UMB CS 420

Non-CFLs

Tuesday, October 25, 2022
Announcements

• HW 5 in
 • Due 10/23 11:59pm EST

• HW 6 out
 • Due 10/30 11:59pm EST
Last Time: Generating vsParsing

• In practice, **parsing** a string more important than **generating** one
 • E.g., a **compiler** (first step) parses source code into a parse tree
 • (Actually, *any* program with string inputs must first parse it)

But:

• PDAs are **non-deterministic** (like NFAs)
• Compiler’s parsing algorithm must be **deterministic**

• **So**: to model parsers, we need a **Deterministic PDA (DPDA)**
A **deterministic pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ, and F are all finite sets, and

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow (Q \times \Gamma) \cup \{\emptyset\}$ is the transition function,
5. $q_0 \in Q$ is the start state, and
6. $F \subseteq Q$ is the set of accept states.

A **pushdown automaton** is a 6-tuple

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow \mathcal{P}(Q \times \Gamma)$
5. $q_0 \in Q$ is the start state, and
6. $F \subseteq Q$ is the set of accept states.

Difference: DPDA has only **one possible action**, for any given **state**, **input**, and **stack op** (similar to DFA vs NFA).

This must take into account ϵ reads or stack ops! E.g., if $\delta(q, a, X)$ is valid, then $\delta(q, \epsilon, X)$ must not be
DPDAs are **Not Equivalent** to PDAs!

- **PDA:** can non-deterministically “try all rules” (abandoning failed attempts);
- **DPDA:** must **choose one rule at each step!**

$R \rightarrow S \mid T$

$S \rightarrow \textcolor{green}{aSb} \mid \text{ab}$

$T \rightarrow \textcolor{red}{aTbb} \mid \text{abb}$

Should use S rule

$aaabbb \rightarrow aaSbb$

Should use T rule

$aaabbb \rightarrow aaTbbb$

To choose “correct” rule, need to “look ahead” at rest of the input!

PDAs recognize CFLs, but **DPDAs only recognize DCFLs! (a subset of CFLs)**
Subclasses of CFLs

- DCFLs
- Programming language parsers / compilers are ideally in here

2 parser design decisions:
1) Parse from **left**, or from **right**
2) choose “look ahead” amount
LL parsing

• L = left-to-right
• L = leftmost derivation

1 \[S \rightarrow \text{if } E \text{ then } S \text{ else } S \]
2 \[S \rightarrow \text{begin } S L \]
3 \[S \rightarrow \text{print } E \]

if 2 = 3 begin print 1; print 2; end else print 0

4 \[L \rightarrow \text{end} \]
5 \[L \rightarrow ; \quad S \quad L \]
6 \[E \rightarrow \text{num} = \text{num} \]
LL parsing

- L = left-to-right
- L = leftmost derivation

1. $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
2. $S \rightarrow \text{begin } S \ L$
3. $S \rightarrow \text{print } E$
4. $L \rightarrow \text{end}$
5. $L \rightarrow ; \ S \ L$
6. $E \rightarrow \text{num = num}$

if 2 = 3 begin print 1; print 2; end else print 0
LL parsing

- L = left-to-right
- L = leftmost derivation

1. $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
2. $S \rightarrow \text{begin } S \ L$
3. $S \rightarrow \text{print } E$
4. $L \rightarrow \text{end}$
5. $L \rightarrow ; \ S \ L$
6. $E \rightarrow \text{num } = \text{num}$

if $2 = 3$ begin print 1; print 2; end else print 0
LL parsing

- L = left-to-right
- L = leftmost derivation

1 $S \to \text{if } E \text{ then } S \text{ else } S$
2 $S \to \text{begin } S \ L$
3 $S \to \text{print } E$
4 $L \to \text{end}$
5 $L \to \text{; } S \ L$
6 $E \to \text{num } = \text{ num}$

if 2 = 3 begin print 1; print 2; end else print 0

“Prefix” languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)
LR parsing

- L = left-to-right
- R = rightmost derivation

\[a := 7 ; \]
\[b := c + (d := 5 + 6 , d) \]

When parse is here, can’t determine whether it’s an assign (:=) or addition (+)

Need to save input (lookahead) to some memory, like a stack! This is a job for a (D)PDA!

