3.32: Plot of ln 1−x
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Part 4

Graph Mining

4.1 Lecture – 4/30/2008

In the remainder of this section, we’ll take a look at the general problem of graph mining and some of
the challenges that it poses.

Organic molecules can be represented a graphs. For example, Figure 4.1 shows a benzene ring.

H

C

C

C

C

C

C

H

H

H

HH

Figure 4.1: A Benzene Ring

Figure 4.1 shows 12 nodes. Six are labelled ‘H’ (hydrogen), and six are labelled ‘C’ (carbon). The edges
also have labels, which denote single or double bonds.

Figure 4.2 shows another example, this time with Nucleotides. The challenge of graph mining – to notice
that the structure on the right is a subset of the structure on the left.

4.1.1 Graph Isomorphism

Suppose we have two graphs: G = (V,E) and G′ = (V ′, E′). We also have a function f : V → V ′, such
that f is a bijection.

f is an isomorphism if (x, y) ∈ E ⇔ (f(x), f(y)) ∈ E′.

If there is an isomorphism between G = (V,E) and G′ = (V ′, E′), then G and G′ are identical from the
point of view of graph theory.

135
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Cytosine, Thymine

N N

N

N

N

N

(Purines)
Adenine, Guanine

Uracil

Figure 4.2: Nucleotides

However, determining whether two graphs are isomorphic is not an easy problem. if |V | = |V ′| = n,
then there can be up to n! isomorphisms. Not a good problem for brute force.

For example, Figure 4.3 shows a pair of isomorphic graphs.

1

v2 v3

v4

v5 v1

v2

v5v4

v3

v

Figure 4.3: A pair of isomorphic graphs

By contrast, Figure 4.4 shows a pair of graphs that are not isomorphic. The graphs in Figure 4.4 cannot
be isomorphic, because left graph has one connected component, and the right graph has two.

Figure 4.4: Two graphs that are not isomorphic

Isomorphism is a #p-complete problem, which is more intractable than NP-complete.

4.1.2 Data Sets of Graphs

Recall our discussion of frequent item sets: we had a set of transactions, where each transaction was
associated with a set of items.

In a graph database, we have a set of graphs. Each graph has an identifier, and some form of repre-
sentation. Suppose we wanted to find frequent subgraphs. This kind of problem might arise if we were
trying to identify a molecular structure in a database of chemical compounds.

With frequent item sets, we might notice that a, b, c and b, c, d were both frequent, and this would lead
us to test whether a, b, c, d was frequent.
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This sort of thing is very difficult to do with graphs. We could start with small pieces – for example,
subgraphs consisting of two nodes – and then try to build larger subgraphs from them. However, it’s
not always obvious how to assemble larger subgraphs from the smaller ones.

Consider the structures shown in Figure 4.5.

C

H

NH

C

H

H O

Figure 4.5: Two similar subgraphs

In figure 4.5, we can see that the H–C–H portions are common, but how would we go about putting
them together?

In the next class, we’ll look at some graph mining algorithms.
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4.2 Lecture – 5/5/2008

4.2.1 Finding Frequent Subgraphs

Finding frequent subgraphs is a computationally difficult problem, largely because finding isomorphic
graphs is computationally difficult.

Our challenge here: given a set set which consists of graphs, we wish to find graphs G that contain
structures g as sub-graphs.

There are a variety of graph mining algorithms. We will examine the gSpan algorithm. gSpan was
developed by Yan and Han; it appeared in a book called Graph Data Mining.

Frequent item sets can be thought of as a trivial special case of graph mining. Transactions are graphs
with isolated vertices. Each item is a vertex, and there are no edges in the graph.

The first question we’ll need to consider: how does one encode a graph so that the code can be used by
a mining algorithm? We will encode graphs using DFS trees. More specifically, the DFS tree of a graph
will be used to construct the code.

Given a graph G, dfs(G) is the DFS tree for G.

For any given G, several dfs(G)’s are possible. Having several representations makes the problem a little
more difficult.

