A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma \rightarrow P(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A **finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the **alphabet**,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
Announcements

• HW 1 in
 • Due Sun 10/25 11:59pm EST

• HW 2 out
 • Due Sun 10/2 11:59pm EST

• Ask HW questions publicly on Piazza
 • So the entire class can participate and benefit from the discussion
 • (Make it anonymous if you want to)

• Recipe: Designing a machine = programming
 • Make examples to understand problem
 • States = what the machine needs to remember
 • Check design with tests
Flashback: Kinds of Mathematical Proof

Deductive Proof

• Start with known facts and statements
• Use logical inference rules to reach new conclusions
An (Important) Inference Rule: Modus Ponens

Premises
• If P then Q
• P is true

Conclusion
• Q must also be true
Deductive Proof Example

Prove the following:

• If: If $x \geq 4$, then $2^x \geq x^2$

 Given

• And: x is the sum of the squares of four positive integers

• Then: $2^x \geq x^2$

 Need to show this
Deductive Proof Example

Prove: If \(x \geq 4 \), then \(2^x \geq x^2 \) and \(x \) is the sum of the squares of four positive integers, then \(2^x \geq x^2 \).

Proof:

Statement

1. \(x = a^2 + b^2 + c^2 + d^2 \)
2. \(a \geq 1; b \geq 1; c \geq 1; d \geq 1 \)
3. \(a^2 \geq 1; b^2 \geq 1; c^2 \geq 1; d^2 \geq 1 \)
4. \(x \geq 4 \)
5. If \(x \geq 4 \), then \(2^x \geq x^2 \)
6. \(2^x \geq x^2 \)

Justification

1. Given
2. Given
3. By Step (1) & arithmetic laws
4. (1), (3), and arithmetic
5. Given
6. (4) and (5)
Deductive Proof Example: Regular Lang

Prove: The following language \(A = \{ \ldots \} \) is a regular language

Proof:

Statement

1. If a DFA recognizes a language, then that language is regular
2. DFA \(M = (Q, \Sigma, \delta, q_{\text{start}}, F) \) where \(Q = \ldots, \) etc., recognizes language \(A \)
3. \(A \) is a regular language

Justification

1. Definition of a regular language
2. Definition of a DFA and DFA computation rule
3. By Steps (1) and (2)
Deductive Proof Example: Closed Op?

Prove: The operation $OP = \{ \ldots \}$ is closed for regular languages

Proof:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ???</td>
<td>1. ???</td>
</tr>
</tbody>
</table>

- ???

- OP is closed for regular languages

- ???
Last Time: Concatenation of Languages

Let the alphabet Σ be the standard 26 letters \{a, b, \ldots, z\}.

If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$$
Last Time: Is Concatenation Closed?

THEOREM
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A_1 and A_2’s machine because:
 - Don’t know when to switch? (can only read input once)
- Need a **different machine**!
- So concatenation **not closed** for regular langs?
DEFINITION

A **nondeterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

NFA transition may not read input, \(\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}\)

Transition results in a set of states
Last Time: NFA Extended Transition Function

Define **extended transition function**: \(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending set of states

(Defined recursively, on length of input string)

- **Base case:** \(\hat{\delta}(q, \epsilon) = \{q\} \)
- **Recursive case:** \(\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(q_i, w_{n}) \) where: \(\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\} \)
Last Time: Adding Empty Transitions

• Define the set ε-REACHABLE(q)

 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

• Base case: $q \in \varepsilon$-REACHABLE(q)

• Inductive case:

ε-REACHABLE(q) = \{ r \mid p \in \varepsilon$-REACHABLE($q$) and $r \in \delta(p, \varepsilon) \}$

A state is in the reachable set if ...

... there is an empty transition to it from another state in the reachable set
Last Time: NFA Extended Transition Function

Define **extended transition function:**

\[\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \]

Domain:
- Beginning state \(q \in Q \)
- Input string \(w = w_1 w_2 \cdots w_n \) where \(w_i \in \Sigma \)

Range:
- Ending set of states

(Defined recursively, on length of input string)

Base case: \(\hat{\delta}(q, \epsilon) = \{q\} \)

Recursive case: \(\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \hat{\delta}(q_i, w_n) \)

where: \(\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \ldots, q_k\} \)

"For all current states, take single step, then follow all empty transitions"
Last Time: Concatenation is Closed?

Theorem
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof: Construct a new machine an NFA!
Let N_1 recognize A_1, and N_2 recognize A_2.

Want: Construction of N to recognize $A_1 \circ A_2$.

ε = “empty transition” = reads no input
Allows N to be in both machines at once

N is an NFA! It simultaneously:
- Keeps checking 1st part with N_1 and
- Moves to N_2 to check 2nd part
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in Q_2.
\end{cases}$$
Flashback: A DFA’s Language

• For DFA $M = (Q, \Sigma, \delta, q_0, F)$

• M accepts w if $\hat{\delta}(q_0, w) \in F$

• M recognizes language A if $A = \{w | M$ accepts $w\}$

• A DFA’s language is a regular language
An NFA’s Language

• For NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

• \(N \) accepts \(w \) if \(\hat{\delta}(q_0, w) \cap F \neq \emptyset \)
 - i.e., final states have at least one accept state

• Language of \(N = L(N) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \} \)

Q: An NFA’s language is a regular language
Concatenation Closed for Reg Langs?

