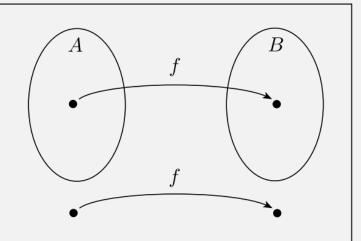
UMB CS 420 Mapping Reducibility Thursday, November 17, 2022



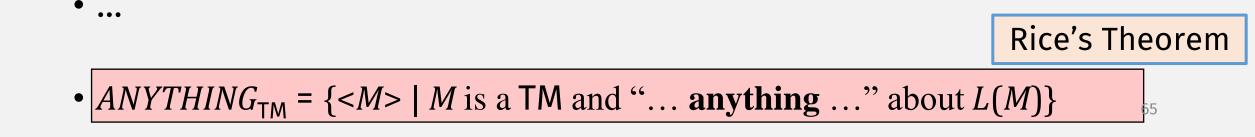
Announcements

- Current hw: HW 9
 - Due Mon 11/21 11:59pm EST
- Next hw: HW 10
 - Out: Tue 11/22
 - Due: Mon 12/5
 - 2 weeks due to Thanksgiving break

Last time: Undecidable ...

Seems like no algorithm can compute **anything** about Turing Machines, i.e., **about programs** ...

- $REGULAR_{TM} = \{ <M > | M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ <M > | M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$



Rice's Theorem: *ANYTHING*_{TM} is Undecidable

ANYTHING_{TM} = {<M> | *M* is a TM and ... anything ... about *L*(*M*)}

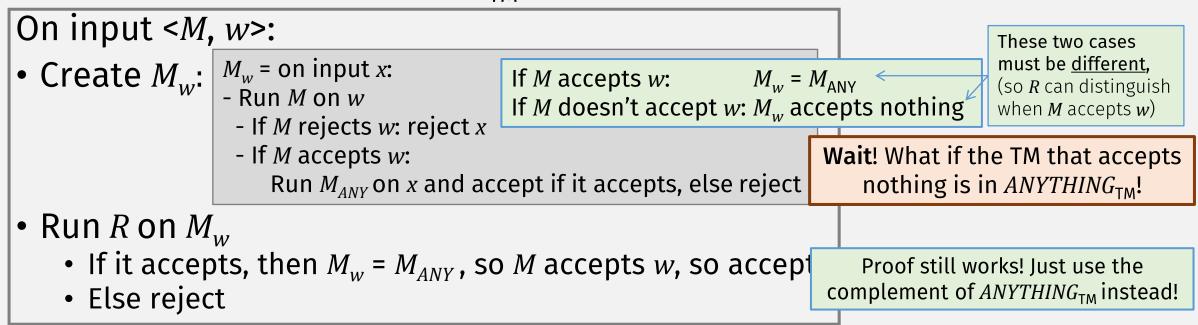
- "... Anything ...", more precisely:
 - For any M_1 , M_2 , if $L(M_1) = L(M_2)$...
 - ... then $M_1 \in ANYTHING_{\mathsf{TM}} \Leftrightarrow M_2 \in ANYTHING_{\mathsf{TM}}$
- Also, "... Anything ... "must be "non-trivial":
 - *ANYTHING*_{TM} != {}
 - *ANYTHING*_{TM} != set of all TMs

