UMB CS 420

Regular Expressions
Thursday, September 29, 2022

Expressions
Small Re gul r

Expression Expression Express on

o o U

$4.23 A2V $6.23

%/{/{0«/{0@#{@/{&?

e HW 2
« due Sunday 10/2 11:59pm EST

last Time: A DFA'S Language

« Let DFA M = (Q, %, 0, qo,)
» Macceptswif §(qy,w) € F

« M recognizes language {w| M accepts w}

Definition: A DFA’s language is a regular language

last Time: AN NFA'S Language

- Let NFA N = (Q, %, 6, qo, F)

» Naccepts wif d(qp, w)NE # ()
* |.e, computation ends in at least one accept state

« N recognizes language {w | S(qo,w) NEF # (Z)}

An NFA’s language is a regular? language?

last Tie: CONcCatenation Closed for Reg Langs?

« Combining DFAs to recognize concatenation of languages ...

... produces an NFA

« SO to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs < regular languages

How to Prove a Statement; X< Y

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Proof at minimum has 2 required parts:

1. =>i1fX,thenY
e “forward” direction
« assume X, then use it to prove Y

2. <iIfY thenX
* “reverse” direction
« assume Y, then use it to prove X

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L Is regular, then some NFA N recognizes It
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA — an equivalent NFA!(see HW 2)

& If an NFA N recognizes L, then L is regular. “equivalent” =
(Harder) “recognizes the same language”

. We know: for L to be regular, there must be a DFA recognizing it
« Proof Idea for this part: Convert given NFA N - an equivalent DFA

How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, :]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

. 1. @ is a finite set of states,
Proof 1dea: > T is a finite alphabet
Let each “state” of the DFA T TS TR i o .
= set of states in the NFA 3.0: Q x ¥.—>P(Q) is the transition function,
4. gy € () 1s the start state, and
5. F C @ is the set of accept states.

Symbol read @ Start

SR ——
@ NFA computation can
{ e | be in multiple states
\ DFA computation can
O - only be In one state
@ @ So encode:
1 oo a set of NFA states
@ @ @ @ as one DFA state
T
This is similar to the proof
o @ @ @ @ @ strategy from

“Closure of union” where:

@ @ a state = a pair of states

Convert NFA-DFA, Formally
+LetNFAN = (Q, 22, 3, qo, F')

« An equivalent DFA M has states Q' = P(Q) (power set of Q)

The NFA N4

A DFA D that is equivalent to the NFA N,

No empty transitions

Have: NFA N = (Q, X, 0, qo, F)
Want: DFA M = (Q', X, ¢, qo’, F')
1. Q, — P(Q) A DFA state = a set of NFA states

2 F()I' R 6 Q’ and a E Z R = a DFA state = a set of NFA states
’ 9

5, (R7 a) — U (5(7“7 a) A DFA step = an NFA step for all states in the set

reR

3. 90" = {qo}
4. I = {R € Q'| R contains an accept state of N}

thshback: ADdINg EMpty Transitions

- Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

* Inductive case:

A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

With empty transitions

NFA-DFA

Have: NFA N = (Q, 2,9, qo, F)
Want: DFA M = (Q’, 3,9, qo’, F')

1. Q" =P(Q)
2. For Re Q' and a € X,

5 (R, a) U ${#—+— e-REACHABLE(J(r, a))

reR

3. qo' =490+ e-REACHABLE(qo)
4. I = {R € ()| R contains an accept state of NV}

Almost the same, except ...

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

= If L Is regular, then some NFA N recognizes It.
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA — an equivalent NFA! (see HW 2)

& If an NFA N recognizes L, then L is regular.
(Harder)
. We know: for L to be regular, there must be a DFA recognizing it
B) - Proof Idea for this part: Convert given NFA N — an equivalent DFA ...
... using our NFA to DFA algorithm!