• Concatenation of DFAs produces an **NFA**

• **But** a language is only regular if a **DFA** recognizes it

• **So** to finish the proof that concatenation is closed ...
 ... we must prove that **NFAs also recognize regular languages**.

Specifically, we must prove:

NFAs ⇔ regular languages
How to Prove a Statement: $X \Leftrightarrow Y$

$X \Leftrightarrow Y = "X if and only if Y" = X \text{ iff } Y = X \iff Y$

Proof at minimum has 2 required parts:

1. \Rightarrow if X, then Y
 - “forward” direction
 - assume X, then use it to prove Y

2. \Leftarrow if Y, then X
 - “reverse” direction
 - assume Y, then use it to prove X
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 (Easier)
 • We know: if L is regular, then a DFA exists that recognizes it.
 • So to prove this part: Convert that DFA to an equivalent NFA! (see HW 2)

⇔ If an NFA N recognizes L, then L is regular.
 (Harder)
 • We know: for L to be regular, there must be a DFA recognizing it
 • Proof Idea for this part: Convert given NFA N to an equivalent DFA

“equivalent” = “recognizes the same language”
How to convert NFA→DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta : Q \times \Sigma_{\varepsilon} \rightarrow 2^Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea:
Let each “state” of the DFA be a set of states in the NFA.
In a DFA, all these states at each step of NFA computation must be only one state.

So encode: a set of NFA states as one DFA state.

This is similar to the proof strategy from “Closure of union” where: a state = a pair of states
Convert **NFA→DFA**, Formally

- Let **NFA** \(N = (Q, \Sigma, \delta, q_0, F) \)

- An equivalent **DFA** \(M \) has states \(Q' = \mathcal{P}(Q) \) (power set of \(Q \))
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA→DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F)$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$
 A state for M is a set of states in N

2. For $R \in Q'$ and $a \in \Sigma$,
 $$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$
 R is a state in M = a set of states in N

 Next state for DFA state R = next states of each NFA state r in R

3. $q_0' = \{q_0\}$

4. $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$

No empty transitions
Flashback: Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Inductive case:**

$$\varepsilon$-REACHABLE$(q) = \{ r \mid p \in \varepsilon$-REACHABLE$(q)$ and $r \in \delta(p, \varepsilon) \}$$

A state is in the reachable set if ...

... there is an empty transition to it from another state in the reachable set
NFA→DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F)$

Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$

2. For $R \in Q'$ and $a \in \Sigma$,
 \[\delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \text{ ε-REACHABLE}(\delta(r, a)) \]

3. $q_0' = \{q_0\} \text{ ε-REACHABLE}(q_0)$

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

With empty transitions
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:
⇒ If L is regular, then some NFA N recognizes it.
 • We know: If L is regular, then a DFA recognizes it.
 • We show: How to convert a DFA to an equivalent NFA (proved in hw2)

⇐ If an NFA N recognizes L, then L is regular.
 • We know: For L to be regular, there must be a DFA recognizing it
 • We show: How to convert NFA N to an equivalent DFA ...
 • ... using the NFA→DFA algorithm we just defined!
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_1 \circ A_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$, $\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in Q_2.
\end{cases}$
Flashback: Union is Closed For Regular Langs

Theorem

The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a DFA or NFA?
Flashback: Union is Closed For Regular Langs

Proof

- **Given:**
 \[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), \text{ recognize } A_1, \]
 \[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2), \text{ recognize } A_2, \]

- **Construct:** a new machine \(M = (Q, \Sigma, \delta, q_0, F) \) using \(M_1 \) and \(M_2 \)

- **states of** \(M \):
 \[Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2 \]
 This set is the **Cartesian product** of sets \(Q_1 \) and \(Q_2 \)

- **\(M \) transition fn:**
 \[\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \]

- **\(M \) start state:**
 \((q_1, q_2)\)

- **\(M \) accept states:**
 \[F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\} \]
Union is Closed for Regular Languages

Add new start state, and ϵ-transitions to old start states
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and
$N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.

Alternate Proof, with NFAs
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

2. The state q_0 is the start state of N.

3. The set of accept states $F = F_1 \cup F_2$.

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_\varepsilon$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_1 \cap q_2\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
$$
List of Closed Ops for Reg Langs (so far)

☑️ • Union

☑️ • Concatenation

• Kleene Star (repetition)
Kleene Star Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{good}, \text{bad}\}$ and $B = \{\text{boy}, \text{girl}\}$, then

$$A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, \text{goodbadgood}, \text{goodbadbad}, \ldots \}$$

Note: repeat zero or more times

(this is an infinite language!)
Kleene Star

New start (and accept) state, ε-transitions to old start state

Old accept states ε-transition to old start state
Kleene Star is Closed for Regular Langs

Theorem

The class of regular languages is closed under the star operation.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$

Kleene star of a language must accept the empty string!
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, \varepsilon) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\
\{q_1\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon.
\end{cases}
$$
Many More Closed Operations on Regular Languages!

- Complement
- Intersection
- Difference
- Reversal
- Homomorphism
- (See HW2)
Why do we care about these ops?

• Union
• Concat
• Kleene star

• The are sufficient to represent all regular languages!
• I.e., they define regular expressions
Check-in Quiz 9/27

On gradescope