4.2.2 DFS Trees

In constructing a DFS tree, we will visit nodes in a systematic way.

Before giving the DFS tree construction algorithm, let’s look at a basic adjacency list representation of
a graph. Consider the undirected graph in Figure 4.6.

1

v2

v3

v4

v5

v

Figure 4.6: An Undirected Graph
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An adjacency-list representation of Figure 4.6 would look like this:

L[v1] = {v2, v3}
L[v2] = {v1, v3, v4, v5}
L[v3] = {v1, v2, v4}
L[v4] = {v2, v3}
L[v5] = {v2}

We could represent G by concatenating the edge lists. Of course, different concatenation orders would
produce different representations, but they’d all be isomorphic. For a small graph like this, there would
be 5! = 120 different representations. That’s too many to work with.

Instead, we will construct a set T of edges in the DFS tree. The construction algorithm is shown in
Figure 4.7. In this algorithm, SEARCH(v) will be called no more than once per edge.

procedure dfs(G)
T → ∅
for v ∈ V ; do

mark v as “new”
done
while (there is a vertex v marked “new”); do

SEARCH(v)
done

end procedure

procedure SEARCH(v)
mark v as “old”
for w ∈ L[v]; do

if w is “new”; then
add (v, w) to T
SEARCH(w)

endif
done

end procedure

Figure 4.7: dfs(G) construction

For example, if we applied this algorithm to the graph in Figure 4.6, starting from vertex v1, we’d have

T = {(v1, v2), (v2, v3), (v3, v4), (v2, v5)}

Notice that T contains a subset of the edges in G. Figure 4.8 illustrates this. Edges in T are numbered,
and drawn with solid lines. Edges 6∈ T are drawn with dashed lines. The solid edges are called forward
edges and the dashed edges are called back edges.

Forward edges are represented as a pair (vi, vj) where i < j. All edges in T are forward edges.

Back edges are represented as a pair (vi, vj) where i > j. The back edges of Figure 4.8 are (v4, v2) and
(v3, v1).

The first vertex in dfs(G) is called the root.

The last vertex in dfs(G) is called the rightmost vertex.
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Figure 4.8: Forward and Back Edges
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Figure 4.9: Starting Graph, with Edge and Vertex Labels

Of course, any vertex can be chosen as the root. Let’s work through another example using Figure 4.9,
starting with v0. In Figure 4.9, the subscripts denote the order in which nodes were visited. In addition,
both nodes and edges have labels.

Starting from v0, dfs(G) gives

dfs(G) = {(v0, v1), (v1, v2), (v2, v3), (v0, v4)}

The back edges are {(v3, v0), (v2, v0)}. Figure 4.10 shows the graph with dashed back-edges.

So far, we’ve been represented edges in the form (vi, vj). However, we really want to use a 5-tuple,
(vi, vj , l(vi), eij , l(vj)), where

• vi and vj are vertices. The subscripts i and j denote the order in which the vertices were visited.
• l(vi) and l(vj) are the labels of vi and vj .
• eij is the edge label for (vi, vj).

The 5-tuple notation for Figure 4.10 is
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Figure 4.10: Ending Graph, with Forward and Back edges

edge 5-tuple notation Forward/Back edge
(v0, v1) (0, 1, Y, a,X) Forward
(v1, v2) (1, 2, X, a,X) Forward
(v2, v3) (2, 3, X, c, Z) Forward
(v0, v4) (0, 4, Y, d, Z) Forward
(v3, v0) (3, 0, Z, b, Y ) Back
(v2, v0) (2, 0, X, b, Y ) Back

Of course, different choices of starting nodes give us different representations, but the number of repre-
sentations here is far fewer than a brute force permutation of edges. Doing this much, the number of
representations will be no more than the number of nodes.

