Regular Expressions

Thursday, September 29, 2022
Announcements

• HW 2
 • due Sunday 10/2 11:59pm EST
Last Time: A DFA’s Language

- Let DFA $M = (Q, \Sigma, \delta, q_0, F)$

- M accepts w if $\hat{\delta}(q_0, w) \in F$

- M recognizes language $\{w \mid M \text{ accepts } w\}$

Definition: A DFA’s language is a regular language
Last Time: An NFA’s Language

• Let \(N = (Q, \Sigma, \delta, q_0, F) \)

• \(N \) accepts \(w \) if \(\hat{\delta}(q_0, w) \cap F \neq \emptyset \)
 • i.e., computation ends in at least one accept state

• \(N \) recognizes language \(\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \} \)

An NFA’s language is a _____ language?
Last Time: Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...
 ... produces an NFA

• So to prove concatenation is closed ...
 ... we must prove that NFAs also recognize regular languages.

Specifically, we must prove: NFAs \Leftrightarrow regular languages
How to Prove a Statement: $X \Leftrightarrow Y$

$X \Leftrightarrow Y = \text{“}X \text{ if and only if } Y\text{”} = X \text{ iff } Y = X \iff Y$

Proof at minimum has 2 required parts:

1. \Rightarrow if X, then Y
 - “forward” direction
 - assume X, then use it to prove Y

2. \Leftarrow if Y, then X
 - “reverse” direction
 - assume Y, then use it to prove X
Proving NFAs Recognize Regular Langs

Theorem:
A language \(L \) is regular if and only if some NFA \(N \) recognizes \(L \).

Proof:
\[\Rightarrow \text{If } L \text{ is regular, then some NFA } N \text{ recognizes it.} \]
(\text{Easier})
\begin{itemize}
 \item We know: if \(L \) is regular, then a DFA exists that recognizes it.
 \item So to prove this part: Convert that DFA \(\rightarrow \) an equivalent NFA! (see HW 2)
\end{itemize}
\[\Leftarrow \text{If an NFA } N \text{ recognizes } L, \text{ then } L \text{ is regular.} \]
(\text{Harder})
\begin{itemize}
 \item We know: for \(L \) to be regular, there must be a DFA recognizing it
 \item Proof Idea for this part: Convert given NFA \(N \) \(\rightarrow \) an equivalent DFA
\end{itemize}
How to convert NFA \(\rightarrow\) DFA?

A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta: Q \times \Sigma \rightarrow Q\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set of states,
2. \(\Sigma\) is a finite alphabet,
3. \(\delta: Q \times \Sigma_e \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.

Proof idea:
Let each “state” of the DFA = set of states in the NFA.
NFA computation can be in **multiple** states

DFA computation can only be in **one** state

So encode: a **set of NFA states** as one DFA state

This is similar to the proof strategy from **“Closure of union”** where: a state = a pair of states
Convert NFA\rightarrowDFA, Formally

• Let $NFA \; N = (Q, \Sigma, \delta, q_0, F)$

• An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)
Example:

The NFA N_4

A DFA D that is equivalent to the NFA N_4
NFA⇒DFA

Have: NFA $N = (Q, \Sigma, \delta, q_0, F)$
Want: DFA $M = (Q', \Sigma, \delta', q_0', F')$

1. $Q' = \mathcal{P}(Q)$ \hspace{1cm} A DFA state = a set of NFA states

2. For $R \in Q'$ and $a \in \Sigma$,
 $$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$ \hspace{1cm} A DFA step = an NFA step for all states in the set

3. $q_0' = \{q_0\}$

4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

No empty transitions
Flashback: Adding Empty Transitions

• Define the set ε-REACHABLE(q)
 • ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

• **Base case:** $q \in \varepsilon$-REACHABLE(q)

• **Inductive case:**

$$\varepsilon$-REACHABLE($q$) = \{ r \mid p \in \varepsilon$-REACHABLE($q$) and $r \in \delta(p, \varepsilon) \}$$

A state is in the reachable set if...

