UMB CS 420 Regular Expressions

Thursday, September 29, 2022

Announcements

- HW 2
 - due Sunday 10/2 11:59pm EST

Last Time: A DFA's Language

• Let DFA $M=(Q,\Sigma,\delta,q_0,F)$

• *M* accepts w if $\hat{\delta}(q_0,w) \in F$

• M recognizes language $\{w|\ M$ accepts $w\}$

Definition: A DFA's language is a regular language

Last Time: An NFA's Language

• Let NFA $N=(Q,\Sigma,\delta,q_0,F)$

- N accepts w if $\hat{\delta}(q_0, w) \cap F \neq \emptyset$
 - i.e., computation ends in at least one accept state
- N recognizes language $\left\{ w \mid \hat{\delta}(q_0,w) \cap F \neq \emptyset \right\}$

An NFA's language is a <u>regular?</u> language?

Last Time: Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...

... produces an <u>NFA</u>

So to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:

NFAs ⇔ regular languages

How to Prove a Statement: $X \Leftrightarrow Y$

```
X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y
```

Proof <u>at minimum</u> has 2 required parts:

- 1. \Rightarrow if X, then Y
 - "forward" direction
 - assume X, then use it to prove Y
- 2. \Leftarrow if Y, then X
 - "reverse" direction
 - assume *Y*, then use it to prove *X*

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2)
- \Leftarrow If an NFA N recognizes L, then L is regular. (Harder)

"equivalent" =
"recognizes the same language"

- We know: for L to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA N → an equivalent DFA

How to convert NFA→DFA?

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proof idea:

Let each "state" of the DFA = set of states in the NFA

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

NFA computation can be in <u>multiple</u> states

DFA computation can only be in <u>one</u> state

So encode: a <u>set of NFA states</u> as <u>one DFA state</u>

This is similar to the proof strategy from "Closure of union" where: a state = a pair of states

Convert **NFA→DFA**, Formally

• Let NFA N = $(Q, \Sigma, \delta, q_0, F)$

• An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)

Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4

NFA→DFA

- Have: NFA $N=(Q,\Sigma,\delta,q_0,F)$
- <u>Want</u>: DFA $M=(Q',\Sigma,\delta',q_0',F')$
- 1. $Q' = \mathcal{P}(Q)$ A DFA state = a set of NFA states
- **2.** For $R \in Q'$ and $a \in \Sigma$, R = a DFA state = a set of NFA states

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a) \quad \text{A DFA step = an NFA step for all states in the set}$$

- 3. $q_0' = \{q_0\}$
- **4.** $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

Flashback: Adding Empty Transitions

- Define the set arepsilon-REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- Base case: $q \in \varepsilon$ -reachable(q)
- Inductive case:

A state is in the reachable set if ...

$$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \underline{r} \in \delta(p, \varepsilon) \}$$

... there is an empty transition to it from another state in the reachable set

NFA→DFA

- <u>Have</u>: NFA $N=(Q,\Sigma,\delta,q_0,F)$
- Want: DFA $M=(Q',\Sigma,\delta',q_0',F')$
- 1. $Q' = \mathcal{P}(Q)$

Almost the same, except ...

2. For $R \in Q'$ and $a \in \Sigma$,

$$\delta'(R, a) = \bigcup_{r \in R} \frac{\delta(r, a)}{\varepsilon - \text{REACHABLE}(\delta(r, a))}$$

- 3. $q_0' = \{q_0\}$ ε -REACHABLE (q_0)
- **4.** $F' = \{R \in Q' | R \text{ contains an accept state of } N\}_{50}$

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2)
- \Leftarrow If an NFA N recognizes L, then L is regular. (Harder)
 - We know: for L to be regular, there must be a DFA recognizing it
 - Proof Idea for this part: Convert given NFA N → an equivalent DFA ...
 using our NFA to DFA algorithm!

Concatenation is Closed for Regular Langs

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

- **1.** $Q = Q_1 \cup Q_2$
- **2.** The state q_1 is the same as the start state of N_1
- **3.** The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2. \end{cases}$$

If language is regular, then it has an NFA recognizing it ...

If a language has an NFA recognizing it, then it is a regular language

N

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Flashback: Union is Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a <u>DFA or NFA</u> recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a DFA or NFA?

Flashback: Union is Closed For Regular Langs

Proof

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

State in $M = M_1$ state + M_2 state

• *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

M step = a step in M_1 + a step in M_2

• M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Union is Closed for Regular Languages

Union is Closed for Regular Languages

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.

Union is Closed for Regular Languages

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \\ \delta_2(?, a) & q \in Q_2 \\ \{q_1?q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & ? & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

List of Closed Ops for Reg Langs (so far)

✓ • Union

• Concatentation

Kleene Star (repetition)

Kleene Star Example

```
Let the alphabet \Sigma be the standard 26 letters \{a, b, \ldots, z\}.
```

```
If A = \{ good, bad \} and B = \{ boy, girl \}, then
```

$$A^* = \begin{cases} \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \dots \end{cases}$$

Note: repeat zero or more times

(this is an infinite language!)

In-class exercise:

Kleene Star is Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.

Kleene Star is Closed for Regular Langs

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

Kleene Star is Closed for Regular Langs

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$

2. The state q_0 is the new start state.

3.
$$F = \{q_0\} \cup F_1$$

Kleene star of a language must accept the empty string!

