UMB CS 420

Mapping Reducibility
Thursday, November 17, 2022

%/{/{0«/{0@#(@/{13’

e Current hw: HW 9
* Due Mon 11/21 11:59pm EST

* Next hw: HW 10
« Out: Tue 11/22
* Due: Mon 12/5
« 2 weeks due to Thanksgiving break

Seems like no algorithm can
compute anything about

last tire: UNdecidable ... Turing Machines,

l.e., about programs ...

* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice’s Theorem

*|ANYTHING-, = {<M>| MisaTM and “... anything ...” about L(M)}

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
* Forany M,, M,, if L(M,) = L(M,) ...
. ...then M, € ANYTHING,, < M, € ANYTHING,,,

e Also, “... Anything ...”must be “non-trivial”:
« ANYTHING), '={}
* ANYTHING), != set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
 Since ANYTHING,,, 1s non-trivial, then there exists M,y € ANYTHING+,
« Where R accepts M,y

 Use R to create decider for Ay
On input <M, w>:

These two cases

= i . must be different,
* Create M]_VIF{V OI\I:I Tfergic e If M accepts w: M,, = Myyy | (so R can distinguish
S At () 1 , If M doesn’t accept w: M,, accepts nothing || when M accepts w)
- If M rejects w: reject x -
- If M accepts w: Wait! What if the TM that accepts

Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

« If it accepts, then M, = M,,,, SO M accepts w, so accept Proof still works! Just use the

e Else reject complement of ANYTHING;,, instead!
|

Prove that the following 1s undecidable:

{<M>| M is a TM that installs malware}

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

Arm = {(M,w)| M isa TM and M accepts w} known

Flasttack: “Reduced” 3

HALT+v = {(M,w)| M is a TM and M halts on input w} | unknown

Thm: HALT 1\ is undecidable
Proof, by contradiction:

e Assume: HALTtm has decider R; use it to create Aty decider:

..intoan || S = “On input,(M, w), an encoding of a TM M and a string w: |

Aqy string 1. RunTM R on input,(M, w). Use R to first check if M will loop on w
Essentially, we (2, If R rej ;reject. Then run M on w knowing it won't loop
e . If R accepts, simulate M on w until it halts.
hypothetical : : L,
HALT;,, string ... 4. If M has accepted, accept; if M has rejected, reject.

 Contradiction: Ay 1S undecidable and has no decider!
Let's formalize this conversion, i.e., mapping reducibilty

[lashback: Anpa is a decidable language

Anra = {(B,w)| B is an NFA that accepts input string w }

Decider for AI\IFA g

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure

2 EFA?B\FAA} i C We said this NFA>DFA
| e on imput (G). - algorithm is a decider TM,
3. If M accepts, accept; otherwise, reject. but it doesn’t accept/ reject?

More generally, our analogy has been:
“programs = TMs”,
but programs do more than accept/reject?

Defintior: COMputable Functions

A function f: ¥*——3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

« A computable function is represented with a TM that,
instead of accept/reject, “outputs” its final tape contents

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
 E.g, adding states, changing transitions, wrapping TM in TM, etc.

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if we Athen flw) €B

f
.///—--_\A.
“reverse” direction (): if flw) e Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

thstback: EQUIValence of Contrapositive

“If X then Y”|is equivalentto ... ?

« “If Ythen X" (converse)
e No!

e “If not X then not Y” (inverse)
e No!

v“If not Y then not X”|(contrapositive)
* Yes!

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if we Athen flw) €B

“reverse” direction («): if fiw) e Bthen we A

Equivalent (contrapositive): if w & A then filw) & B

Proving Mapping Reducibility: 2 Steps

Step 1:
Show there is computable

Language A is mapping reducible to language B, written A <, B,|Tnf... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
w e A< f(w) € B. “if and only if” | | Prove the iff is true

The function f is called the reduction from A to B.

Step 2a: “forward” direction (=): if w € Athen filw) €B

e.g.
Arm = {{M,w)| M isa TM and M acce

Step 2b: “reverse” direction (<): if flw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Thm: Avm1s mapping reducible to HALTtwm

Arm = {(M,w)| M isa TM and M accepts w}

¥
To show: Atm <, HALT1m HALTtv = {(M,w)| M is a TM and M halts on input w}
Step 1: create computable fn £ <M, w> - <M’, w> where:
Step 2: show (M, w) € Aty ifand only if (M’ w') € HALT 1\ .
The following machine F' computes a reduction f.
F = “On input (M, w): ./f—L—\\.
1. j(\j/;)lnitl"%; t?;:pﬁllxo.wing machine M~% Converts M to M’
: 1. Run M on z.
Step 2! 2. If M accepts, accept.
M accepts w 3. If M I'ejeCtS, enter a IOOp.” Language A is mabbing reducible to language B, written A <., B,

if there i a computable function f: ¥*—3*, where for every w,

ifandonly it | 2. Qutput (M’,w).” | M’is like M, except it
M’ halts on w ‘

we A+ f(w) € B.

d lways loo pS Wh en it The function f is called the reduction from A to B.
Outp ut new M’ doesn’t acce pt A function f: ¥*— ¥* is a computable function if some Turing

machine M, on every input w, halts with just f(w) on its tape.