... there is an empty transition to it from another state in the reachable set.
NFA→DFA

Have: NFA \(N = (Q, \Sigma, \delta, q_0, F) \)

Want: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

1. \(Q' = \mathcal{P}(Q) \)

2. For \(R \in Q' \) and \(a \in \Sigma \),
 \[
 \delta'(R, a) = \bigcup_{r \in R} \delta(r, a) \quad \text{ε-REACHABLE}(\delta(r, a))

 \]

3. \(q_0' = \{q_0\} \quad \text{ε-REACHABLE}(q_0) \)

4. \(F' = \{R \in Q' | R \text{ contains an accept state of } N\} \)

With empty transitions

Almost the same, except ...
Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

⇒ If L is regular, then some NFA N recognizes it.

 (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 2)

⇐ If an NFA N recognizes L, then L is regular.

 (Harder)
 - We know: for L to be regular, there must be a DFA recognizing it
 - Proof Idea for this part: Convert given NFA N → an equivalent DFA ...
 … using our NFA to DFA algorithm!
Concatenation is Closed for Regular Langs

Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

1. $Q = Q_1 \cup Q_2$
2. The state q_1 is the same as the start state of N_1
3. The accept states F_2 are the same as the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_\varepsilon$,

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a) & q \in Q_2.
\end{cases}
$$

If a language has an NFA recognizing it, then it is a regular language.

If language is regular, then it has an NFA recognizing it ...
Flashback: Union is Closed For Regular Langs

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a DFA or NFA?
Flashback: Union is Closed For Regular Langs

Proof
• Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2,

• Construct: a new machine $M = (Q, \Sigma, \delta, q_0, F)$ using M_1 and M_2

• states of M: $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$
 This set is the Cartesian product of sets Q_1 and Q_2

• M transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

• M start state: (q_1, q_2)

• M accept states: $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$

State in $M = M_1$ state + M_2 state

M step = a step in M_1 + a step in M_2

Accept if either M_1 or M_2 accept
Union is Closed for Regular Languages

Add new start state, and ϵ-transitions to old start states
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.

 Alternate Proof, with NFAs
Union is Closed for Regular Languages

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1, and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
2. The state q_0 is the start state of N.
3. The set of accept states $F = F_1 \cup F_2$.
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma$,

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \\
\delta_2(q, a) & q \in Q_2 \\
\{q_1, q_2\} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases}
\]
List of Closed Ops for Reg Langs (so far)

- Union

- Concatentation
 - Kleene Star (repetition)
Kleene Star Example

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then

$$A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad,}
\text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbadbad, \ldots}\}$$

Note: repeat zero or more times

(this is an infinite language!)
Kleene Star

New start (and accept) state, ε-transitions to old start state

Old accept states ε-transition to old start state
In-class exercise:

Kleene Star is Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$

Kleene star of a language must accept the empty string!
Kleene Star is Closed for Regular Langs

Proof Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^\ast.

1. $Q = \{q_0\} \cup Q_1$
2. The state q_0 is the new start state.
3. $F = \{q_0\} \cup F_1$
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$,

$$\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\
\{q_1\} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon.
\end{cases}$$
Many More Closed Operations on Regular Languages!

• Complement
• Intersection
• Difference
• Reversal
• Homomorphism
• (See HW2)
Why do we care about these ops?

- Union
- Concat
- Kleene star

- The are sufficient to represent all regular languages!
- I.e., they define regular expressions
So Far: Regular Language Representations

1. State diagram (NFA/DFA)

2. Formal description
 1. \(Q = \{ q_1, q_2, q_3 \} \),
 2. \(\Sigma = \{0,1\} \),
 3. \(\delta \) is described as

3. \[\Sigma^* 001 \Sigma^* \]

4. \(q_1 \) is the start state, and
5. \(F = \{ q_2 \} \).

Analogy:
- All regular languages ~ a “programming language”
- One regular language ~ a “program” (e.g., find strings containing 001)

A practical application: text search

Need a more concise (textual) notation
Regular Expressions: A Widely Used Programming Language (inside other programming languages)

- Unix
- Perl
- Python
- Java
Why do we care about these ops?

