CS420
Combining Automata & Closed Operations
Tuesday, September 20, 2022
UMass Boston Computer Science
Announcements

• HW 1
 • Due Sun 9/25 11:59pm EST
 • Get started early!
 • Questions asked late on Sunday are less likely to be answered

• HW 0 grades returned
 • Use gradecope re-grade request for questions and/or complaints
Last Time: Tips on How to Create Finite Automata

Analogies for this class:
- Automata \sim Programs :: Designing Automata \sim Programming!

1. **Confirm understanding** of the problem
 - Create examples ... and expected results (accept / reject)

2. Decide **information to “remember”**
 - These are the machine states: some are accept states; one is start state

3. Determine **transitions** between states

4. **Test** machine behaves as expected
 - Use your examples; create additional ones if needed
Last Time: Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages).

The class of regular languages is closed under the union operation.

In other words, if \(A_1 \) and \(A_2 \) are regular languages, so is \(A_1 \cup A_2 \).

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set.)

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the operations we're interested in are set operations.
Last Time: Union of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.
If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \cup B = \{\text{good, bad, boy, girl}\}$$
Last Time: Is Union Closed For Regular Langs?

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- **How do we prove that a language is regular?**
 - Create a DFA recognizing it!

- **So to prove this theorem ... create** a DFA that recognizes $A_1 \cup A_2$
 - But! We **don’t know** what A_1 and A_2 are!
 - What **do** we know about A_1 and A_2??

A language is called a **regular language** if some finite automaton recognizes it.
A language is called a **regular language** if some finite automaton recognizes it.

Definition

A *finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the **states**,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the **start state**, and
5. \(F \subseteq Q\) is the **set of accept states**.

\[
M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \ \text{recognize} \ A_1, \\
M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \ \text{recognize} \ A_2,
\]
M_1 recognizes A_1

M_2 recognizes A_2

Want: M

Recognizes $A_1 \cup A_2$

Rough sketch Idea: M is a combination of M_1 and M_2 that checks whether its input is accepted by either M_1 and M_2.

But, a DFA can only read its input once!

Need to somehow simulate “being in” both an M_1 and M_2 state simultaneously.

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.
Union is Closed For Regular Languages

Proof

- **Given:**
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

- **Construct:** \(M = (Q, \Sigma, \delta, q_0, F), \) using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

- **states of** \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:

1. \(Q \) is a finite set called the **states**,
2. \(\Sigma \) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q \) is the **transition function**,\(^1\)
4. \(q_0 \in Q \) is the **start state**, and
5. \(F \subseteq Q \) is the set of accept states.

Want: \(M \) that can simultaneously be in both an \(M_1 \) and \(M_2 \) state

A state of \(M \) is a pair:
- the **first** part is a state of \(M_1 \) and
- the **second** part is a state of \(M_2 \)

So the states of \(M \) is all possible combinations of the states of \(M_1 \) and \(M_2 \)
Union is Closed For Regular Languages

Proof
• Given: \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \), recognize \(A_1 \),
\(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \), recognize \(A_2 \),

• Construct: \(M = (Q, \Sigma, \delta, q_0, F) \), using \(M_1 \) and \(M_2 \), that recognizes \(A_1 \cup A_2 \)

• states of \(M \):
\[
Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2
\]
This set is the Cartesian product of sets \(Q_1 \) and \(Q_2 \)

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:
1. \(Q \) is a finite set called the states,
2. \(\Sigma \) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \to Q \) is the transition function,
4. \(q_0 \in Q \) is the start state, and
5. \(F \subseteq Q \) is the set of accept states.

A step in \(M \) includes both:
- a step in \(M_1 \), and
- a step in \(M_2 \)
Union is Closed For Regular Languages

Proof
• Given:
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

• Construct:
 \[M = (Q, \Sigma, \delta, q_0, F), \text{ using } M_1 \text{ and } M_2, \text{ that recognizes } A_1 \cup A_2 \]

• states of \(M \):
 \[Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]

 This set is the \textit{Cartesian product} of sets \(Q_1 \) and \(Q_2 \)

• \(M \) transition fn:
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

• \(M \) start state:
 \[(q_1, q_2) \]

 Start state of \(M \) is both start states of \(M_1 \) and \(M_2 \)
Union is Closed For Regular Languages

Proof

• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

• Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2, that recognizes $A_1 \cup A_2$

• states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 This set is the Cartesian product of sets Q_1 and Q_2

• M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

• M start state: (q_1, q_2)

• M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Remember: Accept states must be subset of Q

Accept if either M_1 or M_2 accept

(Q.E.D.)

132
Another operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

M_3: CONCAT

M_1: recognize numbers

M_2: recognize words
Concatenation of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.

