HW questions?
Announcements

• HW10 released
 • Note extended due date: Sun Dec 6 11:59pm EST

• HW7 and 8 resubmissions due Mon Nov 30 11:59pm EST
Recap: The *PATH* Problem

\[PATH = \{ (G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \]

• The **search** problem:
 • Exponential time (brute force) algorithm:
 • Check all possible paths and see if any connects \(s \) and \(t \)
 • Polynomial time algorithm:
 • Do a breadth-first search (roughly), marking “seen” nodes as we go
Verifying a *PATH*

\[PATH = \{ (G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \]

- **The verification problem:**
 - Given some path \(p \) in \(G \), check that it is a path from \(s \) to \(t \)
 - Let \(m = \) longest possible path = \# edges in \(G \)

- **Verifier \(V = \) On input \(<G, s, t, p> \), where \(p \) is some set of edges:**
 1. Check some edge in \(p \) has “from” node \(s \); mark and set it as “current” edge
 - **Max steps** = \(O(m) \)
 2. While there remains unmarked edges in \(p \):
 a) Find the “next” edge in \(p \), whose “from” node is the “to” node of “current” edge
 b) If found, then mark that edge and set it as “current”, else reject
 - **Max steps** of each loop iteration \(O(m) \)
 - **Loop iterates** at most \(m \) times; total looping time = \(O(m^2) \)
 3. Check “current” edge has “to” node \(t \); if yes accept, else reject

- **Total time** = \(O(m) + O(m^2) = O(m^2) = \) polynomial in \(m \)

PATH can be verified in polynomial time
Verifiers, Formally

PATH = \{⟨G, s, t⟩| G is a directed graph that has a directed path from s to t\}

Definition 7.18

A *verifier* for a language \(A\) is an algorithm \(V\), where

\[A = \{w | V \text{ accepts } ⟨w, c⟩ \text{ for some string } c\}. \]

We measure the time of a verifier only in terms of the length of \(w\), so a *polynomial time verifier* runs in polynomial time in the length of \(w\). A language \(A\) is *polynomially verifiable* if it has a polynomial time verifier.

• **NOTE:** a cert \(c\) must be at most length \(n^k\), where \(n = \text{length of } w\)
 • Why?
• \(PATH\) is polynomially verifiable
The **HAMPATH** Problem

- A Hamiltonian path goes through every node in the graph

 \[
 \text{HAMPATH} = \{ (G, s, t) \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}
 \]

- The **Search** problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect \(s \) and \(t \) using all nodes
 - Polynomial time algorithm:
 - We don’t know if there is one!!!

- The **Verification** problem:
 - Still \(O(m^2) \)!
 - \(\text{HAMPATH} \) is polynomially verifiable, but **not** polynomially decidable
The class **NP**

Definition 7.19

NP is the class of languages that have polynomial time verifiers.

- *PATH* is in **NP**, and **P**
- *HAMPATH* is in **NP**, but *not* **P**
NP = **Nondeterministic polynomial time**

DEFINITION 7.19
NP is the class of languages that have polynomial time verifiers.

THEOREM 7.20
A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

• \(\Rightarrow \) If a lang \(L \) is in NP, then it has a poly time verifier \(V \)
• Create NTM deciding \(L \): on input \(w = \)
 • Nondeterministically run \(V \) with \(w \) and all possible certs \(c \)
• \(\Leftarrow \) If \(L \) has NTM decider \(N \),
 • then let the cert denote one accepting path in \(N \)
 • Then create poly time verifier that runs \(N \) for only that path
P vs NP

Definition 7.7
Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. Define the *time complexity class*, $\text{TIME}(t(n))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine.

Definition 7.12
P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_k \text{TIME}(n^k).$$

Definition 7.21
$\text{NTIME}(t(n)) = \{L | L$ is a language decided by an $O(t(n))$ time nondeterministic Turing machine$\}.$

Corollary 7.22

$$\text{NP} = \bigcup_k \text{NTIME}(n^k).$$
More NP Problems

- $\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique}\}$
 - A clique is a subgraph where every two nodes are connected
 - A k-clique contains k nodes

- $\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}, \text{ and for some } \{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\}, \text{ we have } \Sigma y_i = t\}$
 - Some subset of a set of numbers sums to some total
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in \text{SUBSET-SUM}$
Theorem: **CLIQUE is in NP**

$CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for $CLIQUE$.

$V =$ "On input $\langle G, k \rangle, c$:

1. Test whether c is a subgraph with k nodes in G. $O(k)$
2. Test whether G contains all edges connecting nodes in c. $O(k^2)$
3. If both pass, accept; otherwise, reject."

DEFINITION 7.18

A **verifier** for a language A is an algorithm V, where

$A = \{ w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$.

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.
Proof 2: \textbf{CLIQUE} is in NP

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \} \]

\[N = \text{“On input } \langle G, k \rangle, \text{ where } G \text{ is a graph:
1. Nondeterministically select a subset } c \text{ of } k \text{ nodes of } G.
2. Test whether } G \text{ contains all edges connecting nodes in } c.
3. If yes, } \text{accept}; \text{ otherwise, } \text{reject.} \]

\[\text{“try all subgraphs”} \]

\[O(k^2) \]

\textbf{THEOREM 7.20}

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.
Theorem: \textit{SUBSET-SUM} is in NP

\[
\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}, \text{ and for some } \{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\}, \text{ we have } \sum y_i = t \}
\]

Proof Idea The subset is the certificate.

Proof The following is a verifier \(V \) for \textit{SUBSET-SUM}.

\(V = \) “On input \(\langle S, t \rangle, c \):

1. Test whether \(c \) is a collection of numbers that sum to \(t \).
2. Test whether \(S \) contains all the numbers in \(c \).
3. If both pass, \textit{accept}; otherwise, \textit{reject}.”

Alternative Proof We can also prove this theorem by giving a non-deterministic polynomial time Turing machine for \textit{SUBSET-SUM} as follows.

\(N = \) “On input \(\langle S, t \rangle \):

1. Nondeterministically select a subset \(c \) of the numbers in \(S \).
2. Test whether \(c \) is a collection of numbers that sum to \(t \).
3. If the test passes, \textit{accept}; otherwise, \textit{reject}.”
COMPOSITES = \{x \mid x = pq, \text{ for integers } p, q > 1\}

- A composite number is not prime
- COMPOSITES is polynomially verifiable
 - A certificate could be:
 - Some factor that is not 1
 - Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)
Does $P = NP$?

One of the greatest unsolved mysteries in math and computer science

PATH

NP

P

CLIQUE

HAMPATH

COMPOSITES

PROOF:

$e^{P_i} = 1$

and $P_i \leq P_i$

$e^{P_i} = e^{P_i - i \cdot e^p}$

$e^{P_i - i} = e^{P_i}$

which leaves

$P = 0$

Thus $P = NP$

QED

It's hard to prove that something doesn't exist
Check-in Quiz 11/25
On gradescope

End of Class Survey 11/25
See course website