- Union
- Concat
- Kleene star

- The are sufficient to represent all regular languages!
- I.e., they define regular expressions
Regular Expressions: Formal Definition

A regular expression \(R \) is a regular expression if \(R \) is

1. \(a \) for some \(a \) in the alphabet \(\Sigma \),
2. \(\varepsilon \),
3. \(\emptyset \),
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \((R_1 \circ R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \((R_1^*) \), where \(R_1 \) is a regular expression.

This is a recursive definition.
Recursive Definitions

Recursive definitions have:
- base case and
- recursive case (with a “smaller” object)

```c
/* Linked list Node*/

class Node {
  int data;
  Node next;
}
```

This is a recursive definition: Node used before it’s defined (but must be “smaller”)
Regular Expressions: Formal Definition

A regular expression \(R \) is a regular expression if \(R \) is:

1. \(a \) for some \(a \) in the alphabet \(\Sigma \), (A lang containing a) length-1 string
2. \(\varepsilon \), (A lang containing) the empty string
3. \(\emptyset \), The empty set (i.e., a lang containing no strings)
4. \(R_1 \cup R_2 \), where \(R_1 \) and \(R_2 \) are regular expressions,
5. \(R_1 \circ R_2 \), where \(R_1 \) and \(R_2 \) are regular expressions, or
6. \(R_1^* \), where \(R_1 \) is a regular expression.

3 Base Cases

union

concat

star

3 Recursive Cases
Regular Expression: Concrete Example

- **Operator Precedence:**
 - Parentheses
 - Kleene Star
 - **Concat** (sometimes \(\circ\), sometimes implicit)
 - Union

Entire regular expr: language whose strings come from these languages concat'ed (implicit) together

- the language \{"0","1"\}
- \((0 \cup 1)0^*\)
- the language \{"","0","00",...\}
- the language \{"0"\}
- the language \{"1"\}

R is a regular expression if *R* is:
1. \(a\) for some \(a\) in the alphabet \(\Sigma\),
2. \(\varepsilon\),
3. \(\emptyset\),
4. \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are regular expressions,
5. \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are regular expressions, or
6. \((R_1^*)\), where \(R_1\) is a regular expression.
Regular Expressions = Regular Langs?

A regular expression is a pattern used to check if a string is present in some text. Here are the rules:

1. a for some a in the alphabet Σ,
2. ε,
3. ∅,
4. (R₁ ∪ R₂), where R₁ and R₂ are regular expressions,
5. (R₁ ⊕ R₂), where R₁ and R₂ are regular expressions, or
6. (R₁*), where R₁ is a regular expression.

Base cases + union, concat, and Kleene star can express any regular language!

(But we have to prove it)
Thm: A Lang is Regular \iff Some Reg Expr Describes It

\Rightarrow If a language is regular, it is described by a reg expression

\Leftarrow If a language is described by a reg expression, it is regular

(Easier)

- To prove this part: convert reg expr \rightarrow equivalent NFA!
- (Hint: we mostly did this already when discussing closed ops)

How to show that a language is regular?

Construct a DFA or NFA!
R is a regular expression if R is
1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
6. (R_1^*), where R_1 is a regular expression.

N is a non-deterministic finite automaton (NFA) for the regular expression R.
Thm: A Lang is Regular **iff** Some Reg Expr Describes It

⇒ If a language is regular, it is described by a reg expression
 (Harder)
 • To prove this part: Convert an DFA or NFA → equivalent Regular Expression
 • To do so, we first need another kind of finite automata: a **GNFA**

⇐ If a language is described by a reg expression, it is regular
 (Easier)
 • Convert the regular expression → an equivalent NFA!
Generalized NFAs (GNFAs)

A regular NFA is a GNFA with only single character regular expr transitions

Goal: convert GNFAs to Regular Exprs

• GNFA = NFA with regular expression transitions
GNFA→RegExp function

On GNFA input G:
- If G has 2 states, return the regular expression transition, e.g.:

$$q_i \xrightarrow{(R_1) (R_2)^* (R_3) \cup (R_4)} q_j$$

Could there be less than 2 states?

