Regular Expressions and Inductive Proofs

Mon Sept 28, 2020
HW2 questions?
Big Picture Road Map

• We ultimately want to prove:
 • Regular Languages \Leftrightarrow Regular Expressions

• First, we need to show these operations are closed for reglangs:
 • Union (**done**)!
 • Concatenation (**done**)!
 • Kleene star (**done**)!
Thm: A language is regular iff some regular expression describes it

• => If a language is regular, it is described by a regular expression

• <= If a language is described by a regular expression, it is regular
 • Easy!
 • Construct the NFA! (Lemma 1.55)
Regexp-\rightarrow NFA (Lemma 1.55)

Definition 1.52

Say that \(R \) is a *regular expression* if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2) \),
6. \((R_1^*) \), where

Recursively call Regexp-\rightarrow NFA on \(R_1 \) and \(R_2 \), to get \(N_1 \) for \(R_1 \), and \(N_2 \) for \(R_2 \), then combine NFAs!
Thm: A lang is regular iff some regexp describes it

- => If a language is regular, it is described by a regexp
 - Hard!
 - Need something new: a GNFA
- <= If a language is described by a regexp, it is regular
 - Easy!
 - Construct the NFA! (Lemma 1.55)
GNFA = NFA with regexp transitions

- To convert GNFA to regexp, repeatedly "rip out" states until 2 left
GNFA→Regexp(G) fn (where G is GNFA)

• If G has 2 states, return the regular expression

\[q_i \xrightarrow{(R_1)(R_2)^*(R_3) \cup (R_4)} q_j \]

• Else:
 • “Rip” out one state to get G’
 • Recursively call GNFA→Regexp(G’)
Need to prove \texttt{GNFA→Regexp}(G) correct

• Specifically, need to prove $\text{Lang}(G) = \text{Lang}(\text{GNFA→Regexp}(G))$
• i.e., \texttt{GNFA→Regexp} should not change the language!
Kinds of Mathematical Proof

• Proof by construction

• Proof by contradiction

• Proof by induction
 • Use to prove properties of recursive definitions or functions
Proof by Induction

• To prove property P on all objects of a kind x
 • First, prove base case (usually easy)
 • Then, prove the induction step:
 • Assume the induction hypothesis (IH): P(x) is true, for some x
 • and use it to prove P(x+1)
 • The key is x must be smaller than x+1
Correctness of $\text{GNFA-} \rightarrow \text{Regexp}(G)$

$\text{GNFA-} \rightarrow \text{Regexp}(G)$: (G is an GNFA)

If G has 2 states, return the regexp
Else:
 “Rip” out one state to get G'
 Recursively Call $\text{GNFA-} \rightarrow \text{Regexp}(G')$

- **Prove** (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-} \rightarrow \text{Regexp}(G))$
Correctness of $\text{GNFA-\rightarrow Regexp}(G)$

$\text{GNFA-\rightarrow Regexp}(G)$: (G is an GNFA)

If G has 2 states, return the regexp

Else:
 “Rip” out one state to get G'
 Recursively Call $\text{GNFA-\rightarrow Regexp}(G')$

Prove (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-\rightarrow Regexp}(G))$

- **Base case:** G has 2 states
 - So $\text{Lang}(G) = \text{Lang}(\text{GNFA-\rightarrow Regexp}(G))$
Correctness of $\text{GNFA-}\rightarrow\text{Regexp}(G)$

$\text{GNFA-}\rightarrow\text{Regexp}(G)$: (G is an GNFA)
 If G has 2 states, return the regexp

Else:
 “Rip” out one state to get G'
 Recursively Call $\text{GNFA-}\rightarrow\text{Regexp}(G')$

• **Prove** (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 • **Base case:** G has 2 states
 • So $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 ➢ **IH:** Assume $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$, for **any** G with n states
Correctness of $\text{GNFA-\rightarrow Regexp}(G)$

$\text{GNFA-\rightarrow Regexp}(G)$: (G is an GNFA)
 If G has 2 states, return the regexp
 Else:
 “Rip” out one state to get G’
 Recursively Call $\text{GNFA-\rightarrow Regexp}(G’)$

• Prove (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-\rightarrow Regexp}(G))$
 • Base case: G has 2 states
 • So $\text{Lang}(G) = \text{Lang}(\text{GNFA-\rightarrow Regexp}(G))$
 • IH: Assume $\text{Lang}(G) = \text{Lang}(\text{GNFA-\rightarrow Regexp}(G))$, for any G with n states
 • Prove for G with n+1
 ➢ After “rip” step, we have a G’ with n states
Correctness of $\text{GNFA-}\rightarrow\text{Regexp}(G)$