If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a **new** machine M recognizing $A_1 \circ A_2$? (like union)
 - Using DFA M_1 (which recognizes A_1),
 - and DFA M_2 (which recognizes A_2)
Let M_1 recognize A_1, and M_2 recognize A_2.

Want: Construction of M to recognize $A_1 \circ A_2$.

Problem: Can only read input once, can’t backtrack.

Need to switch machines at some point, but when?
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{j}en, \text{j}ens \}$
- and M_2 recognize language $B = \{ \text{s}mith \}$
- Want: Construct M to recognize $A \circ B = \{ \text{j}ens\text{s}mith, \text{j}ens\text{s}smith \}$

- If M sees jen ...
- M must decide to either:
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ \text{jen, jens} \}$
- and M_2 recognize language $B = \{ \text{smith} \}$
- Want: Construct M to recognize $A \circ B = \{ \text{jenssmith, jenssmith} \}$

- If M sees jen ...
- M must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
Overlapping Concatenation Example

- Let M_1 recognize language $A = \{jen, jens\}$
- and M_2 recognize language $B = \{\text{smith}\}$
- Want: Construct M to recognize $A \circ B = \{jens\text{smith}, jens\text{smith}\}$

- If M sees jen ...
- M must decide to either:
 - stay in M_1 (correct, if full input is $jens\text{smith}$)
 - or switch to M_2 (correct, if full input is $jens\text{smith}$)

- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking
Is Concatenation Closed? **FALSE?**

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot **combine** A_1 and A_2’s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don’t know when! (we can only read input once)

- This requires a **new kind of machine**!

- But does this mean concatenation is not **closed** for regular langs?
Nondeterminism
Deterministic vs Nondeterministic

Deterministic computation

- start

- states

- ...

- accept or reject

DFAs
Deterministic vs Nondeterministic

Deterministic computation

- start
- ... states
- accept or reject

DFAs

Nondeterministic computation

- reject
- accept

New FA

Nondeterministic computation can be in multiple states at the same time
Finite Automata: The Formal Definition

Definition

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Also called a Deterministic Finite Automata (DFA)
Precise Terminology is Important

• A **finite automata** or **finite state machine (FSM)** defines ...
 ... computation with a **finite** number of states

• There are **many kinds** of FSMs

• We’ve learned **one kind**, the **Deterministic Finite Automata (DFA)**
 • (So currently, the terms DFA and FSM refer to the same definition)

• We will learn **other kinds**, e.g., **Nondeterministic Finite Automata (NFA)**

• **Be careful with terminology!**
Nondeterministic Finite Automata (NFA)

Definition

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Compare with DFA:

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the *states*,
2. \(\Sigma\) is a finite set called the *alphabet*,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the *transition function*,
4. \(q_0 \in Q\) is the *start state*, and
5. \(F \subseteq Q\) is the *set of accept states*.

Difference

Power set, i.e. a transition results in *set of states*
Power Sets

• A power set is the set of all subsets of a set

• **Example**: $S = \{a, b, c\}$

• Power set of $S =$
 • $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 • **Note**: includes the empty set!
A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

\[\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\]

Transition label can be “empty”, i.e., machine can transition without reading input.
NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A *nondeterministic finite automaton* is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1. $Q = \{q_1, q_2, q_3, q_4\}$,
2. $\Sigma = \{0,1\}$,
3. δ is given as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1}$</td>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_3}$</td>
<td>\emptyset</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

4. q_1 is the start state, and
5. $F = \{q_4\}$.

\[\delta : Q \times \Sigma \varepsilon \rightarrow \mathcal{P}(Q)\]
In-class Exercise

• Come up with a formal description for the following NFA

 • $\Sigma = \{ a, b \}$

Definition

A **nondeterministic finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. $\delta: Q \times \Sigma_e \rightarrow P(Q)$ is the transition function,
4. $q_0 \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.
In-class Exercise Solution

Let \(N = (Q, \Sigma, \delta, q_0, F) \)

- \(Q = \{ q_1, q_2, q_3 \} \)
- \(\Sigma = \{ a, b \} \)
- \(\delta \) ...
- \(q_0 = q_1 \)
- \(F = \{ q_1 \} \)

\[
\begin{align*}
\delta(q_1, a) &= \{ \} \\
\delta(q_1, b) &= \{ q_2 \} \\
\delta(q_1, \varepsilon) &= \{ q_3 \} \\
\delta(q_2, a) &= \{ q_2, q_3 \} \\
\delta(q_2, b) &= \{ q_3 \} \\
\delta(q_2, \varepsilon) &= \{ \} \\
\delta(q_3, a) &= \{ q_1 \} \\
\delta(q_3, b) &= \{ \} \\
\delta(q_3, \varepsilon) &= \{ \}
\end{align*}
\]
Next Time: Running Programs, NFAs (JFLAP demo): 010110
Check-in Quiz 9/20

On gradescope