Equivalent regular expression

 GNFA
GNFA→RegExp Preprocessing

• First, modify input machine to have:
 • New start state:
 • No incoming transitions
 • ϵ transition to old start state
 • New, single accept state:
 • With ϵ transitions from old accept states
GNFA→RegExp function (recursive)

On GNFA input G:

- **Base Case**: If G has 2 states, return the regular expression transition, e.g.:

\[
q_i \rightarrow (R_1) (R_2)^* (R_3) \cup (R_4) \rightarrow q_j
\]

- **Recursive Case**: Else:
 - “Rip out” one state
 - “Repair” the machine to get an **equivalent** GNFA G'
 - **Recursively** call GNFA→RegExp(G')

Recursive definitions have:
- **base case** and
- **recursive case** (with a “smaller” object)
GNFA→RegExpr: “Rip/Repair” step

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
and repeat until only 2 states remain
GNFA→RegExp: “Rip/Repair” step

Before: two paths from q_i to q_j:
1. Not through q_{rip}
2. Through q_{rip}

After:

$$q_i \xrightarrow{(R_1)(R_2)^* (R_3) \cup (R_4)} q_j$$
GNFA→RegExp: “Rip/Repair” step

After: still two “paths” from q_i to q_j
1. Not through q_{rip}
2. Through q_{rip}

$$(R_1)(R_2)^* (R_3) \cup (R_4)$$
GNFA\rightarrowRegExpr: “Rip/Repair” step

Before:
- path through q_{rip} has 3 transitions
- One is self loop
GNFA \rightarrow RegExpr: "Rip/Repair" step

Before:
- path through q_{rip} has 3 transitions
- One is self loop

After:
- Self loop becomes star operation
- Others are concat’ed together

\[(R_1)(R_2)^* (R_3) \cup (R_4) \]
GNFA→\texttt{RegExpr}: Rip/Repair “Correctness”

before

Must show these are equivalent

after
GNFA→RegExpr “Correctness”

• “Correct” / “Equivalent” means:

\[\text{LANGOF}(G) = \text{LANGOF}(\text{GNFA→RegExpr}(G)) \]

• i.e., GNFA→RegExpr must not change the language!
 • Key step: the rip/repair step
GNFA→RegExp: Rip/Repair “Correctness”

Must show these are equivalent

before

\[\begin{aligned} R_1 & \quad q_{\text{rip}} \\ \cdots & \quad q_i \quad R_4 \\ \cdots & \quad q_j \quad (R_1) (R_2)^* (R_3) \cup (R_4) \quad q_j \end{aligned} \]

after

Must prove:
- Every string accepted before, is accepted after
- 2 cases:
 1. Accepted string does not go through \(q_{\text{rip}} \)
 - Acceptance unchanged (both use \(R_4 \) transition part)
 2. String goes through \(q_{\text{rip}} \)
 - Acceptance unchanged?
 - Yes, via our previous reasoning
Thm: A Lang is Regular **iff** Some Reg Expr Describes It

⇒ If a language is regular, it is described by a regular expr
 Need to convert DFA or NFA to Regular Expression ...
 • Use GNFA→RegExpr to convert GNFA → equiv regular expression!

⇐ If a language is described by a regular expr, it is regular
 • Convert regular expression → equiv NFA!

Now we may use regular expressions to represent regular langs.

So we also have another way to prove things about regular languages!

So a regular language has these equivalent representations:
- DFA
- NFA
- Regular Expression
How to Prove A Language Is Regular?

• Construct DFA

• Construct NFA

• Create Regular Expression

Slightly different because of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet Σ,
2. ε,
3. \emptyset,
4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
6. (R_1^*), where R_1 is a regular expression.
Kinds of Mathematical Proof

• Proof by construction

• Proof by induction
 • Use this when working with recursive definitions
In-Class quiz 9/29

See gradescope