Kleene Star is Closed for Regular Langs

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$

- **2.** The state q_0 is the new start state.
- **3.** $F = \{q_0\} \cup F_1$
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a), & q \in F_1 \text{ and } a = \varepsilon \end{cases}$$

$$\{q_1\}, & q \in Q_1 \text{ and } a \neq \varepsilon \}$$

$$\{q_2\}, & q \in Q_2 \text{ and } a \neq \varepsilon \}$$

$$\{q_3\}, & q \in Q_2 \text{ and } a \neq \varepsilon \}$$

$$\{q_3\}, & q \in Q_2 \text{ and } a \neq \varepsilon \}$$

Many More Closed Operations on Regular Languages!

- Complement
- Intersection
- Difference
- Reversal
- Homomorphism
- (See HW2)

Why do we care about these ops?

- Union
- Concat
- Kleene star

- The are sufficient to represent <u>all regular languages!</u>
- I.e., they define **regular expressions**

So Far: Regular Language Representations

A <u>practical application</u>: **text search**

Formal description

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

Analogy:

- <u>All</u> **regular languages** ~ a "programming language"
- One regular language ~
- a "program" (e.g., find strings containing **001**)

$$\begin{array}{c|cccc} q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2, \end{array}$$

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

3. $\Sigma^* 001 \Sigma^*$

Need a more concise (textual) notation

Regular Expressions: A Widely Used Programming Language (inside other programming languages)

- Unix
- Perl
- Python
- Java

Why do we care about these ops?

- Union
- Concat
- Kleene star

- The are sufficient to represent <u>all regular languages!</u>
- I.e., they define **regular expressions**

Regular Expressions: Formal Definition

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- $3. \emptyset,$
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

This is a <u>recursive</u> definition

Recursive Definitions

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}
```

This is a <u>recursive definition</u>:

Node used before it's defined

(but must be "smaller")

Regular Expressions: Formal Definition

Regular Expression: Concrete Example

- Operator <u>Precedence</u>:
 - Parentheses
 - Kleene Star
 - Concat (sometimes •, sometimes implicit)
 - Union

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expressions = Regular Langs?

R is a **regular expression** if R is

1. a for some a in the alphabet Σ ,

3 Base Cases

- $2. \ \varepsilon,$
- **3.** ∅,

3 Recursive Cases

- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Base cases + union, concat, and Kleene star can express <u>any regular language!</u>

(But we have to prove it)

Thm: A Lang is Regular iff Some Reg Expr Describes It

 \Rightarrow If a language is regular, it is described by a reg expression

← If a language is described by a reg expression, it is regular

(Easier)

To prove this part: convert reg expr → equivalent NFA!

How to show that a language is regular?

• (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegExpr→NFA

R is a *regular expression* if R is

1. a for some a in the alphabet Σ ,

5. $(R_1 \circ R_2)$, where R_1 and R_2 and

6. (R_1^*) , where R_1 is a regular exp

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a reg expression (Harder)
 - To prove this part: Convert an DFA or NFA → equivalent Regular Expression
 - To do so, we first need another kind of finite automata: a GNFA
- ← If a language is described by a reg expression, it is regular (Easier)

Generalized NFAs (GNFAs)

• GNFA = NFA with regular expression transitions

GNFA→RegExpr function

On GNFA input G:

• If G has 2 states, return the regular expression transition, e.g.:

Could there be less than 2 states?

GNFA→RegExpr Preprocessing

• First, modify input machine to have:

Does this change the language of the machine?

- New start state:
 - No incoming transitions
 - ε transition to old start state

- New, single accept state:
 - With ϵ transitions from old accept states

GNFA→RegExpr function (recursive)

On GNFA input G:

Base Case

• If G has 2 states, return the regular expression transition, e.g.:

- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

before

To <u>convert</u> a GNFA to a regular expression: "rip out" state, then "repair", and repeat until only 2 states remain

before

before

One is self loop

GNFA→RegExpr: Rip/Repair "Correctness"

before

 q_j

GNFA→RegExpr "Correctness"

• "Correct" / "Equivalent" means:

LangOf (
$$G$$
) = LangOf ($GNFA \rightarrow RegExpr(G)$)

- i.e., GNFA→RegExpr must not change the language!
 - Key step: the rip/repair step

GNFA→RegExpr: Rip/Repair "Correctness"

before

Must prove:

 q_i

- Every string accepted before, is accepted after
- 2 cases:
 - Accepted string does not go through $q_{\rm rin}$

 $(R_1) (R_2)^* (R_3) \cup (R_4)$

after

- Acceptance unchanged (both use R_4 transition part)
- 2. String goes through q_{rin}
 - Acceptance unchanged?
 - Yes, via our previous reasoning

 q_j

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, it is described by a regular expr Need to convert DFA or NFA to Regular Expression ...
- Use GNFA→RegExpr to convert GNFA → equiv regular expression!
- ← If a language is described by a regular expr, it is regular
- ✓ Convert regular expression → equiv NFA!

Now we may use regular expressions to represent regular langs. So a regular

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

So we also have another way to prove things about regular languages!

How to Prove A Language Is Regular?

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Kinds of Mathematical Proof

- Proof by construction
- Proof by induction
 - Use this when working with <u>recursive</u> definitions

In-Class quiz 9/29

See gradescope