Next, we’ll show how to turn this into a canonical representation, by taking the tree from dfs(G) and
turning it into a code.

procedure code dfs tree
repeat

add a new vertex
add a forward edge that connects the new vertex with the vertex in the previous code
add all backward edges that connect the new v with the previous code

until (all edges are included)
end procedure

In pair notation, this gives

(v0, v1), (v1, v2), (v2, v0), (v2, v3), (v3, v0), (v0, v4)
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The equivalent 5-tuple notation is

(0, 1, Y, a,X)
(1, 2, X, a,X)
(2, 0, X, b, Y )
(2, 3, X, c, Z)
(3, 0, Z, b, Y )
(0, 4, Y, d, Z)

The 5-tuples can be ordered lexicographically. Therefore, there is a total order on the set of 5-tuples,
and a total order on the coded representations.

Relative to this total order, our canonical representation will be

min dfs(G)

In other words, compute all of the codes, sort them, and throw away everything but the first one. (The
first code in sorted order is our canonical representation.)

Theorem 4.2.2.1: Two graphs G and G′ are isomorphic iff min dfs(G) = min dfs(G′).

The proof of this is very long. We won’t give it here.

A Prüfer Code is a similar technique for coding trees. Prüfer codes are simpler, but cannot handle
arbitrary graphs.
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4.3 Lecture – 5/7/2008

4.3.1 Social Networks

Social networks are usually represented by undirected graphs, having anywhere from thousands to mil-
lions of nodes. Social networks are interesting in many areas: sociology, economics, power distribution
systems, and so fourth.

4.3.2 Random Graphs

Given an undirected graph of n vertices, there are
(
n
2

)
possible edges. Suppose we add edges, choosing

the edges randomly, such that each edge is added with probability p. The end result is a random graph.

The degree of a vertex v, deg(v) is the number of edges that are incident to v.

Given a random graph, we can look at the number of edges with degree 1, degree 2, . . ., degree k. The
probability that a node is connected to n vertices follows a poisson distribution.

λk

k!
e−k poisson distribution (4.1)

If you add enough edges, the degree of nodes will eventually (and asymptotically) become equalized.

One of the best references on this subject is the book Random Graphs by Bella Bollobas.

The US highway system could be regarded as a random graph.

4.3.3 Scale-Free Networks

People have conjectured that links on the internet would form a random graph. This conjecture turns
out to be completely wrong. The internet’s link structure is far from uniform. Instead, a small number
of nodes have very high degrees (“hubs”), and most of the nodes have very low degrees.

The degree of hubs is very high when compared to non-hubs. The distribution is more like the curve
shown in Figure 4.11.
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Figure 4.11: Distribution of Node Degrees on the Internet

Figure 4.11 shows the number of nodes with degree n ≈ 1
nα (for α ≈ 2). The higher the degree, the

fewer nodes there are with that degree.
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This type of edge distribution appears in other areas. For example, the C. elegans worm contains about
5,000 proteins. These proteins are connected in a scale free network – a few of the proteins are highly
connected, but most are not.

Citation links of scientific papers are another example of a scale-free network.

Suppose we wanted to classify a set of web pages. We’d need to look at the content of the pages, but
that alone is not sufficient. We’d also need to look at the number of links to the pages, as well as the
properties of the referring pages.

4.3.4 Modeling Scale Free Networks

How are scale-free networks created? A popular model is the Forest Fire Model. The Forest Fire Model
works something like this:

• Lightning strikes a tree, and starts the tree on fire.
• The fire spreads to neighboring trees.
• The fire eventually burns out.

In terms of a mathematical construction:

• We start with some set of nodes.
• We add a new node v. v randomly selects another node w, which serves as an ambassador to v.
• We add a set of edges from v to neighbors of w. In a directed graph, more weight is given to edges

that lead out of w.

Notice how this differs from the construction of a random graph. In a random graph, we had all of the
nodes at the beginning. In the Forest Fire Model, we add nodes as the graph is created.

4.3.5 Centrality Problems

One of the most significant problems in social networks is determining how “central” a given node is.
In other words, given a social network, we’d like to identify the hubs. If a hub is “compromised”, the
entire network could be severely damaged.