Concatenation is Closed for Regular Langs

PROOF
. If language is regular,
Let Ny = (Q1,, 01, q1, F1) recognize Ay, and then it has an NFA recognizing it ...
N2 = (@2, %, 02, g2, F2) recognize Ay: If a language has an NFA recognizing it,

Construct N = (Q, X, 4, q1, F2) to recognize Ay o As~~ thenitis aregular language
1. @ =Q1UQ> , ©

. —() © —() o o ©
2. The state ¢ is the same as the start state of [V; °° B oo ©O

3. The accept states F; are the same as the accept states of N

4. Define § so that for any ¢ € @ and any a € X, N

~ ~
f?(q,fl) qegl 3HCC11Q€F1 {O] .:_:][oo ©j
5(q, @) = 4 1(q, a ge Fyanda # € 5 o = °° 0
N Y,

(9, a)
01(q,a)U{q} qe Fianda=¢
(9, 0)

\52 q,a CIEQz- ﬂ %-

Union: AUB ={z|z € Aorz € B}

thstback: UNioN 1S Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, it A; and As are regular languages, so is A; U As.

Proof:

« How do we prove that a language is regular?
« Create a DFA or NFA recognizing it!

« Combine the machines recognizing A, and A4,
* Should we create a DFA or NFA?

Proof, with DFA

thstback: UNioN 1S Closed For Regular Langs

Proof
Gi . My = (Q1,%,01,4q1, F1), recognize Ay,
e Ulven:. .
My = (Q2, X, 02, q2, F2), recognize A,

« Construct: a new machine M = (Q, X, 9, qo, F') using M, and M,

» states of M: Q={(r1,m2)|m € Qrand rs € Q2} =0, xQ, Sﬁtgt;ntéw
This set is the Cartesian product of sets Q1 and Q2 | "y state

« M transition fn: 5((?"1, r9), (L) — (51 (r1,a),d2(rs, (L)) M step =

a stepin M, + a step in M,

« M start state: (q1,92)

Accept if either M, or M, accept
* M accept states: F = {(ry,r3)|r1 € Fy orry € Fy}

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

N

Add new start state,
and e-transitions to
old start states

L

~

Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

Construct N = (Q, X, d,|qo,|F) to recognize A; U As.

1. Q =Hqo}jU Q1 U Q2.

2. The state|qp|is the start state of V.

3. The set of accept states F' = F} U F5.

Alternate Proof, with NFAs

N) —_—
Vo -0
08© E/Oo©

> [

NQ/_,O©‘ € @/ ©\
Q © O ©
S O L O

Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

PROOF i ’ |

©o ke

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and 00 © E/ ~0O
Ny = (Q2, %, 02, q2, F») recognize A,. \O_/ » Q \ ©

Construct N = (Q, X, 6, qo, F') to recognize A; U As. . 00 NS O

B s, O

1. Q ={q}UQ1UQ2. ke O %0

2. The state gg 1s the start state of V.

3. The set of accept states F' = F} U F5.
4. Define ¢ so that for any ¢ € Q and any a € X,

(01(q q €
S(ga)={ 1 LED
? g=qgoanda =€
? q=qoanda # € e

List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

» Kleene Star (repetition)

Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad} and B = {boy, girl}, then

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)

Kleene Star

N
4 e
s | 90O ©
© ©
\ O Y,
New start (and accept) state,
e-transitions to old start state
\ Old accept states

e-transition to old
start state

(h-class exerclse,

Kleene Star 1s Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.

Kleene Star 1s Closed for Regular Langs

PROOF Let N = (Ql,E,él,ql,Fl) recognize Aq.
Construct N = (Q, 3, §, qo, F') to recognize Aj.

N

1

O

O

o ©}¢>

/

£
O+

O

©

:

N\

/

Kleene Star 1s Closed for Regular Langs

PROOF Let N1 = (Q1,%,01,q1, 1) recognize A;. M

Construct N = (Q, 3, 4, qo, F') to recognize Aj. _,O

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

‘@_

=

o

=

O
O

O
O

Kleene Star 1s Closed for Regular Langs

PROOF Let Ny = (Q1,%, 01,41, F1) recognize A;.
Construct N = (Q, 3, 4, qo, F') to recognize Aj.