= |t M accepts w, then M’ halts on w
« M’ accepts (and thus halts) if M accepts

< If M’ halts on w, then M accepts w

< (Alternatively) IT M doesn’t accept w, then M’ doesn’t halt on w (contrapositive)
« Two possibilities for non-acceptance:

1. M loops: M’ loops and doesn’t halt |

2. Mrejects: M’ loops and doesn’t halt |

PN PN
AMTTM\
The following machine F' computes a reduction f. \)
f
— T

F = “On input (M| w):

1. Construct the following machine M.
M'|= “On input z:

. 1. Run M on z.
Step 2: 2. If M accepts, accept.
M accepts w 3. If M rejects, enter a loop.”

ifand only if 2. Output (M', w).”
M’ halts on w

90

Uses of Mapping Reducibility

« To prove Decidability

« To prove Undecidability

Thm: If A <., B and B is decidable, then A is decidable.

PROOF We let M be the decider for B a
We describe a decider NV for A as follows.

N = “On input w:

1. Compute f(w):
2. Run M on input f(w) and output whatever M outputs.”

We know
this is true
bc of the iff
(specifically
the reverse
direction)

decides
f
f
/—__\
[] []

Has a decider Must create decider

f be the reduction from A to B.

Language A is mapping reducible to language B, written A <,,, B,
if there is a computable function f: ¥* — 3%, where for every w,
w e A<= f(w) € B.

92
The function f is called the reduction from A to B.

COro: If A <., B and A is undecidable, then B is undecidable.

* Proof by contradiction.

« Assume B Is decidable.

* Then 4 is decidable (by the previous thm).

« Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Summary: ShOWING Mapping Reducibility

Step 1:
Show there is computable
. . ‘ . fn f... by creating a TM
Language A is mapping reducible to language B, written A <, B,

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
w e A< f(w) € B. “if and only if” | | Prove the iff is true

The function f is called the reduction from A to B.

Step 2a: “forward” direction (=): if w € Athen filw) €B

f
.//_“\.

Step 2b: “reverse” direction (<): if iw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Summary: UsSINg Mapping Reducibility

To prove decidability ...

« If A <,, Band B is decidable, then A is decidable.

Unknown

Known
(want to prove)

To prove undecidability ...

« If A <,, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!

Alternate Froof- The Halting Problem

HALT+m 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

Must be known

¢ ATM <m HALTTM

e Since Ay IS undecidable,
» ... and we showed mapping reducibility from A;, to HALTy,
« then HALT, I1s undecidable n

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

 Assume EQq.y has decider R; use it to create Erym decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Ery <m EQtm
Step 1: create computable fn £ <M> > <M,, M,>, computed by S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility (exercise)

And use theorem ...
If A <,, B and A is undecidable, then B is undecidable.

Flashback, E+m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Proof, by contradiction:

« Assume FEtm has decider R; use it to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:

) 1. Ifx # w, reject.
2. Run Ron mput <M1> 2. Ifz = w, run M on input w and accept if M does.”

3. If R accepts, reject; if R rejects, accept.” \ |
If M acceptsw, M, not in E,!

 So this only reduces Aty to Fry

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Show mapping reducibility??: Atm <m E1m
Step 1: create computable fn i <M, w> 2> <M”>, computed by S

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M; = “On input z:
1. Ifx # w, reject.

2. Output: < Il) 2. Ifz = w, run M on input w and accept it M does.”
3. It Raccepts; reject; it R rejects; accept.” |

Y If M accepts w, M, not in E !
 So this only reduces Aty to Fry T T

* It's good enough! Still proves Erw is undecidable mapping reducibiliy
e If ... undecidable langs are closed under complement (exercise

Undecidable Langs Closed under Complement

Proof by contradiction

« Assume some lang L is undecidable and L is decidable ...
« Then L has a decider

Contradiction!

. ... then we can create decider for L from decider for L ...
 Because decidable languages are closed under complement (hw107?)!

Mest Tine: TUTINEG UNrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these
undecidable languages go?

FErvm = {{M)| MisaTMand L(M) =0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Check-in Quiz 11/17

On gradescope