$\text{GNFA-}\rightarrow\text{Regexp}(G)$: ($G$ is an GNFA)
- If G has 2 states, return the regexp
- Else:
 - “Rip” out one state to get G'
 - Recursively Call $\text{GNFA-}\rightarrow\text{Regexp}(G')$

- **Prove** (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 - **Base case**: G has 2 states
 - So $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 - **IH**: Assume $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$, for any G with n states
 - **Prove for G with $n+1$**
 - After “rip” step, we have a G' with n states
 - $\text{Lang}(G') = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G'))$ (by assumption)
Correctness of $\text{GNFA-}\rightarrow\text{Regexp}(G)$

$\text{GNFA-}\rightarrow\text{Regexp}(G)$: (G is an GNFA)

If G has 2 states, return the regexp

Else:

“Rip” out one state to get G'

Recursively Call $\text{GNFA-}\rightarrow\text{Regexp}(G')$

- **Prove** (by induction): $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 - **Base case**: G has 2 states
 - So $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$
 - **IH**: Assume $\text{Lang}(G) = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G))$, for **any** G with n states
 - **Prove for G with $n+1$**
 - After “rip” step, we have a G’ with n states
 - $\text{Lang}(G') = \text{Lang}(\text{GNFA-}\rightarrow\text{Regexp}(G'))$ (by assumption)
 - Now just need correctness of “rip” step
GNFA→Regexp: “rip” step correctness

- Must prove:
 - Every string accepted before is accepted after
 - 2 cases
 - String does not go through qrip
 - Acceptance unchanged
 - String goes through qrip
 - Acceptance unchanged?
Thm: A lang is regular iff some regexp describes it

• => If a language is regular, it is described by a regexp
 • Hard!
 • Use GNFA→Regexp(G) to convert GNFA to regexp!

• <= If a language is described by a regexp, it is regular
 • Easy!
 • Construct the NFA!

DONE!
Now we may use regular expressions to to represent regular langs.
Regexp makes some closure operations easier to prove, via induction!
Regexp is inductive definition; constructed from smaller regexps

Definition 1.52

Say that R is a *regular expression* if R is

1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 R_2)$, where R_1 and R_2 are regular expressions,
6. R^*

So any inductive proof of regular languages can just follow this definition!
Homomorphisms: closed under reg langs

A homomorphism is a function $f : \Sigma \rightarrow \Gamma$ from one alphabet to another.

- extend f to operate on strings by defining
 $$f(w) = f(w_1)f(w_2) \cdots f(w_n),$$
 where $w = w_1w_2 \cdots w_n$ and each $w_i \in \Sigma$.

- extend f to operate on languages by defining $f(A) = \{f(w) | w \in A\}$

Think like a secret decoder!
- E.g., if $f(x) \rightarrow c$, $f(y) \rightarrow a$, $f(z) \rightarrow t$, then “xyz” \rightarrow “cat”

Prove: homomorphisms are closed under regular langs
- E.g., if A is regular, then $f(A)$ is regular
Homomorphisms closed for reg langs

• Proof by construction
 • If lang L is regular, then DFA M recognizes it.
 • Create M’ from M such that all transitions use new alphabet
 • (Details left to you to work out)

• Proof by induction:
 • If lang L is regular, then some regexp R describes it.
Proof by Induction

• To prove property P on all objects of a kind x
 • First, prove base case (usually easy)
 • Then, prove the induction step:
 • Assume the induction hypothesis (IH) P(x) is true, for some x
 • and use it to prove P(x+1)
 • The key is x must be smaller than x+1
Homomorphisms closed: inductive proof

Definition 1.52

Say that \(R \) is a *regular expression* if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \), 3 base cases
2. \(\varepsilon \),
3. \(\emptyset \), I.H: assume true for smaller \(R_1 \) (and \(R_2 \)), i.e., applying homomorphism produces regular lang
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
6. \((R_1^*) \), where \(R_1 \) is a regular expression.

Now we just need to show closure of union, concat, and star operations for reg langs 😊
Next Time: Non-regular languages

• In general, we have many ways to show a language is regular
 • Construct DFA or NFA (or GNFA)
 • Create a regular expression

• But how to show a language is not regular?

• E.g., how do we know that XML is non-regular???

• Hint: The Pumping Lemma!
Check-in Quiz 9/28
On gradescope

End of Class Survey 9/28
See course website