1. Q@ ={q} U
2. The state qq is the new start state.

3. F={q}tVF
4. Define § so that for any g € @ and any a € X,

Ny

.

g€ @Qrand g & Fy

g€ Fianda # ¢

d(q,a) = g€ Fianda=¢

g=¢qoanda=¢€

N N N N N

¢ = qo and a # €.

&

~

Q0O

/
Eﬁé
O
©)
-

266

Many More Closed Operations on Regular Languages!

« Complement

* Intersection
 Difference

» Reversal

« Homomorphism

e (See HW?2)

Why do we care about these ops?

e Union
e Concat
e Kleene star

* The are sufficient to represent all regular languages!

* |.e., they define regular expressions

o Far Reg |

State diagram
(NFA/DFA)

1

1.

Formal
description

2.

3. XF001XF

- (it doesn't fit!)

Analogy:
- All regular languages ~

a “programming language”

is described as | - One regular language ~

a “program” (e.g., find strings
containing 001)

1. Q@ ={q1, 92,93},
2. % = {0,1},
3.01

q2 | 43 Q42
g3 | 92 g2,

4. g1 is the start state, and
5. F ={q2}.

Need a more concise
(textual) notation

ar Language Representations

A practical application:

text search

Find and Replace

=} Quick Find ~ | A% Quick Replace ~

Finé\what:

M = (Q')E? 57 q07F) ???
Replace with:
Z=\1;

Look in:

l Current Project

IZ} Find options
Match case
|| Match whole word
Search up

| use:

Regular expressions

Find Next

} l Replace

1 Replace All

|

Regu

ar Expressions:

A WIC

(inside

e Unix
* Perl

*)JavVa

L

* Python

ely Used Programming Language
other programming languages)

NAME

perlre - Perl regular expressions b

REP(1) General Commands Manual GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

EYNOPSIS
grep [OPTIONSE PATTERN [EFILE.Q.]
DESCRIPTION ol i

DESCRIPTION
grep searches the named input EILEs (or standard input if no files are
. . . . named, or if a single hyphen-minus (-) is given as file name) for lines
This page describes the syntax of regular expressions in Perl. containing a match to the given PATTERN. By default, grep prints the

matching lines.

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Quil

Table of Contents re — Regular expression operations

re — Regular expression

operations
S e lsunsy Source code: Lib/re.py
Syntax .
= Regulal vides regular expression matching operations similar to those found in Perl.

Class Pattern

java.lang.Object

java.util.regex.Pattern
270

Why do we care about these ops?

e Union
e Concat
e Kleene star

* The are sufficient to represent all regular languages!

* |.e., they define regular expressions

Regular Expressions: Formal Definition

R is a regular expression if R is — :
This Is a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where R; and R are regular expressions,
. (R1 0 R2), where Ry and R» are regular expressions, or
. (R}), where R; is a regular expression.

272

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: " This is a recursive definition:
ode { 4 W | Node used before it's defined

- base case and)
_ mauEe caee data; > (but must be “smaller”)
Node next;

(with a “smaller” object)

273

Regular Expressions: Formal Definition

R is a regular expression if R is
1. a for some a in the alphabet 3, (A lang containing a) length-1 string

3 Base 2 l . n :
Cases . €, | (Alang containing) the empty string
3. 0, | Theempty set (ie, a lang containing no strings)
union —~4, (R; U R»), where R; and R are regular expressions, :
, 3 Recursive
concat 5, (R; o R2), where Ry and R are regular expressions, or | cases
star 6. (R]), where R; is a regular expression.

Regular Expression: Concrete Example

Entire regular expr: language whose
strings come from these languages
concat’ed (implicit) together

the language {“0”, 1"} (O U1) 0* the language {*, "0, “00%, ...}

the language {“0”} the language {“1"}

» Operator Precedence:
 Parentheses
 Kleene Star

. R is a regular expbression if R is
 Concat (sometimes o, sometimes implicit) I,Gfiusomefmthealphabetg,
e Union 2 &

3. 0,

4. (R1 U Ry), where Ry and R; are regular expressions,

5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.

