
Precisely Serializable Snapshot Isolation

Stephen Revilak

Ph.D. Dissertation Supervised by Patrick O’Neil

University of Massachusetts Boston

Nov. 8, 2011

1 / 38



What is Snapshot Isolation?

Snapshot Isolation (SI) is a form of multiversion concurrency
control.

I The technique was first published in a 1995 paper, A Critique
of ANSI Isolation Levels

I SI is used in a variety of DBMS Systems: Oracle, Postgres,
Microsoft SQL Server, BerkeleyDB, and others.

SI’s advantages and disadvantages:

I Advantages: Good throughput. Reads never wait for writes.
Writes never wait for reads.

I Disadvantage: SI is not serializable; it permits anomalies
that locking avoids.

2 / 38



What is PSSI?

PSSI = Precisely Serializable Snapshot Isolation. PSSI is a set of
extensions to SI that provide serializability.

I PSSI detects dependency cycles; PSSI aborts transactions to
break these cycles.

I PSSI retains much of SI’s throughput advantage. (Reads and
writes do not block each other.)

I PSSI is precise; PSSI minimizes the number of unnecessary
aborts by waiting for complete cycles to form.

3 / 38



Talk Outline

I Snapshot Isolation, SI anomalies, dependency theory

I PSSI design

I Testing and Experimental results

4 / 38



Mechanics of Snapshot Isolation

I Each transaction has two timestamps: a start timestamp
start(Ti ), and a commit timestamp, commit(Ti ).

I All data is versioned (labeled with the writer’s transaction id).
Different transactions may read different versions of a single
data item x .

I When Ti reads x , Ti reads the last version of x committed
prior to start(Ti )

I When Ti writes x , xi becomes visible to Tj that start after
commit(Ti ).

I Ti does not see changes made by a concurrent transaction Tj .

5 / 38



SI Mechanics Illustrated

Time

T2

T3

T1

I T1, T2 can’t see each other’s changes

I T3 can read changes from both T1, T2

I As we’ll see shortly, T1, T2 can’t write the same data.

6 / 38



First Committer Wins (FCW)

FCW is SI’s way of preventing lost updates.

I First Committer Wins Rule: if two concurrent transactions
(overlapping lifetimes) write the same data, then only one of
those transactions can commit.

I If this condition is tested at update time (rather than at
commit time), then we call this First Updater Wins (FUW)

FCW and FUW accomplish the same goal, but through different
means.

7 / 38



First Updater Wins (FUW)

Let Ti and Tj be two concurrent transactions.

I Ti updates x . Ti ’s update takes a wi (x) lock.
I Tj tries to update x . There are two possible outcomes:

I If Ti is still active, then Tj goes into lock wait:
I If Ti commits, then Tj aborts
I If Ti aborts, then Tj acquires wj(x) lock and continues.

I If Tj tries to update x after commit(Ti ), then Tj aborts
immediately (no lock wait).

First Updater Wins was first implemented by Oracle.
We used FUW in our PSSI prototype.

8 / 38



SI Anomalies – Write Skew

Example of an SI write skew anomaly:

H1: r1(x0, 100) ,r1(y0, 100), r2(x0, 100), r2(y0, 100),
w1(x1,−50), c1, w2(y2,−50), c2

x

y

100

100

x

y

-50

100

x

y

100

-50Business Rule: 
(x + y) ≥ 0

x

y

-50

-50

T1

T2

9 / 38



SI Anomalies – Predicate Write Skew

T1 select sum(hours) from assignments where empid = 12 and
date = ’2011-09-01’; -- sees zero hours

T2 select sum(hours) from assignments where empid = 12 and
date = ’2011-09-01’; -- sees zero hours

T1 insert into assignments (empid, project, date, hours) values
(12, ’p101’, ’2011-09-01’, 6); -- adds six-hour assignment

T2 insert into assignments (empid, project, date, hours) values
(12, ’p102’, ’2011-09-01’, 5); -- adds five-hour assignment

Interpretation: business rules limit employees to eight scheduled
hours per day. Employee 12 is now scheduled for eleven hours.

10 / 38



Dependency Theory

Dependencies are typed, ordered conflicts between pairs of
transactions.

I Write-write dependency: Ti --ww→Tj

I Ti writes x , Tj writes successor version of x .
I commit(Ti ) < start(Tj)

I Write-read dependency: Ti --wr→Tj

I Ti writes x . Tj reads what Ti wrote.
I Data item or predicate read, conflicting with data item write.
I commit(Ti ) < start(Tj)

I Read-write anti-dependency: Ti --rw→Tj

I Ti reads x , Tj writes the successor version of x .
I start(Ti ) < commit(Tj). Ti , Tj may or may not be concurrent.