Rice's Theorem: *ANYTHING*_{TM} is Undecidable

ANYTHING_{TM} = {<M> | *M* is a TM and ... anything ... about *L*(*M*)}

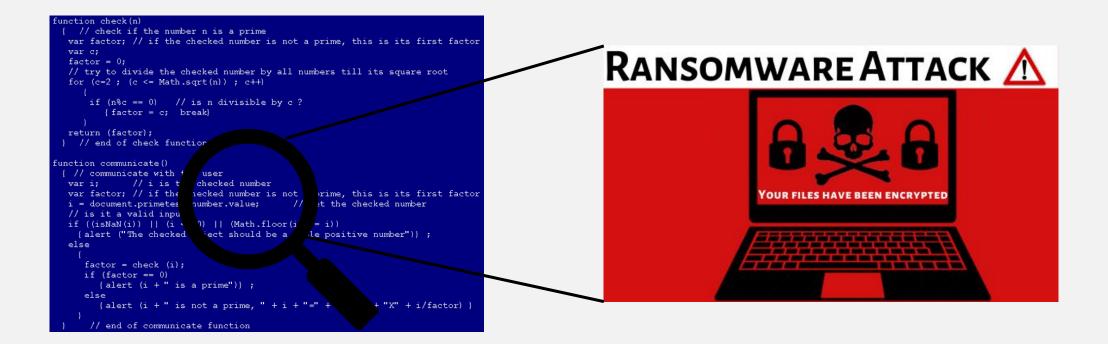
Proof by contradiction

- <u>Assume</u> some language satisfying $ANYTHING_{TM}$ has a decider R.
 - Since *ANYTHING*_{TM} is non-trivial, then there exists *M*_{ANY} ∈ *ANYTHING*_{TM}
 - Where *R* accepts *M*_{ANY}
- Use *R* to create decider for *A*_{TM}:



Prove that the following is undecidable:

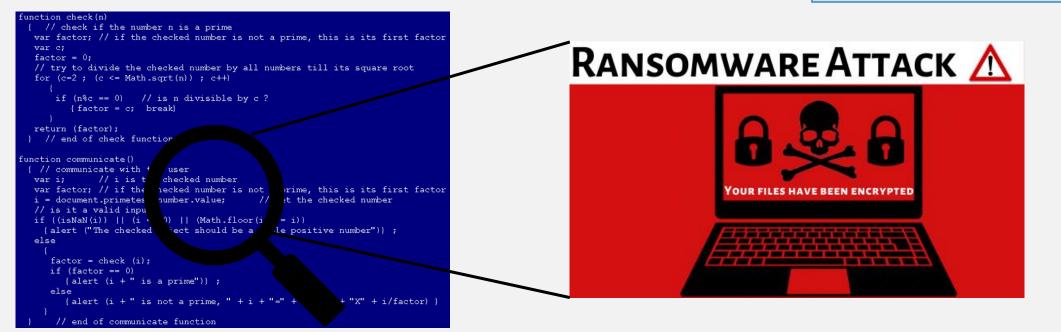
{*<M>* | *M* is a TM that installs malware}



Rice's Theorem Implication

{<*M*> | *M* is a TM that installs malware}

Undecidable! (by Rice's Theorem)

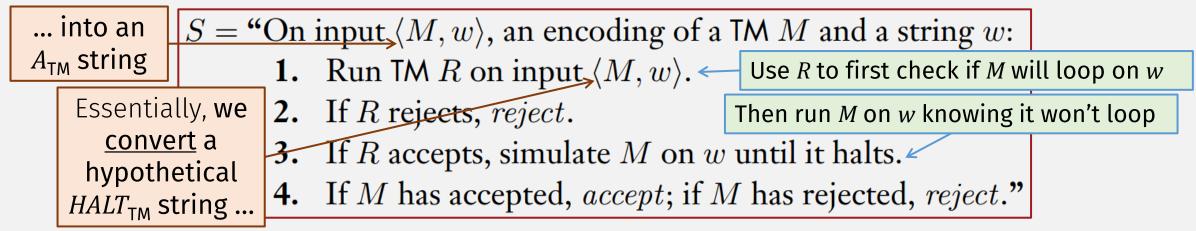


Flashback: "Reduced" $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$ $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$ unknown

<u>Thm</u>: $HALT_{TM}$ is undecidable

<u>Proof</u>, by contradiction:

• Assume: *HALT*_{TM} has decider R; use it to create A_{TM} decider:



• <u>Contradiction</u>: A_{TM} is undecidable and has no decider! Let's formalize this conversion, i.e., mapping reducibility

known

Flashback: ANFA is a decidable language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA} :

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure NFA \rightarrow DFA
- **2.** Run TM M on input $\langle C, w \rangle$.
- 3. If *M* accepts, *accept*; otherwise, *reject*."

We said this NFA→DFA algorithm is a decider TM, but it doesn't accept/reject?

More generally, our analogy has been: **"programs = TMs"**, but programs do more than accept/reject?

