Decidable Problems about Context-Free Languages (CFLs)

Wed October 28, 2020
HW 5/6 questions?
HW6 out

• Covers material from Chapter 4

• “Show that <LANG> is decidable” ...
Last time: Decidable DFA Languages

- \(A_{\text{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \} \)
- \(A_{\text{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \} \)
- \(A_{\text{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \} \)
- \(E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \} \)
- \(EQ_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)

Remember:

TMs = programs
This is your library
Thm: A_{CFG} is a decidable language

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

- Related to parsing!
 - E.g., is program w a valid Python (with grammar G) program?
- Create a decider TM:
 - Try all possible derivations of G?
 - But this might never halt, e.g., if there is a rule like: $S \rightarrow 0S$ or $S \rightarrow S$
 - This TM would be a recognizer but not a decider
- **Idea:** Bound the number of derivation steps?
 - Stop after some length?
DEFINITION 2.8

A context-free grammar is in Chomsky normal form if every rule is of the form

\[A \rightarrow BC \]
\[A \rightarrow a \]

where \(a \) is any terminal and \(A, B, \) and \(C \) are any variables—except that \(B \) and \(C \) may not be the start variable. In addition, we permit the rule \(S \rightarrow \varepsilon \), where \(S \) is the start variable.
Chomsky Normal Form: Number of Steps

- To generate a string of length n:
 - n steps: to generate all the terminals
 - $n - 1$ steps: to generate enough variables
 - **Total:** $2n - 1$ steps to generate length n string
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 - i.e., add rule $S_0 \rightarrow S$, where S is old start var

\[
\begin{align*}
S & \rightarrow ASA \mid aB \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon \\
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{align*}
\]
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var

2. Remove all “empty” rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., if $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvw$
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 • I.e., add rule $S_0 \rightarrow S$, where S is old start var

2. Remove all “empty” rules of the form $A \rightarrow \varepsilon$
 • A must not be the start variable
 • Then for every rule with A on RHS, add new rule with A deleted
 • E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 • Must cover all combinations if A appears more than once in a RHS
 • E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw, R \rightarrow uAvw, R \rightarrow uvw$

3. Remove all “unit” rules of the form $A \rightarrow B$
 • Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$
Thm: Every CFG has a Chomsky Normal Form

1. Add new start variable S_0 that does not appear on any RHS
 • I.e., add rule $S_0 \rightarrow S$, where S is old start var

2. Remove all “empty” rules of the form $A \rightarrow \varepsilon$
 • A must not be the start variable
 • Then for every rule with A on RHS, add new rule $S \rightarrow ASA$

3. Remove all unit rules of the form $A \rightarrow a$
 • Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$

4. Split up rules with RHS longer than length 2
 • E.g., $A \rightarrow wxyz$ becomes $A \rightarrow wB$, $B \rightarrow xc$, $C \rightarrow yz$

5. Replace all terminals on RHS with new rule
 • E.g., for above, add $W \rightarrow w$, $X \rightarrow x$, $Y \rightarrow y$, $Z \rightarrow z$
Thm: A_{CFG} is a decidable language

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

- Create decider:

$S = \text{“On input } \langle G, w \rangle \text{, where } G \text{ is a CFG and } w \text{ is a string:} \smallskip$
 1. Convert G to an equivalent grammar in Chomsky normal form.
 2. List all derivations with $2n - 1$ steps, where n is the length of w; except if $n = 0$, then instead list all derivations with one step.
 3. If any of these derivations generate w, accept; if not, reject.”
Thm: E_{CFG} is a decidable language.

$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

- Recall:

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

$$T = \text{“On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}$$

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

- “Reachability” (of accept state from start state)
Thm: E_{CFG} is a decidable language.

$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$$

- Create decider that calculates reachability for grammar G
 - Except start from terminals, to avoid looping

$R =$ “On input $\langle G \rangle$, where G is a CFG:

1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
4. If the start variable is not marked, accept; otherwise, reject.”
Thm: EQ_{CFG} is a decidable language?

$$\text{EQ}_{\text{CFG}} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$$

- Recall: $\text{EQ}_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

- Use Symmetric Difference

 \[L(C) = \emptyset \text{ iff } L(A) = L(B) \]

 - $C =$ complement, Union, intersection of machines A and B

- Can’t do this for CFLs!
 - Intersection and complement are not closed for CFLs!!!
Intersection of CFLs is **Not** Closed!

• If closed, then intersection of these CFLs should be a CFL:

\[A = \{ a^m b^n c^n | m, n \geq 0 \} \]

\[B = \{ a^n b^n c^m | m, n \geq 0 \} \]

• But \(A \cap B = \{ a^n b^n c^n | n \geq 0 \} \)

• Not a CFL!
Complement of a CFL is not Closed!

• If CFLs closed under complement:

\[
\text{if } G_1 \text{ and } G_2 \text{ context-free} \\
\overline{L(G_1)} \text{ and } \overline{L(G_2)} \text{ context-free} \\
\overline{L(G_1)} \cup \overline{L(G_1)} \text{ context-free} \\
\overline{L(G_1)} \cup \overline{L(G_1)} \text{ context-free} \\
\overline{L(G_1) \cap L(G_2)} \text{ context-free}
\]

DeMorgan’s Law!
Thm: EQ_{CFG} is a decidable language?

$EQ_{CFG} = \{(G, H) | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$

- No!
- Not recognizable either!
- You cannot decide whether two grammars are equal!
- (Can’t prove until Chapter 5)
Decidability of CFGs Recap

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}\$
 - Convert grammar to Chomsky Normal Form
 - Then check all possible derivations of length $2|w| - 1$ steps

- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$
 - Compute “reachability” of start variable from terminals

- $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
 - We couldn’t prove that this is decidable!
 - (Can’t use this when creating a decider)
Next time: Thms: A_{TM} is Turing-recognizable

A_{TM} is undecidable

$A_{TM} = \{ \langle M, w \rangle \mid M$ is a TM and M accepts $w \}$

$U =$ “On input $\langle M, w \rangle$, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.”
Check-in Quiz 10/28
On gradescope
End of Class Survey 10/28
See course website