NFA \rightarrow DFA, and NFA \rightarrow Regexp

Wed, September 23, 2020
HW2

• Working in pairs allowed (but optional)
 • Must notify me who your partner is
 • See new section on course page -> Logistics

• HW1 solutions (partial) will be posted
 • Only after everyone has submitted
 • Volunteers? (contact me)
 • Not ok: submitting someone else’s code
 • Not ok: posting someone else’s code to other websites

• Includes a non-code component
 • Don’t forget about it!
HW1 presentations

- Paul (Python)
- Laura (Java)
- Nick (Haskell)
- Roy (C++)

See course website for survey forms (part of your participation grade!)
Proving NFAs recognize regular langs

• **Theorem:**
 • A language A is regular if and only if some NFA N recognizes it.

• Must prove:
 • \Rightarrow If A is regular, then some NFA N recognizes it
 • We know: if A is regular, then a **DFA** recognizes it.
 • Convert DFA to an NFA! (easy)
 • \Leftarrow If an NFA N recognizes A, then A is regular.
 • Convert NFA to DFA
In a DFA, all these states at each step must be only one state.

So design a state in the converted DFA to be a set of NFA states!
Example:

Figure 1.42
The NFA N_4

Figure 1.43
A DFA D that is equivalent to the NFA N_4
Last time: Convert NFA -> DFA

• Let NFA $N = (Q, \Sigma, \delta, q_0, F)$

• Then equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)
NFA -> DFA (first no empty transitions)

• Have: \(N = (Q, \Sigma, \delta, q_0, F) \)
• Want: construct a DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \).

2. For \(R \in Q' \) and \(a \in \Sigma \),

\[
\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)
\]

For each \(r \), “do its transition in \(N \)”, then combine the results into one set

3. \(q_0' = \{q_0\} \)

4. \(F' = \{R \in Q' \mid R \text{ contains an accept state of } N\} \)
NFA -> DFA (with empty transitions)

- Have: $N = (Q, \Sigma, \delta, q_0, F)$
- Want: construct a DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$.

2. For $R \in Q'$ and $a \in \Sigma$,

$$\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$$

3. $q_0' = E(\{q_0\})$

4. $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$

For each r, “do its transition in N, then add states reachable from empty transitions”, then combine the results into one set.
Proving NFAs recognize regular langs

• **Theorem:**
 • A language A is regular if and only if some NFA N recognizes it.

• Must prove:
 • => If A is regular, then some NFA N recognizes it
 • We know: if A is regular, then a **DFA** recognizes it.
 • Convert DFA to an NFA! (easy)
 • <= If an NFA N recognizes A, then A is regular.
 • Convert NFA to DFA, using NFA -> DFA algorithm we just created!

(Q.E.D.)
Regular Operations, Revisited

• Regular languages are closed under the following operations:
 • Union
 • Concatenation
 • Kleene Star

• Easy to prove (by construction) using NFAs
Let N_1 recognize A_1, and N_2 recognize A_2.

Construction of N to recognize $A_1 \circ A_2$
Why do we care?

- Union, concat, and kleene star are sufficient to express all regular languages.
- I.e., they are used to define regular expressions

Definition 1.52

Say that R is a *regular expression* if R is

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
6. (R_1^*), where R_1 is a regular expression.

- E.g., $0^*10^* = \{w \mid w \text{ contains a single } 1\}$
Regular Expressions are Super Useful

- IntelliJ
Regular Expressions are Super Useful

- Visual Studio
Regular Expressions are Super Useful

- Grep (Linux)

```
NAME
grep, egrep, fgrep, rgrep - print lines matching a pattern

SYNOPSIS
grep [OPTIONS] PATTERN [FILE...]
grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION
grep searches the named input FILEs (or standard input if no files are named, or if a single hyphen-minus (-) is given as file name) for lines containing a match to the given PATTERN. By default, grep prints the matching lines.

In addition, three variant programs egrep, fgrep and rgrep are available. egrep is the same as grep -E, fgrep is the same as grep -F, rgrep is the same as grep -r. Direct invocation as either egrep or fgrep is deprecated, but is provided to allow historical applications that rely on them to run unmodified.
```
Regexp supported in every language

- Perl
- Python
- Java
- Every lang!
Regexpers are useful, in the Right Context

... but also potentially bad

Regexpers: potentially useful ...
Big Picture Road Map

• We ultimately want to prove:
 • Regular Languages \Leftrightarrow Regular Expressions

• First, we need to show these operations are closed for reglangs:
 • Union (**done**)!
 • Concatentation (**done**)!
 • Kleene star (**done**)!
Thm: A lang is regular iff some regexp describes it

• => If a language is regular, it is described by a regexp

• <= If a language is described by a regexp, it is regular
 • Easy!
 • Construct the NFA!
 • See Lemma 1.55
Regexp -> NFA

Definition 1.52

Say that R is a *regular expression* if R is

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.

Constructions from before!
Thm: A lang is regular iff some regexp describes it

• => If a language is regular, it is described by a regexp
 • Hard!
 • Need something new: a GNFA
• <= If a language is described by a regexp, it is regular
 • Easy!
 • Construct the NFA! (Done)
GNFA = NFA with regexp transitions

• To convert to regexp, keep “ripping out” states until only 2 are left
CONVERT(G): ripping a state, and patching

\[q_i \xrightarrow{R_1} q_{\text{rip}} \xrightarrow{R_2} q_j \]

before

\[q_i \xrightarrow{(R_1)(R_2)^* (R_3) \cup (R_4)} q_j \]

after
Next time: CONVERT(G) function

- If G has 2 states, then return the regexp
- Else
 - “Rip” out one state to get G’
 - Recursively call CONVERT(G’)
Check-in Quiz 9/23
On gradescope

End of Class Survey 9/23
See course website