Non-Context-Free Languages and Turing Machines

Mon, October 19, 2020
HW4 Questions?
Flashback: Pumping Lemma for Reg Langs

- The Pumping Lemma describes how strings **repeat**

- Regular lang strings can only repeat using Kleene pattern
 - But substrings are independent!

- A non-regular language

 \[\{0^n1^n \mid n \geq 0 \} \]

 Kleene can’t express this pattern: 2nd part depends on (length of) 1st part

- What about context-free languages?
Repetition and Dependency in CFLs

Grammar links first and second part

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow # \]

\[\{0^n#1^n | n \geq 0\} \]

Repetition

A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111
How Can Strings in CFLs Repeat?

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree
Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions

1. for each $i \geq 0$, $uv^ixy^iz \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Now there are two pumpable parts. But they must be pumped together!

Pumping lemma If A is a context-free language (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = uvxyz$ satisfying the conditions

1. for each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Non CFL example \[D = \{ww \mid w \in \{0,1\}^*\} \]

- Previous: Showed \(D\) nonregular; unpumpable string \(s\): \(0^p 1 0^p 1\)
- Now: But \(s\) can be pumped according to CFL pumping lemma:

\[
\begin{array}{c}
0^p 1 \\
000 \ldots 000 \\
u \\
v \\
1 \\
x \\
y \\
000 \ldots 0001 \\
z \\
\end{array}
\]

String with pumped \(v\) and \(y\) (together) still in \(D\)

- CFL Pumping Lemma conditions:
 1. for each \(i \geq 0\), \(uv^i xy^i z \in A\),
 2. \(|vy| > 0\), and
 3. \(|vxy| \leq p\).
Non CFL example

\[D = \{ww \mid w \in \{0,1\}^*\} \]

- Choose another string \(s \):

 If \(vyx \) is all in first or second half, then any pumping will break the match.

 \[\underline{0^p1^p0^p1^p} \]

 So \(vyx \) must straddle the middle

 But any pumping still breaks the match.

- CFL Pumping Lemma conditions:

 1. for each \(i \geq 0 \), \(uv^ixy^iz \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).
Non CFL example $D = \{ww \mid w \in \{0,1\}^*\}$

- **Previously:** Showed D is not regular

- **Just Now:** D is not context-free either!
But that means ...

• We previously said XML sort of looks context-free:
 • ELEMENT \rightarrow <TAG>CONTENT</TAG>
 • TAG \rightarrow any string
 • CONTENT \rightarrow any string | ELEMENT

 But these arbitrary TAG strings must match!

• Meaning XML also looks like: $D = \{ww \mid w \in \{0,1\}^*\}$

• So XML is not context-free either!
 • Note: HTML is context-free because ...
 • ... there are only a finite number of tags,
 • so we can hardcoded them into a finite number of rules.

• In practice:
 • XML is parsed as a CFL, with a CFG
 • Then matching tags checked with a more powerful machine ...
A New Hypothetical Machine

M_1 accepts if input is in language $B = \{ w#w \mid w \in \{0,1\}^* \}$

$M_1 = “On \ input \ string \ w:\$

1. **Zig-zag across the tape** to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept.”
Turing Machines (TMs)
Automata vs Turing Machines

- Turing Machines can read and write to input “tape”
- The read-write “head” can move arbitrarily left or right
- The tape is infinite
- A Turing Machine can accept/reject at any time

DEFINITION 3.5

Call a language \textit{Turing-recognizable} if some Turing machine recognizes it.
Turing Machines: Formal Definition

Definition 3.3

A *Turing machine* is a 7-tuple, \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where \(Q, \Sigma, \Gamma\) are all finite sets and

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet not containing the **blank symbol** \(\square\),
3. \(\Gamma\) is the tape alphabet, where \(\square \in \Gamma\) and \(\Sigma \subseteq \Gamma\),
4. \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function,
5. \(q_0 \in Q\) is the start state,
6. \(q_{\text{accept}} \in Q\) is the accept state, and
7. \(q_{\text{reject}} \in Q\) is the reject state, where \(q_{\text{reject}} \neq q_{\text{accept}}\).
Formal Turing Machine Example

\[B = \{ w\#w \mid w \in \{0,1\}^* \} \]

- Read char (0 or 1), cross it off, move head R(right)
- Move Right until #
- Accept if all crossed out
- Cross off same char
- Move Left until x
- Move Right until #
Turing Machine: Informal Description

- M_1 accepts if input is in language $B = \{w\#w \mid w \in \{0,1\}^*\}$

$M_1 =$ “On input string w:

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are crossed, keeping track of which symbols correspond.

2. When all symbols in w have been crossed off, check for any remaining symbols or symbols out of the #. If any symbols remain, reject; otherwise, accept.”
TM Informal Description: Caveats

• TM informal descriptions are not a “do whatever” card
 • They must be sufficiently precise to communicate the formal tuple

• Input must be a string, written with chars from finite alphabet

• An informal “step” represents sequence of formal transitions
 • I.e., some finite number of transitions
 • It cannot run forever
 • E.g., can’t say “try all numbers” as a “step”
Non-halting Turing Machines (TMs)

• A DFA, NFA, or PDA always halts
 • Because the (finite) input is always read exactly once

• But a Turing Machine can run forever
 • E.g., the head can move back and forth in a loop

• A **decider** is a Turing Machine that always halts.

Definition 3.6

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.
Formal Definition of an “Algorithm”

• An algorithm is equivalent to a Turing-decidable Language
Check-in Quiz 10/19
On Gradescope
End of Class Survey 10/19
See course website