UMB CS 420
Context-Free Languages (CFLs)
Thursday, October 13, 2022
Announcements

• HW 4
 • due Sun 10/16 11:59pm EST
Last Time:

Let B be the language $\{0^n1^n \mid n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

• Assume: language B is regular

• So it must follow the Pumping Lemma:
 • All strings \geq length p ...
 • ... can be split into some xyz ... where y is “pumpable”

• Find counterexample where Pumping Lemma does not hold: 0^p1^p
 • Must show string cannot be pumped no matter how it’s split
 • Use pumping lemma condition #3 to help

• Therefore, B is not regular
 • (This is the contrapositive of the Pumping Lemma)
• This is a contradiction of the assumption!
Pumping lemma: If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. For each $i \geq 0$, $xy^iz \in A$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Let B be the language $\{0^n1^n | n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

If this language is not regular, then what is it???

Maybe? ... a **context-free language (CFL)**?
A Context-Free Grammar (CFG)

Top variable is:

Start variable

Variables (a.k.a., nonterminals)

A → 0A1
A → B
B → #

Substitution rules (a.k.a., productions)

terminals

(terminals) (analogous to a DFA’s alphabet)
A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S), where

1. V is a finite set called the variables,
2. Σ is a finite set, disjoint from V, called the terminals,
3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
4. $S \in V$ is the start variable.

$$V = \{A, B\},$$
$$\Sigma = \{0, 1, \#\},$$
$$S = A.$$
Analogies

<table>
<thead>
<tr>
<th>Regular Language</th>
<th>Context-Free Language (CFL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Expression</td>
<td>Context-Free Grammar (CFG)</td>
</tr>
<tr>
<td>A Reg Expr describes a Regular lang</td>
<td>A CFG describes a CFL</td>
</tr>
</tbody>
</table>

CFG Practical Application: Used to describe *programming language* syntax!
Java Syntax: Described with CFGs

Chapter 2. Grammars

This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a program.

2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free grammar specifies a language, namely, the set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar

A lexical grammar for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol input (§3.5), that describe how sequences of Unicode characters (§2.1) are translated into a sequence of input elements (§2.5).

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```
# Grammar for Python

# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file;
# eval_input is the input for the eval() functions.
# func_type_input is a PEP 484 Python 2 function type comment
# NB: compound_stmt in single_input is followed by extra NEWLINE!
# NB: due to the way TYPE_COMMENT is tokenized it will always be followed by a NEWLINE
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER
```

https://docs.python.org/3/reference/grammar.html
10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```plaintext
# Grammar for Python
# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file;
# eval_input is the input for the eval() functions,
# func_type_input is a PEP 484 Python 2 function type comment
# NB: compound_stmt in single_input is followed by extra NEWLINE!
# NB: due to the way TYPE_COMMENT is tokenized it will always be followed by a NEWLINE
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER
```

https://docs.python.org/3/reference/grammar.html
Generating Strings with a CFG

\[G_1 = \]

1st rule
\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

“Applying a rule” = replace LHS variable with RHS
At each step, can choose any variable to replace, and any rule to apply

A CFG **generates** a string, by repeatedly applying substitution rules:

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111 \]

Start variable
After applying 1st rule
1st rule again
1st rule again
Use 2nd rule
Use last rule

Definition:
A CFG describes a context-free language!