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a := 7 ; b := c + (d := 5 + 6 , d))</td>
<td>shift</td>
</tr>
<tr>
<td>1 id(_4)</td>
<td></td>
<td>push</td>
</tr>
<tr>
<td>1 id(_4) := 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 id(4) := 6 num({10})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 id(4) := 6 (E{11})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (S_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7 ; b := c + (d := 5 + 6 , d))</td>
<td>reduce (E \rightarrow \text{num})</td>
</tr>
<tr>
<td>(; b := c + (d := 5 + 6 , d))</td>
<td>reduce (S \rightarrow \text{id} := E)</td>
</tr>
<tr>
<td>(; b := c + (d := 5 + 6 , d))</td>
<td>shift</td>
</tr>
</tbody>
</table>

State name
LR parsing

- \(L = \text{left-to-right} \)
- \(R = \text{rightmost derivation} \)

\[
\begin{align*}
S & \rightarrow S ; \ S & \quad E & \rightarrow \text{id} \\
S & \rightarrow \text{id} := E & \quad E & \rightarrow \text{num} \\
S & \rightarrow \text{print} (L) & \quad E & \rightarrow E + E
\end{align*}
\]
LR parsing

- **L** = left-to-right
- **R** = rightmost derivation

\[
S \rightarrow S ; S \\
S \rightarrow id := E \\
S \rightarrow print (L) \\
E \rightarrow id \\
E \rightarrow num \\
E \rightarrow E + E
\]
LR parsing

• L = left-to-right
• R = rightmost derivation

1 \(S \rightarrow S ; \ S \)

2 \(S \rightarrow \text{id} := E \)

3 \(S \rightarrow \text{print} \ (L) \)

4 \(E \rightarrow \text{id} \)

5 \(E \rightarrow \text{num} \)

6 \(E \rightarrow E + E \)

Stack

1
1 id4
1 id4 := 6
1 id4 := 6 num10
1 id4 := 6 E11
1 S2

Input

\[a := 7 ; b := c + (d := 5 + 6 , d) \]
\[a := c + (d := 5 + 6 , d) \]
\[a := c + (d := 5 + 6 , d) \]
\[a := c + (d := 5 + 6 , d) \]
\[a := c + (d := 5 + 6 , d) \]

Action

shift
shift
shift
reduce \(E \rightarrow \text{num} \)
reduce \(S \rightarrow \text{id} := E \)
shift

Can determine (rightmost) rule
LR parsing

• L = left-to-right
• R = rightmost derivation

1 \[S \rightarrow S ; S \]
2 \[S \rightarrow id := E \]
3 \[S \rightarrow \text{print (} L \text{)} \]
4 \[E \rightarrow \text{id} \]
5 \[E \rightarrow \text{num} \]
6 \[E \rightarrow E + E \]
LR parsing

- **L = left-to-right**
- **R = rightmost derivation**

\[
S \rightarrow S ; \ S \\
S \rightarrow \text{id} := E \\
S \rightarrow \text{print} (\ L) \\
E \rightarrow \text{id} \\
E \rightarrow \text{num} \\
E \rightarrow E + E
\]
To learn more, take a Compilers Class!

This phase needs computation that goes beyond CFLs
Flashback: Pumping Lemma for Regular Langs

• Pumping Lemma describes how strings **repeat**

• Regular language strings repeat using Kleene start operation
 • substrings are independent!

• A non-regular language:
 \[
 \{0^n1^n \mid n \geq 0\}
 \]

 Kleene star can’t express this pattern: 2nd part depends on (length of) 1st part

• Q: How do CFLs repeat?
Repetition and Dependency in CFLs

\[A \rightarrow 0A1 \]
\[A \rightarrow B \]
\[B \rightarrow \# \]

\[\{0^n\#1^n | n \geq 0\} \]

Parts before/after repetition point are linked

Repetition

repetition

\[A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111 \]
How Do Strings in CFLs Repeat?

- Strings in regular languages repeat states
- Strings in CFLs repeat subtrees in the parse tree
Pumping Lemma for CFLS

Pumping lemma for context-free languages

If \(A \) is a context-free language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into five pieces \(s = uvxyz \) satisfying the conditions:

1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
2. \(|vy| > 0 \), and
3. \(|vxy| \leq p \).

Now there are two pumpable parts. But they must be pumped together!