Note the ordering: given Ti → Tj , Ti must serialize before Tj .

11 / 38



Dependency Serialization Graph

We can model dependencies using a Dependency Serialization
Graph (DSG). A DSG over a history H is a directed graph where:

I Each node represents a transaction Ti that committed in H.

I Each edge Ti → Tj represents a dependency between Ti and
Tj in H.

An SI history H is serializable iff DSG(H) is acyclic (Making
Snapshot Isolation Serializable, TODS ’05).

This is provable via the Serialization Theorem. DSG(H) and
SG(H) represent the same set of paths.

Therefore, we can achieve serializability by preventing dependency
cycles.

12 / 38



SI-RW Diagrams

SI-RW diagrams present a time-oriented view of an SI history H.

I Each Transaction Ti is represented by two vertices, joined by
a solid line.

I All reads occur at start(Ti ), the left vertex.
I All writes occur at commit(Ti ), the right vertex.

I Ti → Tj dependencies are represented by arrows.

I Ti --ww→Tj - a solid arrow from commit(Ti ) to commit(Tj)
I Ti --wr→Tj - a solid arrow from commit(Ti ) to start(Tj)
I Ti --rw→Tj - a dashed arrow from start(Ti ) to commit(Tj).

13 / 38



SI-RW Diagram For Write Skew

The SI-RW diagram for history H1:

H1: r1(x0, 100) ,r1(y0, 100), r2(x0, 100), r2(y0, 100),
w1(x1,−50), c1, w2(y2,−50), c2

T1

T2

rw (y) rw (x)

Time

Note: the cycle T1--rw→T2--rw→T1 wasn’t formed until after
commit(T1).

14 / 38



SI-RW Diagram For a Read-Only Anomaly

H2: r2(x0, 0), r2(y0, 0), r1(y0, 0), w1(y1, 20), c1, r3(x0, 0),
r3(y1, 20), c3, w2(x2,−11), c2

T1

T2

T3

rw (y)

rw (x)

wr (y)(makes deposit)

(writes check)

(checks balance)

x = checking account, y = savings account.

15 / 38



Dangerous Structures

I Three transactions T1, T2, T3 (perhaps with T1 = T3).

I T1 and T2 are concurrent with T2--rw→T1.

I T2 and T3 are concurrent with T3--rw→T2.

Every non-serializable SI history contains a dangerous structure
(Making Snapshot Isolation Serializable, TODS ’05).

T1

T2

T3

rw

rwDangerous structures are
precursors to cycles, but by
themselves, may be serializable.

An Essential Dangerous Structure is a dangerous structure where
T1 commits first.

16 / 38



Two Strategies for Serializable SI

I (Essential) Dangerous Structure Testing
I Published by Cahill, Röhm, and Fekete in SIGMOD ’08 (SSI)

and TODS ’09 (ESSI). Since implemented in Postgres 9.1.
I Aborts Ti when Ti creates an (essential) dangerous structure.
I Can produce false-positive aborts; dangerous structures are

only precursors to cycles.

I Cycle Testing (PSSI)
I Published by Revilak, O’Neil and O’Neil in ICDE ’11.
I Aborts Ti when commit(Ti ) would create a dependency cycle.
I A more precise test, which results in fewer aborts.

17 / 38



PSSI’s Design and our InnoDB Prototype

PSSI ensures serializability be detecting dependency cycles.

I Use a lock table to find all Ti → Tj dependencies.
Note: PSSI’s “locks” behave differently than in traditional
two-phased locking (discussed shortly).

I Use a cycle testing graph (CTG) to test for cycles.

I Use a modified version of index-specific ARIES/IM to prevent
phantom anomalies.

We implemented PSSI in MySQL 5.1.31’s InnoDB storage engine.

I InnoDB supports multiversioning (MVCC), but not SI.
InnoDB provides serializability through S2PL.

I InnoDB has a good implementation of ARIES range locking.

18 / 38



PSSI Lock Table

PSSI uses the lock table to detect conflicts, and to find
dependencies between transactions.

I The lock table keeps track of all reads and writes.
I Looks like a traditional lock manager, but behaves differently.

I Requires separate notions of lock wait and lock conflict.
I Write-write conflicts cause lock waits (as needed to support

FUW).
I Read-Write conflicts never cause lock waits.

I PSSI assumes that all dependencies can be found via conflicts
on data items.