Strings in CFG’s language = all possible generated strings

\[L(G_1) = \{0^n\#1^n \mid n \geq 0\} \]
Derivations: Formally

Let $G = (V, \Sigma, R, S)$

Single-step

$$\alpha A \beta \Rightarrow_G \alpha \gamma \beta$$

Where:

- $\alpha, \beta \in (V \cup \Sigma)^*$ (Strings of terminals and variables)
- $A \in V$ (Variable)
- $A \rightarrow \gamma \in R$ (Rule)

Extended Derivation

Base case:

$\alpha \Rightarrow_G \alpha$ (0 steps)

Recursive case: (multistep)

- If $\alpha \Rightarrow_G \beta$ and $\beta \Rightarrow_G \gamma$

- Then: $\alpha \Rightarrow_G \gamma$
A context-free grammar is a 4-tuple \((V, \Sigma, R, S)\), where
1. \(V\) is a finite set called the variables,
2. \(\Sigma\) is a finite set, disjoint from \(V\), called the terminals,
3. \(R\) is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
4. \(S \in V\) is the start variable.

\[
G = (V, \Sigma, R, S)
\]

\[
L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}
\]

Any language that can be generated by some context-free grammar is called a context-free language.
Flashback: \(\{0^n1^n \mid n \geq 0\} \)

- Pumping Lemma says it’s not a regular language
- It’s a context-free language!
 - Proof?
 - Come up with CFG describing it ...
 - **Hint**: It’s similar to:

\[
\begin{align*}
A & \rightarrow 0A1 \\
A & \rightarrow B \\
B & \rightarrow \# \varepsilon
\end{align*}
\]

\(L(G_1) \) is \(\{0^n\#1^n \mid n \geq 0\} \)
A String Can Have Multiple Derivations

\[
\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle
\]

\[
\langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle
\]

\[
\langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid a
\]

Want to generate this string: \(a + a \times a \)

\[
\begin{align*}
\text{• } \langle \text{EXPR} \rangle & \Rightarrow \\
\text{• } \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle & \Rightarrow \\
\text{• } \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle & \Rightarrow \\
\text{• } \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \times a & \Rightarrow \\
\text{...}
\end{align*}
\]

RIGHTMOST DERIVATION

\[
\begin{align*}
\text{• } \langle \text{EXPR} \rangle & \Rightarrow \\
\text{• } \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle & \Rightarrow \\
\text{• } \langle \text{TERM} \rangle + \langle \text{TERM} \rangle & \Rightarrow \\
\text{• } \langle \text{FACTOR} \rangle + \langle \text{TERM} \rangle & \Rightarrow \\
\text{• } a + \langle \text{TERM} \rangle & \Rightarrow \\
\text{...}
\end{align*}
\]

LEFTMOST DERIVATION
Derivations and Parse Trees

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111 \]

A derivation may also be represented as a parse tree
Multiple Derivations, Single Parse Tree

Leftmost derivation

1. `EXPR =>`
2. `EXPR + TERM =>`
3. `TERM + TERM =>`
4. `FACTOR + TERM =>`
5. `a + TERM`

...

Rightmost derivation

1. `EXPR =>`
2. `EXPR + TERM =>`
3. `EXPR + TERM x FACTOR =>`
4. `EXPR + TERM x a =>`

...

Since the “meaning” (i.e., parse tree) is same, by convention we just use **leftmost** derivation

A Parse Tree gives “meaning” to a string
Ambiguity
grammar G_5:

$$
\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{EXPR} \rangle \mid \langle \text{EXPR} \rangle \times \langle \text{EXPR} \rangle \mid (\langle \text{EXPR} \rangle) \mid a
$$

Same string, different derivation, and different parse tree!
A string w is derived *ambiguously* in context-free grammar G if it has two or more different leftmost derivations. Grammar G is *ambiguous* if it generates some string ambiguously.

An ambiguous grammar can give a string *multiple meanings!* (why is this **bad**?)
Real-life Ambiguity ("Dangling" else)

• What is the result of this C program?

if (1) if (0) printf("a"); else printf("2");

VS

if (1)
 if (0) printf("a");
else
 printf("2");

if (1)
 if (0) printf("a");
else
 printf("2");

This string has 2 parses, and thus 2 meanings!

Ambiguous grammars are confusing. In a (programming) language, a string (program) should have only one meaning (result).

