CS420
Chapter 5: Reducibility

Wed, November 4, 2020
HW 6/7 Questions?
HW announcements

• HW4 grades released

• HW7 released

• New partner required starting from hw7
Last time: Diagonalization of TMs

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle D \rangle$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>\ldots</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contradiction: Needs to be both reject and accept

TM D can’t exist!
Last time: A_{TM} is undecidable

$$A_{TM} = \{\langle M, w \rangle | \ M \ is \ a \ TM \ and \ M \ accepts \ w \}$$

- Proof by contradiction.
- Assume A_{TM} is decidable. Then there exists a decider:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- If H exists, then we can create:

$$D = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

1. Run H on input $\langle M, \langle M \rangle \rangle$.
2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept.”

- But D does not exist! Contradiction!
Reducibility

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

- We proved \(A_{TM} \) undecidable by showing that its decider ...
- ... could be used to implement an impossible “D” decider.
 - Was hard to prove (diagonalization)

- In other words, we **reduced** \(A_{TM} \) to the “D” problem.

- But now we can just reduce things to \(A_{TM} \): much easier!
The Halting Problem

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

- Thm: \(\text{HALT}_{\text{TM}} \) is undecidable
- Proof, by contradiction:
- Assume \(\text{HALT}_{\text{TM}} \) has decider \(R \); use to create \(A_{\text{TM}} \) decider:

\[S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\]
1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, reject.
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts.
4. If \(M \) has accepted, accept; if \(M \) has rejected, reject.”

- But \(A_{\text{TM}} \) has no decider!

\[U = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}
1. Simulate } M \text{ on input } w.
2. If } M \text{ ever enters its accept state, accept; if } M \text{ ever enters its reject state, reject.”}

Recall \(A_{\text{TM}} \)’s recognizer (which might loop):
Might need to change M: E_{TM} is undecidable

Proof, by contradiction:
Assume E_{TM} has decider R; use to create A_{TM} decider:

First, construct M_1

- On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn’t accept anything)
 - if R rejects, then $\text{accept} \langle M \rangle$ accepts w

Idea: Wrap $\langle M \rangle$ in a TM that only accepts w:

M_1 = “On input x:
1. If $x \neq w$, reject.
2. If $x = w$, run M on input w and accept if M does.”
One more, modify M: \(R_{\text{TM}} \) is undecidable

\[R_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

• Proof, by contradiction:

• Assume \(R_{\text{TM}} \) has decider \(R \); use to create \(A_{\text{TM}} \) decider:

\[S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\]

• First, construct \(M_2 \)

• Run \(R \) on input \(\langle M_2 \rangle \)

• If \(R \) accepts, accept; if \(R \) rejects, reject

Want: \(L(M_2) = \)

• regular, if \(M \) accepts \(w \)
• nonregular, if \(M \) does not accept \(w \)
Thm: \(\text{REGULAR}_{\text{TM}} \) is undecidable (continued)

\[\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

\(M_2 \) = “On input \(x \):

1. If \(x \) has the form \(0^n1^n \), accept.
2. If \(x \) does not have this form, run \(M \) on input \(w \) and accept if \(M \) accepts \(w \).

Want: \(L(M_2) = \)

- regular, if \(M \) accepts \(w \)
- nonregular, if \(M \) does not accept \(w \)
Reduce to something else: \(EQ_{TM} \) is undecidable

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

- Proof, by contradiction:
- Assume \(EQ_{TM} \) has decider \(R \); use to create \(A_{TM} \) decider.

\(S = \) “On input \(\langle M \rangle \), where \(M \) is a TM:

1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
2. If \(R \) accepts, accept; if \(R \) rejects, reject.”
Turing Unrecognizable?

Is there anything out here?
Thm: Some langs are not Turing-recognizable

• **Lemma 1**: The **set of all strings** in Σ^* is **countable**
 • Count strings of length 0, then
 • Count strings of length 1, ...

• **Lemma 2**: The **set of all TMs** is **countable**
 • Because every TM M can be encoded as a string $\langle M \rangle$
 • And set of all strings is countable (Lemma 1)

• **Lemma 3**: The **set of all infinite binary sequences** B is **uncountable**
 • Diagonalization proof (HW7)

• **Lemma 4**: The **set of all languages** is **uncountable**
 • There is a mapping to B
Mapping a Lang to a Binary Sequence

\[\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \} \]
\[A = \{ 0, 00, 01, 000, 001, \ldots \} \]
\[\chi_A = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ \ldots \]

1 if lang has this string, 0 otherwise
Thm: Some langs are not Turing-recognizable

• **Lemma 1:** The set of all strings in Σ^* is countable
 • Count strings of length 0, then
 • Count strings of length 1, ...

• **Lemma 2:** The set of all TMs is countable
 • Because every TM M can be encoded as a string $<M>$
 • And set of all strings is countable (Lemma 1)

• **Lemma 3:** The set of all infinite binary sequences B is uncountable
 • Diagonalization proof (HW7)

• **Lemma 4:** The set of all languages is uncountable
 • There is a mapping to B

• **Corollary 5:**
 • TMs countable, langs uncountable \Rightarrow some langs are not Turing-recognizable
Turing Unrecognizable?

Is there anything out here?

\[A_{TM} \]

Turing-recognizable

decidable

context-free

regular
Co-Turing-Recognizability

• A language is co-Turing-recognizable if ...
• ... it is the complement of a Turing-recognizable language.
Thm: Decidable \Leftrightarrow Turing & co-Turing-recognizable

- \Rightarrow If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 - Decidable langs \subseteq recognizable langs
 - decidable \Rightarrow Turing-recognizable
 - Complement closed for decidable langs
 - decidable \Rightarrow co-Turing-recognizable
Thm: Decidable ⇔ Turing & co-Turing-recognizable

• => If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 • Decidable langs ⊂ recognizable langs
 • decidable \(\rightarrow\) Turing-recognizable
 • Complement closed for decidable langs
 • decidable \(\rightarrow\) co-Turing-recognizable

• <= If a language is Turing- and co-Turing recognizable, then it is decidable.
 • Let \(M_1\) = recognizer for the lang, \(M_2\) = recognizer for complement
 • Decider \(M\):
 • Run 1 step on \(M_1\), and 1 step on \(M_2\),
 • Repeat until one machine accepts. If it’s \(M_1\), accept. If it’s \(M_2\), reject
 • \(M_1\) or \(M_2\) must accept and halt, so \(M\) halts and is a decider
A Turing-unrecognizable language

• We’ve proved:
 \[A_{TM} \text{ is Turing-recognizable} \]
 \[A_{TM} \text{ is undecidable} \]

• So:
 \[\overline{A_{TM}} \text{ is not Turing-recognizable} \]
Is there anything out here?
Check-in Quiz 11/4
On gradescope
End of Class Survey 11/4
See course website