UMB CS 420
Mapping Reducibility
Thursday, November 17, 2022
Announcements

• Current hw: HW 9
 • Due Mon 11/21 11:59pm EST

• Next hw: HW 10
 • Out: Tue 11/22
 • Due: Mon 12/5
 • 2 weeks due to Thanksgiving break
Last time: Undecidable ...

- $\text{REGULAR}_{TM} = \{<M> \mid M\text{ is a TM and } L(M)\text{ is a regular language}\}$

- $\text{CONTEXTFREE}_{TM} = \{<M> \mid M\text{ is a TM and } L(M)\text{ is a CFL}\}$

- $\text{DECIDABLE}_{TM} = \{<M> \mid M\text{ is a TM and } L(M)\text{ is a decidable language}\}$

- $\text{FINITE}_{TM} = \{<M> \mid M\text{ is a TM and } L(M)\text{ is a finite language}\}$

- ...

- $\text{ANYTHING}_{TM} = \{<M> \mid M\text{ is a TM and “… anything …” about } L(M)\}$
Rice’s Theorem: $\text{ANYTHING}_{\text{TM}}$ is Undecidable

$\text{ANYTHING}_{\text{TM}} = \{<M> \mid M \text{ is a TM and } \text{... anything ... about } L(M)\}$

• “... Anything ...”, more precisely:
 • For any M_1, M_2, if $L(M_1) = L(M_2)$...
 • ... then $M_1 \in \text{ANYTHING}_{\text{TM}} \Leftrightarrow M_2 \in \text{ANYTHING}_{\text{TM}}$

• Also, “... Anything ...” must be “non-trivial”:
 • $\text{ANYTHING}_{\text{TM}} \neq \{\}$
 • $\text{ANYTHING}_{\text{TM}} \neq \text{set of all TMs}$
Rice’s Theorem: $\text{ANYTHING}_{\text{TM}}$ is Undecidable

$\text{ANYTHING}_{\text{TM}} = \{<M> | M \text{ is a TM and ... anything ... about } L(M)\}$

Proof by contradiction

• Assume some language satisfying $\text{ANYTHING}_{\text{TM}}$ has a decider R.
 • Since $\text{ANYTHING}_{\text{TM}}$ is non-trivial, then there exists $M_{\text{ANY}} \in \text{ANYTHING}_{\text{TM}}$
 • Where R accepts M_{ANY}

• Use R to create decider for A_{TM}:

 On input $<M, w>$:

 • Create M_w:
 - $M_w = \text{on input } x$:
 - Run M on w
 - If M rejects w: reject x
 - If M accepts w: Run M_{ANY} on x and accept if it accepts, else reject

 If M accepts w: $M_w = M_{\text{ANY}}$
 If M doesn’t accept w: M_w accepts nothing

 • Run R on M_w
 • If it accepts, then $M_w = M_{\text{ANY}}$, so M accepts w, so accept
 • Else reject

These two cases must be different, (so R can distinguish when M accepts w)

Wait! What if the TM that accepts nothing is in $\text{ANYTHING}_{\text{TM}}$!

Proof still works! Just use the complement of $\text{ANYTHING}_{\text{TM}}$ instead!
Prove that the following is undecidable:

\{<M> | M is a TM that installs malware\}
Rice’s Theorem Implication

\{<M> \mid M \text{ is a TM that installs malware}\}

Undecidable!
(by Rice’s Theorem)
Flashback: “Reduced”

Thm: HALT_{TM} is undecidable

Proof, by contradiction:

• Assume: HALT_{TM} has decider R; use it to create A_{TM} decider:

 $S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\n 1. \text{ Run TM } R \text{ on input } \langle M, w \rangle.\n 2. \text{ If } R \text{ rejects, reject.}\n 3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.}\n 4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.}$$

 Use R to first check if M will loop on w

 Then run M on w knowing it won’t loop

• Contradiction: A_{TM} is undecidable and has no decider!

Let’s formalize this conversion, i.e., mapping reducibility
Flashback: A_{NFA} is a decidable language

$A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$

Decider for A_{NFA}:

$N = \text{“On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:} \quad$

1. Convert NFA B to an equivalent DFA C, using the procedure $\text{NFA} \rightarrow \text{DFA}$
2. Run TM M on input $\langle C, w \rangle$.
3. If M accepts, accept; otherwise, reject.”

We said this $\text{NFA} \rightarrow \text{DFA}$ algorithm is a decider TM, but it doesn’t accept/reject?

More generally, our analogy has been: “programs = TMs”, but programs do more than accept/reject?
Definition: Computable Functions

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

- **A computable function** is represented with a TM that, instead of accept/reject, “outputs” its final tape contents.

- **Example 1**: All arithmetic operations

- **Example 2**: Converting between machines, like DFA→NFA
 - E.g., adding states, changing transitions, wrapping TM in TM, etc.
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

“The function f is called the reduction from A to B.”