Definition: Computable Functions

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

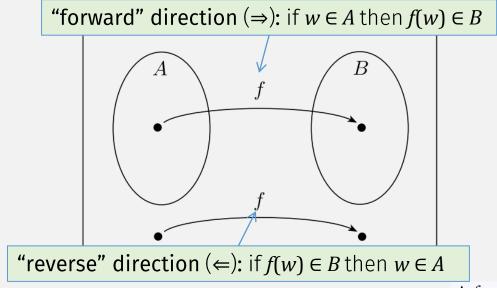
- A **computable function** is represented with a TM that, instead of accept/reject, "outputs" its final tape contents
- Example 1: All arithmetic operations
- Example 2: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.

Definition: Mapping Reducibility

Language A is *mapping reducible* to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$
 ("if and only if"

The function f is called the *reduction* from A to B.



A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Flashback: Equivalence of Contrapositive

"If *X* then *Y*" is equivalent to ... ?

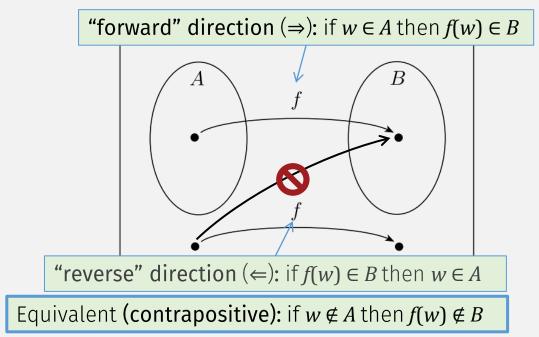
- "If Y then X" (converse)
 - No!
- "If not X then not Y" (inverse)
 - No!

Definition: Mapping Reducibility

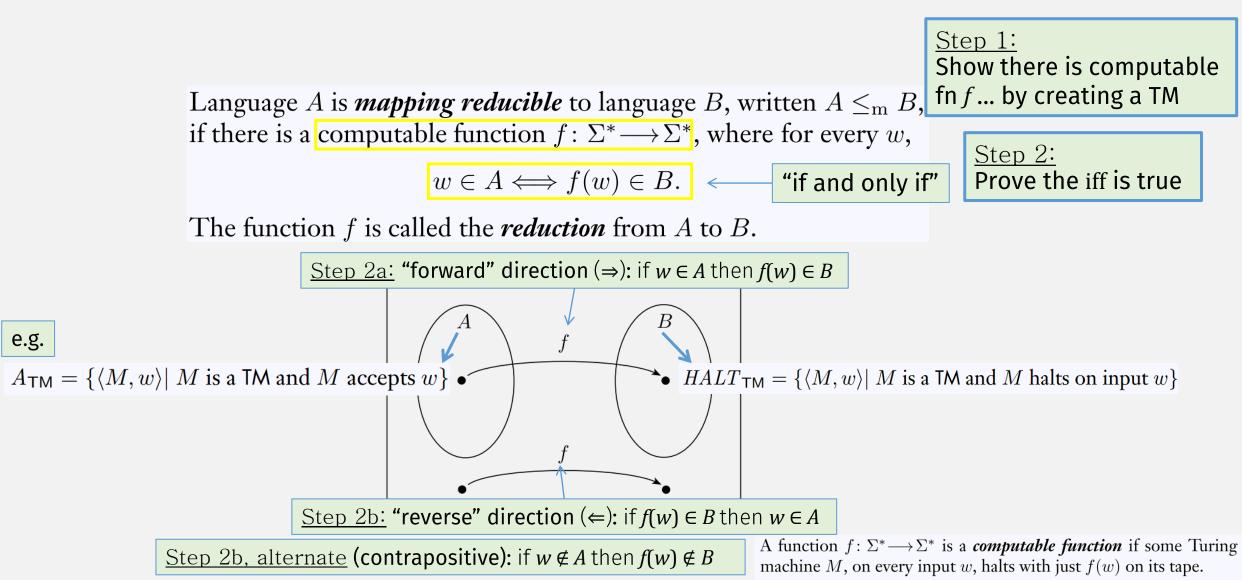
Language A is *mapping reducible* to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$
 (if and only if

The function f is called the *reduction* from A to B.