I ARIES/IM makes this possible.

19 / 38



Integrating the Lock Table with InnoDB

I InnoDB uses one lock control block (LCB) per transaction,
per lock mode, per page.

I Each LCB has a bitmap: bit i is on if record i (on page p) is
locked.

I Bitmaps intersection allows us to quickly find conflicts on a
given page p

I The lock table is a multilist
I Vertical links group LCBs for a single transaction Ti . Reads

appear at the top, writes appear at the bottom.
I Horizontal links are lock chains - all locks that fall on a single

page p. Reads appear at start(Ti ), writes appear at
commit(Ti ).

20 / 38



PSSI Lock Table Diagram

T104 T103 T102 T101

r103 w104

r104

r101 r102 w102 w101

hash
of page

432

hash
of page

99

hash
of page

277

InnoDB
Lock
Table

InnoDB
Transaction
Manager

21 / 38



PSSI’s Cycle Testing Graph (CTG)

The CTG is a directed graph.

I Each node is a transaction Ti .

I Each edge is a Ti → Tj dependency.
I CTG is a suffix of a complete history, containing only:

I Committed transactions with potential to become part of a
cycle (“zombie transactions”).

I The currently committing transaction Tk .

I Tk commits if CTG ∪ Tk is acyclic.

PSSI tests for cycles by performing a depth-first-search, starting
from the committing transaction Tk . (One cycle test per
transaction, thus very fast.)

22 / 38



CTG Pruning

If Ti can’t become part of a future cycle, then we’d like to prune
(remove) Ti from the CTG.

Pruning Theorem: We can prune Ti if:

1. Ti has no in-edges, and

2. Ti committed before the oldest active transaction started.

The pruning theorem comes from the following observations:

I To be part of a cycle, Ti needs an in-edge and an out-edge

I Condition (1) guarantees that Ti has no in-edges

I Condition (2) guarantees that any future edges are out-edges.

Pruning happens each time a transaction commits or aborts.
When Ti is pruned, Ti ’s locks are removed from the lock table.
This is similar to SGT pruning (described in BHG ’87).

23 / 38



CTG Pruning Algorithm

CTG-Prune():
let S = the set of prunable transactions
for each Ti ∈ S :

CTG-Prune-Recursive(Ti )

CTG-Prune-Recursive(Ti ):
if Ti does not satisfy the pruning theorem:

return
let R = { Tj | there is an edge Ti → Tj }
remove Ti from the CTG
for each Tj ∈ R:

CTG-Prune-Recursive(Tj)

24 / 38



CTG Pruning Example

Assume T1 is the first transaction to start, and the last transaction
to commit.

T4T3

T2

T1

I S = {T1,T2}
I Pruning Order: T1, T2, T3, T4

Pruning is a topological sort, and pruning order gives an equivalent
serial history.

25 / 38



Range Locking and Phantom Avoidance

InnoDB range-locking is a variant of index-specific ARIES/IM.

To prevent predicate write skew anomalies, range locking must
handle two cases:

I Insert before range scan

I Range scan before insert

We’ll cover these cases one at a time.

26 / 38



Insert Before Range Scan

I T1 inserts x1. Assume no conflict is found at the time of
insert.

I x1 is labeled with T1’s transaction id. This transaction id acts
as an implicit lock on x . (No LCB in lock table).

I T2 (concurrent with T1) does a range scan across x .
I T2 examines x1’s transaction id. x1’s transaction it tells T2

that a conflict is occurring.
I T2 adds w1(x) to the lock table, on behalf of T1.
I T2 adds r2(x) to the lock table, on behalf of itself.

I These two locks – w1(x) and r2(x) – allow PSSI to detect a
T2--rw→T1 dependency.

Note: T2 only examines x1’s row header and x1 does not affect the
results of T2’s range scan query. T2 merely notes that a conflict
occurred.

27 / 38



Range Scan Before Insert

I T1 performs a range scan. T1 locks each record examined.
I T2 (concurrent) wishes to insert x into the range that T1

scanned.
I T2 determines the position where x will be inserted
I T2 checks for conflicting locks on the next key (call it z). T2

sees r1(z) – conflicting operation.
I T2 inserts x
I T2 adds w2(x) to the lock table, on behalf of itself.
I T2 adds r1(x) to the lock table, on behalf of T1.

Note that T1 has r1(x), even though T1 never examined x!

These two locks – r1(x), w2(x) – allow PSSI to detect the
T1--rw→T2 dependency.

28 / 38



Summary of Range Locking

I If there’s no conflict at the time of insert, then it’s not
necessary to add an LCB to the lock table (implicit locking).

