HW 8 Questions?
HW announcements

• HW5 grades released

• **Reminder:** Cite your sources and collaborators!
 • In README
 • Will be penalized in future assignments
 • May have to present in class to demonstrate understanding
Past HW Review

• Using non-determinism properly:
 • “Non-deterministically split the (input) string”.
 • “Non-deterministically split the (input) string into all possible pairs”.

• Being careful with looping in TMS:
 • Let M_1 and M_2 recognize L_1 and L_2, respectively
 • Let $S = \text{TM recognizing union of } L_1 \text{ and } L_2$
 • $S = \text{On input } x:$
 • Run M_1 on x, accept if accept, else
 • Run M_2 on x, accept if accept, else reject
 • If M_1 loops and M_2 accepts x, S wrongly loops when it should accept
Programmers Use Recursion

(define (factorial n)
 (if (zero? n)
 1
 (* n (factorial (sub1 n)))))
Turing Machines and Recursion

• We’ve been saying: “A Turing machine is just a program.”

• Q: Is a recursive program still a Turing machine?

• A: Yes!
 • But it’s not explicit.
 • In fact, it’s a little complicated.
 • Need to prove it:
 • The Recursion Theorem

A Turing machine is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

1. Q is the set of states,
2. Σ is the input alphabet not containing the blank symbol \(\% \),
3. Γ is the tape alphabet, where $\% \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
5. $q_0 \in Q$ is the start state,
6. $q_{\text{accept}} \in Q$ is the accept state, and
7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Where’s the recursion???
The Recursion Theorem

• You can write a TM description like this:
 - Prove A_{TM} is undecidable by contradiction, assume that Turing machine H decides A_{TM}

$B =$ “On input w:
1. Obtain, via the recursion theorem, own description $\langle B \rangle$.
2. Run H on input $\langle B, w \rangle$.
3. Do the opposite of what H says. That is, accept if H rejects and reject if H accepts.”

This is a valid (but non-existent) TM that does the opposite of itself!
How can a TM “obtain it’s own description?”

How can a TM even know about “itself” before it’s completely defined?
A (Simpler) Coding Exercise

• **Your task:**
 • Write a program that, without using recursion, prints itself.

• An example, in English:

 Print out two copies of the following, the second on in quotes: “Print out two copies of the following, the second on in quotes:”

• This “program” knows about “itself”

• A program can know about “itself”, without recursion!
Lambda

• $\lambda =$ anonymous function value, e.g. $(\lambda (x) \ x)$

 • C++: [](int x){ return x; }

 • Java: (x) -> { return x; }

 • Python: lambda x : x

 • JS: (x) => { return x; }
My Self-Reproducing Program

Print out two copies of the following, the second on in quotes:

“Print out two copies of the following, the second on in quotes:”

```
((\(x\) (printf "(~a\n ~v)\n" x x))
 "(\(x\) (printf "(~a\n ~v)\n" x x))")
```
Self-Reproducing Turing Machine

The following TM Q computes $q(w)$.

$Q = \text{"On input string } w:\text{"
1. Construct the following Turing machine } P_w.
 $P_w = \text{"On any input:"
 1. Erase input.
 2. Write } w \text{ on the tape.}
 3. Halt."
2. Output } \langle P_w \rangle._$’

TMs pass args by putting it on tape

"argument"

"function"

$B = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a portion of a TM:"
1. Compute } q(\langle M \rangle).
2. Combine the result with } \langle M \rangle \text{ to make a complete TM.}
3. Print the description of this TM and halt."

Print out two copies of the following, the second on in quotes:
“Print out two copies of the following, the second on in quotes:”
Program that prints itself

\[SELF = \text{"On any input:}\]
\[1. \text{ Obtain, via the recursion theorem, own description } \langle SELF \rangle.\]
\[2. \text{ Print } \langle SELF \rangle.\]

\[
((\lambda(x) \ (\text{printf } "(~a\n ~v)\n" \ x \ x))
 "((\lambda(x) \ (\text{printf } "(~a\n ~v)\n" \ x \ x))\n)\n\text{\textbackslash n}
\]

• Our program contains “itself” even though it has no recursion!