Proving Mapping Reducibility: 2 Steps



<u>Thm</u>: A_{TM} is mapping reducible to $HALT_{\mathsf{TM}}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ To show: $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$ $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$ Step 1: create computable fn f: $\langle M, w \rangle \rightarrow \langle M', w \rangle$ where: <u>Step 2</u>: show $\langle M, w \rangle \in A_{\mathsf{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\mathsf{TM}}$ $HALT_{\mathsf{TM}}$ A_{TM} The following machine F computes a reduction f. F ="On input $\langle M, w \rangle$: **1.** Construct the following machine M'_{\leftarrow} Converts *M* to *M*' M' = "On input x: 1. Run M on x. <u>Step 2</u>: 2. If M accepts, accept. *M* accepts *w* **3.** If *M* rejects, enter a loop." Language A is *mapping reducible* to language B, written $A \leq_{m} B$, if and only if if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w, **2.** Output $\langle M', w \rangle$." M' is like M, except it $w \in A \iff f(w) \in B.$ M' halts on w always loops when it The function *f* is called the *reduction* from *A* to *B*. Output new M' doesn't accept A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

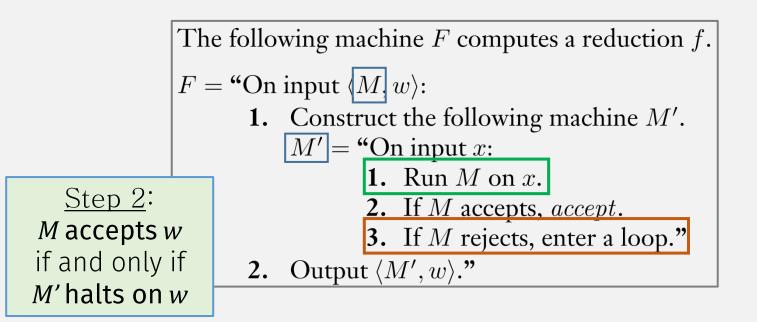
 \Rightarrow If *M* accepts *w*, then *M*' halts on *w*

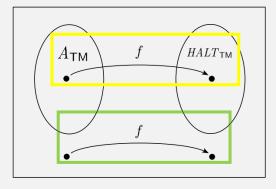
• *M*' accepts (and thus halts) if *M* accepts

⇐ If *M*' halts on *w*, then *M* accepts *w*

(Alternatively) If *M* doesn't accept *w*, then *M*' doesn't halt on *w* (contrapositive)

- Two possibilities for non-acceptance:
 - 1. *M* loops: *M*' loops and doesn't halt
 - 2. M rejects: M' loops and doesn't halt





Uses of Mapping Reducibility

- To prove **Decidability**
- To prove Undecidability

<u>Thm</u>: If $A \leq_{m} B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