Pumping lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into three pieces, \(s = xyz \), satisfying the conditions:

1. for each \(i \geq 0 \), \(xy^i z \in A \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Two pumpable parts, pumped together
A Non CFL example

\[B = \{a^n b^n c^n \mid n \geq 0\} \text{ is not context free} \]

Intuition

• Strings in CFLs can have two parts that are “pumped” together
• This language requires three parts to be “pumped” together
• So it’s not a CFL!
Want to prove: $a^n b^n c^n$ is not a CFL

Proof (by contradiction):

- **Assume**: $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - i.e., all strings \geq length p are pumpable
- **Counterexample** = $a^p b^p c^p$

Now we must find a contradiction ...

Contradiction if: string \geq length p that is not splittable into $uvxyz$ where v and y are pumpable

Pumping lemma for context-free languages: If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s = uvxyz$ satisfying the conditions:

1. for each $i \geq 0$, $uv^i x y^i z \in A$,
2. $|vy| > 0$, and
3. $|vxy| \leq p$.

Reminder: CFL Pumping lemma says: all strings $a^n b^n c^n \geq$ length p are splittable into $uvxyz$ where v and y are pumpable
Want to prove: \(a^n b^n c^n \) is not a CFL

Possible Splits

Proof (by contradiction):

- **Assume:** \(a^n b^n c^n \) is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \(\geq \) length \(p \) are pumpable

- **Counterexample:** \(a^p b^p c^p \)

- **Possible Splits** (using condition \# 3: \(|vxy| \leq p \))
 - \(vyx \) is all \(a \)s
 - \(vyx \) is all \(b \)s
 - \(vyx \) is all \(c \)s
 - \(vyx \) has \(a \)s and \(b \)s
 - \(vyx \) has \(b \)s and \(c \)s

So \(a^n b^n c^n \) is not a CFL

(justification: contrapositive of CFL pumping lemma)

Pumping lemma for context-free languages

If \(A \) is a context-free language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into five pieces \(s = uvxyz \) satisfying the conditions:

1. for each \(i \geq 0 \), \(uv^i x y^i z \in A \),
2. \(|vxy| > 0 \), and
3. \(|vxy| \leq p \).
Another Non-CFL \(D = \{ww \mid w \in \{0,1\}^* \} \)

Be careful when choosing counterexample \(s: 0^p 1 0^p 1 \)
This \(s \) can be pumped according to CFL pumping lemma:

\[
\begin{array}{c}
0^p 1 \\
\{000 \cdots 000\} \quad 0 \quad 1 \\
u \quad v \quad x \\
\{000 \cdots 0001\} \quad 0^p 1
\end{array}
\]

- CFL Pumping Lemma conditions:
 1. for each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

This doesn’t prove that the language is a CFL! It only means that this attempt to prove that the language is not a CFL failed.
Another Non-CFL \(D = \{ww | w \in \{0,1\}^*\} \)

- Need another counterexample string \(s \):

 - If \(vyx \) is contained in first or second half, then any pumping will break the match.

 \[
 0^p 1^p 0^p 1^p
 \]

 - So \(vyx \) must straddle the middle.

 - But any pumping still breaks the match because order is wrong.

- CFL Pumping Lemma conditions:

 1. For each \(i \geq 0 \), \(uv^i xy^i z \in A \),
 2. \(|vy| > 0 \), and
 3. \(|vxy| \leq p \).

Now we have proven that this language is not a CFL!
A Practical Non-CFL

- **XML**
 - ELEMENT \rightarrow `<TAG>CONTENT</TAG>`
 - Where TAG is any string

- **XML also looks like this non-CFL:**
 $$ D = \{ww | w \in \{0,1\}^* \} $$

- This means XML is not context-free!
 - **Note:** HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

- **In practice:**
 - XML is parsed as a CFL, with a CFG
 - Then matching tags checked in a 2nd pass with a more powerful machine ...
Next Time: A More Powerful Machine ...

M_1 accepts its input if it is in language: $B = \{w\#w | w \in \{0,1\}^*\}$

$M_1 = "On$ $input$ $string$ w:"

1. **Zig-zag** across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, **reject**. Cross off symbols as they are checked to keep track of which symbols correspond.

- Infinite memory, initially starts with input
- Can move to, and read/write from, **arbitrary** memory locations!
In-class quiz 10/25

See gradescope