• What if we want to do something other than printing “itself”?
Other nonrecursive programs using “itself”

• Program that prints “itself”:
 \[
 (((\lambda(x) \ (\text{printf } "(\sim a\n \sim v)\n" \ x \ x)) \n "(\lambda(x) \ (\text{printf } "(\sim a\n \sim v)\n" \ x \ x)"))
 \]

• Program that runs “itself” repeatedly (ie, it loops):
 \[
 (((\lambda(x) \ (x \ x)) \n (\lambda(x) \ (x \ x))))
 \]

• Program that passes “itself” to another function:
 \[
 (\lambda(f) \n (((\lambda(x) \ (f \ (x \ x))) \n (\lambda(x) \ (f \ (x \ x))))))
 \]

• Still no “recursion” in sight!
The Recursion Theorem, Formally

Recursion theorem Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$r(w) = t(\langle R \rangle, w).$$

- In English:
 - If you want TM R that includes “obtain own description” ...
 - ... instead create TM T with an explicit “itself” argument ...
 - ... then you can construct R from T
Recursion Theorem, A Concrete Example

• If you want:

\[
\text{(define (factorial n) ;; R}
\text{ (if (zero? n)
\text{ 1
\text{ (* n (factorial (sub1 n)))))})}
\]

• Instead create:

\[
\text{(define (factorial/itself ITSELF n) ;; T}
\text{ (if (zero? n)
\text{ 1
\text{ (* n (ITSELF (sub1 n)))))})}
\]

But how to convert?
Recursion Theorem, Proof

• To convert a “T” to “R”:

1. Construct $A = \text{program constructing } <BT>$, and
2. Pass result to B (from before),
3. which passes “itself” to T

• Compare with SELF:
Recursion Theorem Proof: Coding Demo

• Program that passes “itself” to another function:

\[
(\lambda f \ ((\lambda x) (f (x x)))
(\lambda x) (f (x x))))
\]

• Function that needs “itself”

```
(define (factorial/itself ITSELF n) ;; T
  (if (zero? n)
      1
      (* n (ITSELF (sub1 n)))))
```
Fixed Points

• A value x is a fixed point of a function f if $f(x) = x$
Recursion Theorem and Fixed Points

Theorem 6.8

Let \(t : \Sigma^* \rightarrow \Sigma^* \) be a computable function. Then there is a Turing machine \(F \) for which \(t(\langle F \rangle) \) describes a Turing machine equivalent to \(F \). Here we’ll assume that if a string isn’t a proper Turing machine encoding, it describes a Turing machine that always rejects immediately.

In this theorem, \(t \) plays the role of the transformation, and \(F \) is the fixed point.

Proof Let \(F \) be the following Turing machine.

\[F = \text{"On input } w:\]
1. Obtain, via the recursion theorem, own description \(\langle F \rangle \).
2. Compute \(t(\langle F \rangle) \) to obtain the description of a TM \(G \).
3. Simulate \(G \) on \(w \)."

Clearly, \(\langle F \rangle \) and \(t(\langle F \rangle) = \langle G \rangle \) describe equivalent Turing machines because \(F \) simulates \(G \).

• I.e., Recursion theorem says:
 • “every TM that computes on TMs has a fixed point”
 • As code: “every function on functions has a fixed point”
Y Combinator

• `mk-recursive-fn = a “fixed point finder”`

```scheme
(define mk-recursive-fn
  (λ (f)
    ((λ (x) (f (λ (v) (x x) v)))
     (λ (x) (f (λ (v) (x x) v))))))
```

• `mk-recursive-fn` alternate name: Y combinator!
Summary: Where “Recursion” Comes From

- TMs are powerful enough to:
 1. Construct other TMs
 2. Simulate other TMs

- That’s enough to achieve recursion!

A Turing machine is a 7-tuple, \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where \(Q, \Sigma, \Gamma\) are all finite sets and:

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet not containing the blank symbol \(\Lambda\),
3. \(\Gamma\) is the tape alphabet, where \(\underline{\epsilon} \in \Gamma\) and \(\Sigma \subseteq \Gamma\),
4. \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function,
5. \(q_0 \in Q\) is the start state,
6. \(q_{\text{accept}} \in Q\) is the accept state, and
7. \(q_{\text{reject}} \in Q\) is the reject state, where \(q_{\text{reject}} \neq q_{\text{accept}}\).

Where’s the recursion???
Check-in Quiz 11/16
On gradescope

End of Class Survey 11/16
See course website