I An LCB will be added later, if a conflict occurs.

I Transactions can take locks on each others behalf, to note
conflicts that occur.

I Deletes are treated like updates. Deletes turn on a “deleted”
bit in the affected record. (i.e., deletes create dead versions)

29 / 38



The SICycles Workload

SICycles is a parametrized workload, which allows dependency
cycles of varying lengths to form in a variety of ways.

I 1MM row “bench” table, 100-bytes per row.
I Important columns: kseq, krandseq, kval

I skun-h configuration. Each transaction runs:
I k select statements (by krandseq),
I n update statements (by krandseq).
I All select and update statements choose rows from a hotspot

of size h.
I randomized 3 ms ± 50% delay between statements.
I No think time between transactions

I Vary k, n, h, and multi-programming level (MPL).

Why not TPC-C? TPC-C doesn’t create dependency cycles
(TPC-C is serializable under ordinary SI).

30 / 38



Experimental Setup

Two-machine client/server setup:

I SICycles client is java program, running on a dual-core
GNU/Linux system

I mysqld server runs on a quad-core GNU/Linux system.
I Table data stored on a 7200 RPM SATA disk (ext4).
I Transaction logs written to an Intel X25-E SSD (also ext4).

Two mysqld binaries used:

I Our MySQL/InnoDB prototype, for SI, PSSI, and (our
implementation of) ESSI.

I A standard-distribution MySQL for S2PL.

All tests use durable group commit. Both binaries use late lock
release (locks are held until after log flush).

31 / 38



CTPS Measurements

s5u1 CTPS, Varying Hotspot Sizes

MPL

C
T

P
S

0

1000

2000

3000

4000

0 20 40 60 80 100

800−row hotspot

0 20 40 60 80 100

1200−row hotspot

S2PL SI ESSI PSSI

32 / 38



Abort Rate Measurements

s5u1 Transaction Abort Rates

MPL

%
A

bo
rt

ed
 T

ra
ns

ac
tio

ns
 (

an
y 

re
as

on
)

0

5

10

15

20

25

0 20 40 60 80 100

800−row hotspot

0 20 40 60 80 100

1200−row hotspot

S2PL SI ESSI PSSI

33 / 38



Serialization Abort Rate Measurements

s5u1 %Serialization Aborts

MPL

%
A

bo
rt

ed
 T

ra
ns

ac
tio

ns
 (

no
n−

S
R

)

0

5

10

15

0 20 40 60 80 100

800−row hotspot

0 20 40 60 80 100

1200−row hotspot

ESSI PSSI

34 / 38



Transaction Duration Measurements

s5u1 Avg. Duration of Committed Transactions

MPL

D
ur

at
io

n 
(m

s)

5

10

15

20

25

30

0 20 40 60 80 100

800−row hotspot

0 20 40 60 80 100

1200−row hotspot

S2PL SI ESSI PSSI

35 / 38



Conclusion

I Snapshot Isolation: good throughput, but doesn’t provide
serializability.

I PSSI: makes SI serializable, with a minimum of false-positive
aborts.

Key elements of PSSI:

I Lock Table to find dependencies.

I Cycle Testing Graph to find cycles.

I Pruning to keep the CTG small.

I A variant of ARIES/IM to prevent predicate/phantom
anomalies

36 / 38



References

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.

“A Critique of ANSI SQL Isolation Levels.”

In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international conference on

Management of data, pp. 1–10, New York, NY, USA, 1995. ACM.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.

Concurrency Control and Recovery in Database Systems.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

Michael J. Cahill, Uwe Röhm, and Alan D. Fekete.

“Serializable Isolation for Snapshot Databases.”

In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, pp. 729–738, New York, NY, USA, 2008. ACM.

Michael J. Cahill, Uwe Röhm, and Alan D. Fekete.

“Serializable Isolation for Snapshot Databases.”

ACM Trans. Database Syst., 34(4):1–42, 2009.

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.

“Making Snapshot Isolation Serializable.”

ACM Trans. Database Syst., 30(2):492–528, 2005.

Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil.

“Precisely Serializable Snapshot Isolation.”

In Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, pp.

482–493, 2011.

37 / 38



Thank You

38 / 38


	Introduction
	SI and SI Anomalies
	PSSI Design
	PSSI's Lock Table
	PSSI's Cycle Testing Graph
	Range Locking

	Experimental Tests
	Committed Transactions Per Second
	Abort Rates
	Serialization Abort Rates
	Transaction Durations

	Conclusion