Regular Expressions = Regular Langs?

R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. €,

@7

3 Base
Cases

- R1 U R»), where R and R» are regular expressions,
3 Recursive 2) L 2 54 P

Cases

3.
4. (
5. (R1 o Ra), where Ry and Ry are regular expressions, or
6. (R7), where R; is a regular expression.

Base cases + union, concat, and Kleene star
can express any regular language!

(But we have to prove it)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression

& If a language Is described by a reg expression, it Is regular

(Easier) How to show that a
+ To prove this part: cONvert reg expr — equivalent NFA! language Is regular?

* (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a reg expression
(Harder)

- To prove this part: Convert an DFA or NFA - equivalent Regular Expression
* To do so, we first need another kind of finite automata: a GNFA

&< If a language Is described by a reg expression, it Is regular
(Easier)
« Convert the regular expression — an equivalent NFA!

Generalized NFAs (GNFASs)

A regular NFA is a GNFA
abUba | with only single character

regular expr transitions

Goal: convert GNFAs
to Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function

On GNFA input G:
« |f G has 2 states, return the regular expression transition, e.g.:

Equivalent regular expression

@ (R) (R)* (Ry) U (R) GNFA

Could there be
less than 2 states?

GNFA>RegEXpr Preprocessing

* First, modify input machine to have:

Does this change the

ine?
. New start state: language of the machine?

« No incoming transitions
e ectransition to old start state

* New, single accept state:
« With e transitions from old accept states

GNFA->RegExpr function (recursive)

On GNFA input G:
oase |+ If G has 2 states, return the regular expression transition, e.g.:

0, (Ry) (Ry)* (R3) U (Ry)
Recursive Z Recursive definitions have;:
Case

- base case and
e Else: - recursive case

. “Rip Outn one state (Wlth a “smaller” ObjeCt)
« “Repair” the machine to get an equivalent GNFA ¢’
« Recursively call GNFA»RegExpr(G)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
before and repeat until only 2 states remain

GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

2. Through g,
/ Q (Ry) ()™ (R3) U (Ry)

after

before

GNFA->RegExpr: “Rip/Repair” step

After: still two “paths” from g; to g;
1. Not through q,,

Iy

Rl @
R

2

before

2. Through g,

T~

(121) (Ro)™ (123)

O

after

U (12y)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through g,;, has 3 transitions

- One s self loop

GNFAéRegExpr: “Rip/Repair” step

After:

q;

Rl @
R

2

concat

before

Before:

Self loop becomes star operation
Others are concat’ed together

(121) (Ro)™ (123)

U (Ry)

after

Star operation

path through q,;, has 3 transitions

One is self loop

GNFA->RegExpr: Rip/Repair “Correctness”

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

before

GNFA>RegExpr “Correctness”

« “Correct” / “Equivalent” means:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

* .e, GNFA»RegEXxpr must not change the language!
 Key step: the rip/repair step

GNFA->RegExpr: Rip/Re

Must show these are
equivalent

R, @(Ro (Ro)* (R3)
(]
e ‘ after

nalr “Correctness”

U ()

Must prove:

2

before

R, R,
e 2 Ccases:
@ 1.
R

2.

« Every string accepted before, is accepted after

Accepted string does not go through q,;,
- Acceptance unchanged (both use R, transition part)

String|goes through q;,

« Acceptance unchanged?

« Yes, via our previous reasoning

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

[« Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

&< If a language Is described by a regular expr, it is regular
V] « Convert regular expression — equiv NFA!

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

How to Prove A Language Is Regular?

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3lishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Kinds of Mathematical Proof

 Proof by construction

 Proof by induction
 Use this when working with recursive definitions

In-Class quiz 9/29

See gradescope