Has a decider

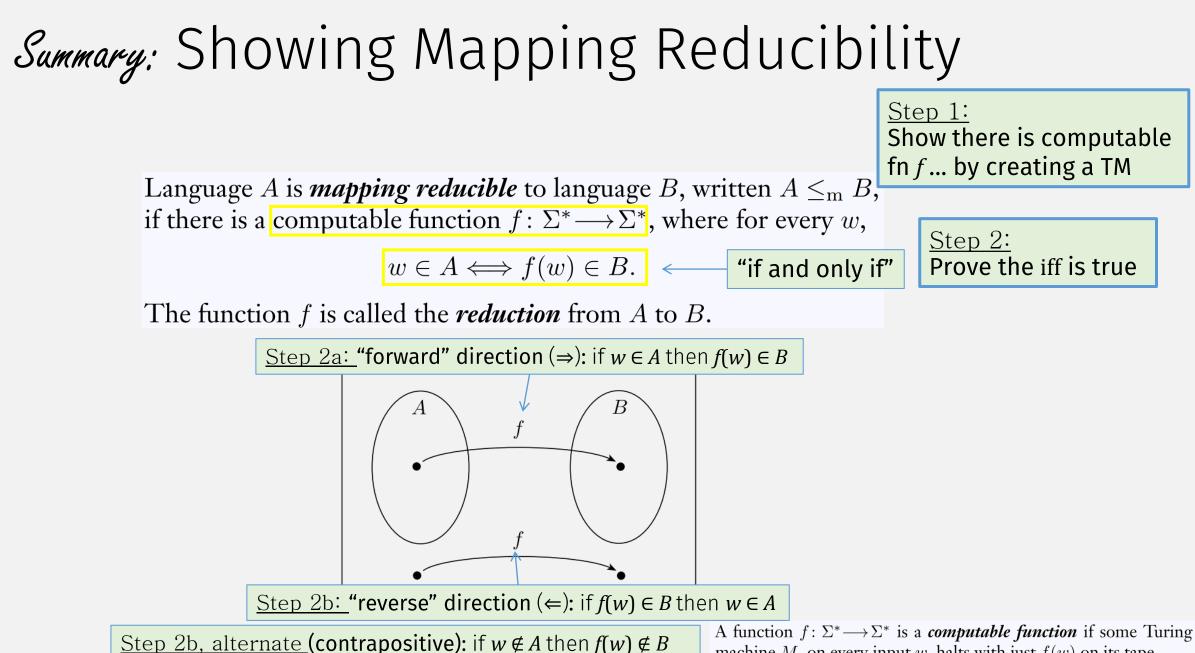
Must create decider

N = "On input w: 1. Compute f(w). decides 2. Run M on input f(w) and output whatever M outputs." decides We know this is true bc of the iff f(specifically the reverse Language A is *mapping reducible* to language B, written $A \leq_{m} B$, direction) if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w, $w \in A \iff f(w) \in B.$ 92 The function f is called the *reduction* from A to B.

<u>COro</u>: If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

- <u>Proof</u> by contradiction.
- <u>Assume</u> *B* is decidable.
- Then A is decidable (by the previous thm).
- <u>Contradiction</u>: we already said A is undecidable

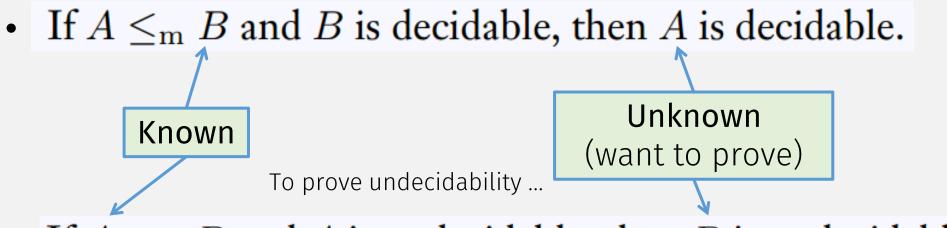
If $A \leq_{m} B$ and B is decidable, then A is decidable.



machine M, on every input w, halts with just f(w) on its tape.

Summary: Using Mapping Reducibility

To prove decidability ...



• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Be careful with the **direction of the reduction**!

Alternate Proof: The Halting Problem $HALT_{TM}$ is undecidable

• If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

- $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$
- Since A_{TM} is undecidable,
- ... and we showed mapping reducibility from A_{TM} to $HALT_{TM}$,
- then HALT_{TM} is undecidable

Flashback: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof by contradiction:

• <u>Assume</u> EQ_{TM} has decider R; use it to create E_{TM} decider:

 $= \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

- S = "On input $\langle M \rangle$, where M is a TM:
 - **1.** Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."

Alternate Proof: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Show mapping reducibility: $E_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$ Step 1: create computable fn f: $\langle M \rangle \rightarrow \langle M_1, M_2 \rangle$, computed by S

$$S = \text{``On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$

$$1. \qquad \text{Construct: } \langle M, M_1 \rangle, \text{ where } M_1 \text{ is a TM that rejects all inputs.}$$

$$2. \qquad \text{Output: } \langle M, M_1 \rangle$$

<u>Step 2:</u> show iff requirements of mapping reducibility (exercise)

And use theorem ...

If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable.

Flashback: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

<u>Proof</u>, by contradiction:

• <u>Assume</u> E_{TM} has decider R; use it to create A_{TM} decider:

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w: 1. Use the description of M and w to construct the TM M_1 2. Run R on input $\langle M_1 \rangle$. $\begin{bmatrix} M_1 = \text{"On input } x: \\ 1. & \text{If } x \neq w, \text{ reject.} \\ 2. & \text{If } x = w, \text{ run } M \text{ on input } w \text{ and } accept \text{ if } M \text{ does."} \end{bmatrix}$

3. If R accepts, reject; if R rejects, accept."

If *M* accepts *w*, M_1 <u>not</u> in E_{TM} !