Consider the graph in Figure 4.12.

x

Figure 4.12: A Star

Figure 4.12 shows a star, whose center node is x. x is clearly a hub.

• x has the lowest average communications cost.
• x controls access to the other nodes in the graph. In other words, to get from one outer node to

another, you have to pass through x.

This is a simple case; we’d like a more general way to identify hubs.
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A graph is fully defined by its incidence matrix. For example, the graph shown in Figure 4.13 is defined
by the incidence matrix A.

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0



1

v2 v3

v4v

Figure 4.13: A Graph with Four Nodes

Let’s suppose we took A and raised it to the k-th power, forming Ak. akij tells us the number of distinct
paths of length k between vi and vj . Put another way,

Ak+1 = Ak ×A

ak+1
ij =

n∑
l=1

akil × a1
lj

What happens if you multiply A by the vector I, where

I =


1
1
1
1


This gives

A× I =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

×


1
1
1
1

 =


2
2
3
1


A× I gives us the degree of each vi. deg(vi) = (AI)i is a marginalization.

4.3.6 Measures of Centrality

Closeness Centrality and Graph Centrality

Let’s say we have a node vi that is connected to some other nodes vj . The closeness centrality of vi, or
CCL(vi) is

CCL(vi) =
1∑

deg(vj)
closeness centrality (4.2)

Another centrality measure is graph centrality , or CGR(vi).

CGR(vi) =
1

max deg(vj)
graph centrality (4.3)
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Betweenness Centrality

Suppose we have nodes u and v. There can be several paths from u to v, u ∼ v, and one or more of these
paths will be the shortest. Let us denote the length of the shortest path as d(u, v). A few properties of
d(u, v):

d(u, u) = 0
d(u, v) = d(v, u)
d(u,w) ≤ d(u, v) + d(v, w)

d(u, v) is a metric.

For the special case where there is no path from u to v, we say that d(u, v) =∞.

Betweenness centrality, or B(vi) is a way to measure a nodes degree of “control”.

V (vi) =

∑
vj 6=vk,vj ,vk∈{V }−vi dvi(vj , vk)∑
vj 6=vk,vj ,vk∈{V }−vi d(vj , vk)

(4.4)

Equation (4.4) is a little messy, but here’s what it means. The numerator∑
vj 6=vk,vj
vk∈{V }−vi

dvi(vj , vk)

adds the lengths of the paths from distinct nodes vj to vk, where the path passes through vi.

The denominator∑
vj 6=vk,vj
vk∈{V }−vi

d(vj , vk)

does the same thing, but it includes paths from vj to vk that do not pass through vi.

Eigenvalue Centrality

Eigenvalue Centrality is another centrality measure. Google uses it for their PageRank algorithm.

Let A be an n×n incidence matrix, and let x be a vector of length n that denotes the centrality of each
vertex. How does Ax look?

a11 a12 . . . a1n

a21 a22 . . . a2n

...
ai1 ai2 . . . ain
...
an1 an2 . . . ann


×



x1

x2

...
xi
...
xn


The centrality of a node v is a function of the centrality of the nodes to which v is connected.

xi = λ

n∑
j=1

aijxj
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or equivalently

x = λA · x

Ax =
1
λ

x

1
λ is an eigenvalue, and x is an eigenvector.

We’ll look at this more during our next lecture.



148 CS738 Class Notes

4.4 Lecture – 5/12/2008

Most of the material in our last class dealt with undirected graphs. Today’s material will involve directed
graphs.

4.4.1 Scientific Bibliographies

There’s a trend to look at co-citations in scientific papers. Suppose we have a set of papers x1, . . . , xn,
and we want to determine whether two papers are closely related (in content).

Given two papers xi and xj , we say that xi and xj are co-cited if there is a third paper xl such that xl
cites both xi and xj . Figure 4.14 shows a graphical representation of co-citation.

l

xi xj

x

Figure 4.14: Co-citation as a directed graph

If two papers are co-cited many times, then they probably have something in common (similar content).