Problem is, there’s no guaranteed way to create an unambiguous grammar (it’s up to language designers to “be careful”)

32
Designing Grammars : Basics

1. Think about what you want to “link” together

 • E.g., 0^n1^n
 • $A \rightarrow 0A1$
 • # 0s and # 1s are “linked”

 • E.g., XML
 • ELEMENT $\rightarrow <\text{TAG}>\text{CONTENT}</\text{TAG}>$
 • Start and end tags are “linked”

2. Start with small grammars and then combine (just like FSMs)
Designing Grammars: Building Up

• Start with small grammars and then combine (just like FSMs)

 • To create a grammar for the language \(\{0^n1^n | n \geq 0\} \cup \{1^n0^n | n \geq 0\} \)

 • First create grammar for lang \(\{0^n1^n | n \geq 0\} : \)
 \[
 S_1 \rightarrow 0S_11 \mid \epsilon
 \]

 • Then create grammar for lang \(\{1^n0^n | n \geq 0\} : \)
 \[
 S_2 \rightarrow 1S_20 \mid \epsilon
 \]

 • Then combine:
 \[
 S \rightarrow S_1 \mid S_2
 S_1 \rightarrow 0S_11 \mid \epsilon
 S_2 \rightarrow 1S_20 \mid \epsilon
 \]

New start variable and rule combines two smaller grammars

“\|” = “or” = union (combines 2 rules with same left side)
Closed Operations on CFLs

• Start with small grammars and then combine (just like FSMs)

• “Or”: \[S \rightarrow S_1 | S_2 \]

• “Concatenate”: \[S \rightarrow S_1 S_2 \]

• “Repetition”: \[S' \rightarrow S' S_1 | \epsilon \]
In-class Example: Designing grammars

alphabet Σ is $\{0,1\}$

$\{w \mid w$ starts and ends with the same symbol$\}$

- $S \rightarrow 0C'0 \mid 1C'1 \mid \epsilon$ "string starts/ends with same symbol, middle can be anything"
- $C' \rightarrow C'C \mid \epsilon$ "middle: all possible terminals, repeated (ie, all possible strings)"
- $C \rightarrow 0 \mid 1$ "all possible terminals"
Next Time:

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Context-Free Languages (CFLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Expression</td>
<td>Context-Free Grammar (CFG)</td>
</tr>
<tr>
<td>A Reg Expr describes a Regular Lang</td>
<td>A CFG describes a CFL</td>
</tr>
<tr>
<td>Finite Automaton (FSM)</td>
<td>???</td>
</tr>
<tr>
<td>An FSM recognizes a Regular Lang</td>
<td>A ??? recognizes a CFL</td>
</tr>
</tbody>
</table>

### Regular Languages	Context-Free Languages (CFLs)
Regular Expression | Context-Free Grammar (CFG)
A Reg Expr *describes* a Regular Lang | A CFG *describes* a CFL
Finite Automaton (FSM) | Push-down Automaton (PDA)
An FSM *recognizes* a Regular Lang | A PDA *recognizes* a CFL

Next Time:
Next Time:

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Context-Free Languages (CFLs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Expression</td>
<td>Context-Free Grammar (CFG)</td>
</tr>
<tr>
<td>A Reg Expr describes a Regular Lang</td>
<td>A CFG describes a CFL</td>
</tr>
<tr>
<td>Finite Automaton (FSM)</td>
<td>Push-down Automaton (PDA)</td>
</tr>
<tr>
<td>An FSM recognizes a Regular Lang</td>
<td>A PDA recognizes a CFL</td>
</tr>
<tr>
<td>DIFERENCE:</td>
<td>DIFERENCE:</td>
</tr>
<tr>
<td>A Regular Lang is defined with a FSM</td>
<td>A CFL is defined with a CFG</td>
</tr>
<tr>
<td>Proved: Reg Expr ⇔ Reg Lang</td>
<td>Must prove: PDA ⇔ CFL</td>
</tr>
</tbody>
</table>
Check-in Quiz 10/13

On gradescope