CS420
Regular Languages
Thursday, September 15, 2023
UMass Boston Computer Science

Turing Machines
Linear bounded Automata
Push-down Automata
Finite State Automata
= Regular Languages!
Announcements

• HW 0 in
 • Due Wed 9/13 11:59pm EST

• HW 1 out
 • Due Sun 9/25 11:59pm EST
Last Time: Computation and Languages

- The **language** of a machine is the **set of all strings that it accepts**

- A **computation model** is equivalent to the **set of machines** it defines
 - E.g., all possible Finite State Automata are a computation model

Definition

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.

- Thus: a **computation model** is also equivalent to a **set of languages**
Last Time: Regular Languages: Definition

If a finite automaton (FSM) recognizes a language, then that language is called a regular language.

A language is a set of strings. M recognizes language A if $A = \{w | M$ accepts $w\}$.
Last Time: A Language, Regular or Not?

• If given: a Finite Automaton M
 • We know: $L(M)$, the language recognized by M, is a regular language
 • Because:

 If a finite automaton (FSM) recognizes a language, then that language is called a regular language.

• If given: a Language A
 • Is A is a regular language?
 • Not necessarily!
 • How do we determine, i.e., prove, that A is a regular language?
An Inference Rule: Modus Ponens

Premises
• If P then Q
• P is true

Conclusion
• Q is true

Example Premises
• If an FSM recognizes language A, then A is a regular language
• There is an FSM M where $L(M) = A$

Conclusion
• A is a regular language!

... then we need to show
If we want to prove ...
Last Time: Designing Finite Automata: Tips

• States = the machine’s **memory!**
 • So think about what information must be remembered.
 • (# states must be decided in advance)

• Input may only be read once, one char at a time

• Must decide accept/reject after that

• Every state/symbol pair must have a transition (for DFAs)
Design a DFA: accept strings with odd # 1s

• **States:**
 • 2 states:
 • seen even 1s so far
 • seen odds 1s so far

• **Alphabet:** 0 and 1

• **Transitions:**

• **Start / Accept states:**
In-class exercise

• **Prove:** the following language is a regular language:
 • \(A = \{ w \mid w \text{ has exactly three 1's} \} \)
 • i.e., design a finite automata that recognizes it!

• Where \(\Sigma = \{ 0, 1 \} \),

• Remember:

DEFINITION

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q \) is a finite set called the **states**,
2. \(\Sigma \) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \to Q \) is the **transition function**,
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the **set of accept states**.
In-class exercise Solution

• Design finite automata recognizing:
 • \(\{w \mid w \text{ has exactly three } 1's\} \)

 • States:
 • Need one state to represent how many 1’s seen so far
 • \(Q = \{q_0, q_1, q_2, q_3, q_{4+}\} \)

 • Alphabet: \(\Sigma = \{0, 1\} \)

 • Transitions:

 • Start state:
 • \(q_0 \)

 • Accept states:
 • \(\{q_3\} \)

So finite automata are used to recognize simple string patterns?

Yes!

Have you ever used a programming language feature to recognize simple string patterns?
So Far: Finite State Automaton, a.k.a. DFAs

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,\(^1\)
4. \(q_0 \in \Sigma\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

• **Key characteristic:**
 • Has a finite number of states
 • i.e., a computer or program with access to a single cell of memory,
 • Where: \# states = the possible symbols that can be written to memory

• Often used for text matching
Combining DFAs?

Password Requirements

» Passwords must have a minimum length of ten (10) characters - but more is better!
» Passwords **must include at least 3** different types of characters:
 » upper-case letters (A-Z)
 » lower-case letters (a-z)
 » symbols or special characters (%, &, *, $, etc.)
 » numbers (0-9)
» Passwords cannot contain all or part of your email address
» Passwords cannot be re-used

To match all requirements, combine smaller DFAs into one big DFA?

https://www.umb.edu/it/password (We do this with programs all the time)
Password Checker DFAs

M_5: AND

M_3: OR

M_1: Check special chars

M_2: Check uppercase

M_4: Check length

Want to be able to easily combine DFAs, i.e., **composability**

We want these operations:

OR: DFA × DFA → DFA

AND: DFA × DFA → DFA

To combine more than once, operations must be **closed**!
“Closed” Operations

- Set of Natural numbers = \{0, 1, 2, \ldots\}
 - Closed under addition:
 - if \(x \) and \(y \) are Natural numbers,
 - then \(z = x + y \) is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no

- Integers = \{\ldots, -2, -1, 0, 1, 2, \ldots\}
 - Closed under addition and multiplication
 - Closed under subtraction?
 - yes
 - Closed under division?
 - no

- Rational numbers = \{x \mid x = y/z, \text{y and } z \text{ are Integers}\}
 - Closed under division?
 - No?
 - Yes if \(z \neq 0 \)

A set is closed under an operation if: the result of applying the operation to members of the set is in the same set.
Why Care About Closed Ops on Reg Langs?