Let’s start with an incidence matrix A = (aij) where

aij =

{
1 if xi cites xj
0 otherwise

Because we deal with directed edges, A will not be symmetric.

For a pair of papers, we can determine the number of co-citations as follows:

ct(xi, xj) =
n∑
l=1

ali · alj

=
n∑
l=1

(ail)T · alj

In general, citations can be found via AT ·A.

ct(xi, xj) is a similarity (not a distance). We can apply clustering techniques using this similarity. It
will be preferable to use a clustering algorithm that permits intersecting clusters.

This method has been shown to work well for a corpus of a few hundred papers.

4.4.2 Mining Pages on the Web

Directed graphs can also represent pages on the web. There are two popular algorithms for mining web
pages

PageRank Google’s algorithm, invented by Larry Page and Sergei Brin. PageRank is based on the
“prestige” of a page.

HITS Invented by John Kleinberg. HITS is based on the notions of “authority” and “hub quality”.
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Suppose we have a set of pages x1, . . . , xn, and an incidence matrix A = (aij).

Let po be a vector that denotes the probability of a user visiting any of the pages in x1, . . . , xn. We
denote the probability of visiting page xi as po[xi]. Of course,

∑n
i=1 po[xi] = 1.

Let’s consider one row of the matrix A

A =

ai1 ai2 . . . ain


The sum

n∑
j=1

aij

is the number of edges that depart from xi – the out-degree of xi, or outdeg(xi).

We can form another matrix E, where each element is

eij =
aij

outdeg(xi)

Each row of E will sum to 1. In other words, E is a stochastic matrix .

Suppose we have two probability distributions p and p′, where

(
p1, p2, . . . , pn

)
·


e11 . . . e1n

ei1 . . . ein

en1 . . . enn

 =
(
p′1, p

′
2, . . . , p

′
n

)

p′i =
n∑
j=1

eijpj

If p is a stochastic vector, then p′ will also be a stochastic vector.

p′i =
n∑
j=1

pjeji

n∑
i=1

p′i =
n∑
i=1

n∑
j=1

pjeji

=
n∑
j=1

n∑
i=1

pjeji

=
n∑
j=1

pj

n∑
i=1

eji

=
n∑
j=1

pj

So,

p1 = p0E

p2 = p1E = poE2

pn = p0E
n

pn+t = ptEn
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When t→∞, then p = p · En. p becomes an eigenvector.

4.4.3 The HITS Algorithm

HITS recognizes two types of papers:

• authority papers, which generate new ideas; and
• survey papers, which reference authority papers

In reality, any paper is partially an authority paper, and partially a survey paper.

In terms of the web,

• There are authority pages. These have many in edges.
• There are hub pages. These have many out edges.

How would the HITS algorithm process a query q?

• q is presented to an information retrieval (IR) system. The IR system returns pages based on
textual content only.

• The set of pages returned by the IR system forms the core set. The core set contains pages with
textual components of q

• The core set is used to generate an extended core. If p is a page in the extended core, then there
is a link from p to some page in the core set; or, some page in the core set has a link to p.

Figure 4.15 shows the relationship between the Extended and Core sets.

Core Set

Extended Core

Figure 4.15: HITS Extended and Core Sets

We attribute two characteristics to each page:

ai which is the authority degree of page xi, and
hi which is the hub degree of page xi.

Next, we apply an iterative algorithm to the extended set.

Let A = (aij) be an incidence matrix, which represents edges xi → xj . In this context, xi is a hub, and
xj is an authority.

For each xi, we compute

a = (a1, . . . , an)
h = (h1, . . . , hn)

aj =
n∑
i=1

hiaij or, a = h ·A

hi =
n∑
j=1

ajaij or, h = a ·AT



CS738 Class Notes 151

So,

a = a · (AT ·A)

h = h · (A ·AT )

h and a are eigenvectors.



GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
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the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
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J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make
the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
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You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.
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