• So this only reduces A_{TM} to $\overline{E_{\text{TM}}}$ <

Alternate Proof: E_{TM} is undecidable

 $E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

<u>Step 1:</u> create computable fn *f*: <*M*, *w*> \rightarrow <*M*'>, computed by *S*

 $S = \text{``On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:$ 1. Use the description of M and w to construct the TM M_1 2. Output: $\langle M_1 \rangle$. 3. If R accepts, reject; if R rejects, accept."

If *M* accepts *w*, M_1 <u>not</u> in E_{TM} !

- So this only reduces A_{TM} to $\overline{E_{\text{TM}}}$ <
- It's good enough! Still proves E_{TM} is undecidable
 - If ... undecidable langs are closed under complement

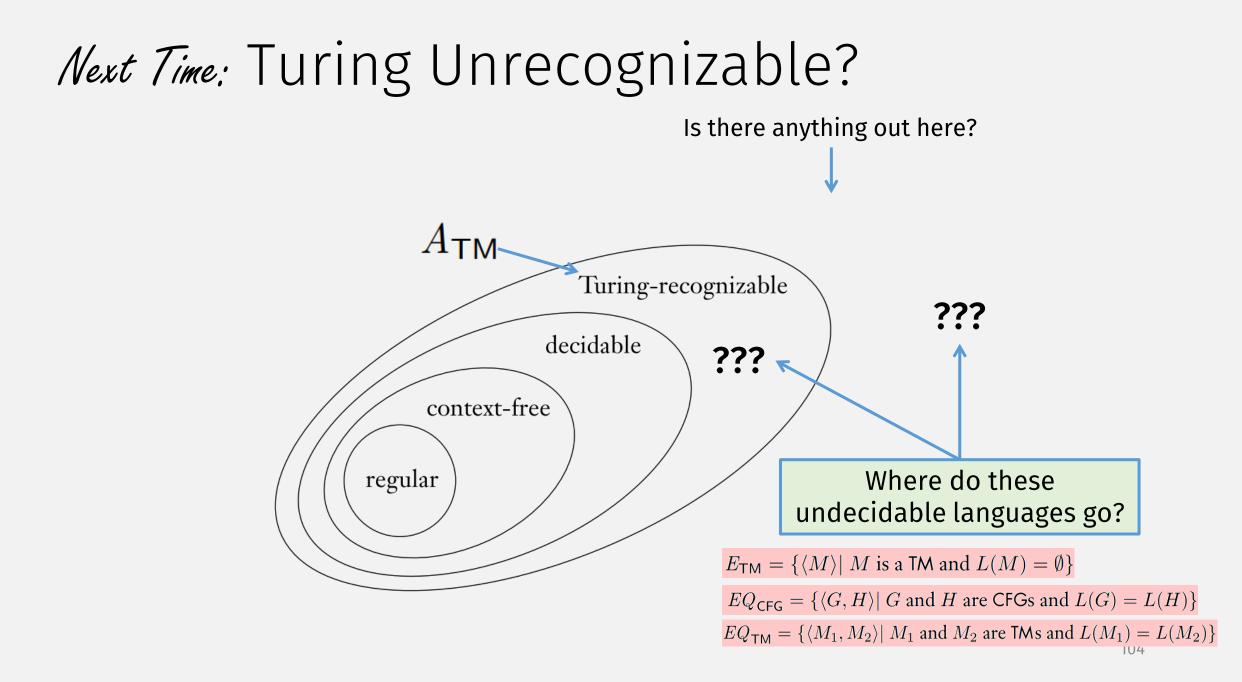
Undecidable Langs Closed under Complement

Proof by contradiction

- <u>Assume</u> some lang L is undecidable and \overline{L} is decidable ...
 - Then *L* has a decider

Contradiction!

- ... then we can create decider for *L* from decider for \overline{L} ...
 - Because decidable languages are closed under complement (hw10?)!



Check-in Quiz 11/17

On gradescope