- Closed operations preserve “regularness”
- I.e., it preserves the same computation model!
- This way, a “combined” machine can be “combined” again!

We want:
\[\text{OR, AND : DFA } \times \text{ DFA } \rightarrow \text{ DFA} \]

- So this semester, we will look for operations that are closed!
Password Checker: “OR” = “Union”

\[M_3: \text{OR} \]
\[M_1: \text{Check special chars} \]
\[M_2: \text{Check uppercase} \]
Password Checker: “OR” = “Union”

M_3: OR

M_1: Check special chars

M_2: Check uppercase

(a)
Union of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.
If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \cup B = \{\text{good, bad, boy, girl}\}$$
A Closed Operation: Union

Theorem: The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- How do we prove that a language is regular?
 - Create a DFA recognizing it!

- So to **prove** this theorem...
 - create a DFA that recognizes $A_1 \cup A_2$

(A set is **closed** under an operation if the result of applying the operation to members of the set is in the same set)

A language is called a **regular language** if some finite automaton recognizes it.
Want: M

Recognizes $A_1 \cup A_2$

Rough sketch Idea: M is a combination of M_1 and M_2 that "runs" its input on both M_1 and M_2 in "parallel".

M needs to be "in" both an M_1 and M_2 state simultaneously.

And then accept if either accepts.

Theorem:
The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Union is Closed For Regular Languages

Proof

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2.

- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$.

- states of M: $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$.

This set is the Cartesian product of sets Q_1 and Q_2.

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,\(^1\)
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.
Union is Closed For Regular Languages

Proof

- Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
 \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

- Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- states of \(M \):
 \[Q = \{ (r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} = Q_1 \times Q_2 \]
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where \(a \) = \((\delta_1(r_1, a), \delta_2(r_2, a)) \)

- a step in \(M_1 \), a step in \(M_2 \)

1. \(Q \) is a finite set called the **states**.
2. \(\Sigma \) is a finite set called the **alphabet**.
3. \(\delta : Q \times \Sigma \rightarrow Q \) is the **transition function**.
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the **set of accept states**.
Union is Closed For Regular Languages

Proof

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1,
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$

- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 This set is the Cartesian product of sets Q_1 and Q_2

- M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
 a step in M_1, a step in M_2

- M start state: (q_1, q_2)
Union is Closed For Regular Languages

Proof

- **Given:**
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \], recognize \(A_1 \),
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \], recognize \(A_2 \),

- **Construct:**
 \[M = (Q, \Sigma, \delta, q_0, F) \], using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \),

- **states of** \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]

 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \).

- **\(M \) transition fn:**
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

 a step in \(M_1 \), a step in \(M_2 \)

- **\(M \) start state:**
 \((q_1, q_2) \)

 Accept if either \(M_1 \) or \(M_2 \) accept

- **\(M \) accept states:**
 \[F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\} \]

 (Q.E.D.)
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

\[M_3: \text{CONCAT} \]

- \(M_1: \) recognize numbers
- \(M_2: \) recognize words
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}. If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Is Concatenation Closed?

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M recognizing $A_1 \circ A_2$? (like union)
 - From DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$

PROBLEM: Can only read input once, can’t backtrack

Need to switch machines at some point, but when?
Overlapping Concatenation Example

• Let M_1 recognize language $A = \{ab, abc\}$
• and M_2 recognize language $B = \{cde\}$
• Want: Construct M to recognize $A\circ B = \{abcde, abccde\}$

• But if M sees ab as first part of input ...
• M must decide to either:
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$

- But if M sees ab as first part of input ...
- M must decide to either:
 - stay in M_1 (correct, if full input is $abcde$)
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$

- But if M sees ab as first part of input...
 - M must decide to either:
 - stay in M_1 (correct, if full input is $abccde$)
 - or switch to M_2 (correct, if full input is $abcde$)

- But to recognize $A \circ B$, it needs to handle both cases!!
Check-in Quiz 9/15

On gradescope