A function $f : \Sigma^* \to \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Flashback: Equivalence of Contrapositive

“If X then Y” is equivalent to ... ?

- “If Y then X” (converse)
 - No!

- “If not X then not Y” (inverse)
 - No!

✓ “If not Y then not X” (contrapositive)
 - Yes!
Definition: Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

"if and only if"

The function f is called the **reduction** from A to B.

"forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

"reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B"
Proving Mapping Reducibility: 2 Steps

Language A is **mapping reducible** to language B, written $A \leq_{m} B$, if there is a *computable function* $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1:
Show there is computable function f... by creating a TM

Step 2:
Prove the iff is true

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Thm: A_{TM} is mapping reducible to $HALT_{TM}$

To show: $A_{TM} \leq_m HALT_{TM}$

Step 1: create computable fn f: $<M, w> \rightarrow <M', w>$ where:

Step 2: show $<M, w> \in A_{TM}$ if and only if $<M', w'> \in HALT_{TM}$

The following machine F computes a reduction f.

$F =$ “On input $<M, w>$:
1. Construct the following machine M'.

M' = “On input x:
1. Run M on x.
2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output $<M', w>$.”

M' is like M, except it always loops when it doesn’t accept.

Output new M'

Converting M to M'

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function f: $\Sigma^* \rightarrow \Sigma^*$, where for every w:

$w \in A \iff f(w) \in B$.

The function f is called the reduction from A to B.

A function f: $\Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
⇒ If M accepts w, then M' halts on w
 - M' accepts (and thus halts) if M accepts

⇐ If M' halts on w, then M accepts w

⇐ (Alternatively) If M doesn’t accept w, then M' doesn’t halt on w (contrapositive)
 - Two possibilities for non-acceptance:
 1. M loops: M' loops and doesn’t halt
 2. M rejects: M' loops and doesn’t halt

The following machine F computes a reduction f.

$F = “On$ input $\langle M, w \rangle$:
 1. Construct the following machine M'.
 $M' = “On$ input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter a loop.”
 2. Output $\langle M', w \rangle$.”

Step 2: M accepts w if and only if M' halts on w
Uses of Mapping Reducibility

• To prove Decidability

• To prove Undecidability
Thm: If $A \leq_m B$ and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

$N = \text{“On input } w:\n1. \text{ Compute } f(w).\n2. \text{ Run } M \text{ on input } f(w) \text{ and output whatever } M \text{ outputs.”} \]

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

\[w \in A \iff f(w) \in B. \]

The function f is called the *reduction* from A to B.
Coro: If $A \leq_m B$ and A is undecidable, then B is undecidable.

- **Proof** by contradiction.

- **Assume** B is decidable.

- **Then A is decidable** (by the previous thm).

- **Contradiction:** we already said A is undecidable
Summary: Showing Mapping Reducibility

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn $f \ldots$ by creating a TM

Step 2: Prove the iff is true

Step 2a: “forward” direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: “reverse” direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b, alternate (contrapositive): if $w \notin A$ then $f(w) \notin B$

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Summary: Using Mapping Reducibility

To prove decidability...

- If $A \leq_m B$ and B is decidable, then A is decidable.

To prove undecidability...

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!
Alternate Proof: The Halting Problem

\(\text{HALT}_{TM} \) is undecidable

- If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.

- Must be known

- \(A_{TM} \leq_m \text{HALT}_{TM} \)

- Since \(A_{TM} \) is undecidable,
- \(\ldots \) and we showed mapping reducibility from \(A_{TM} \) to \(\text{HALT}_{TM} \),
- then \(\text{HALT}_{TM} \) is undecidable.
Flashback: \(EQ_{TM} \) is undecidable

\[
EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}
\]

Proof by contradiction:

- **Assume** \(EQ_{TM} \) has decider \(R \); use it to create \(E_{TM} \) decider:
 \[
 E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}
 \]

\[
S = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}
\]

1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
2. If \(R \) accepts, *accept*; if \(R \) rejects, *reject.*
Alternate Proof: \(EQ_{TM} \) is undecidable

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Show mapping reducibility: \(E_{TM} \leq_m EQ_{TM} \)

Step 1: create computable fn \(f: \langle M \rangle \rightarrow \langle M_1, M_2 \rangle \), computed by \(S \)

\[S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \]

1. **Construct:** \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
2. **Output:** \(\langle M, M_1 \rangle \)

Step 2: show iff requirements of mapping reducibility (exercise)

And use theorem ...

If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
Flashback: \(E_{TM}\) is undecidable

\[E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset\}\]

Proof, by contradiction:

- Assume \(E_{TM}\) has *decider* \(R\); use it to create \(A_{TM}\) *decider*:

 \[S = \text{"On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\]

 1. Use the description of \(M\) and \(w\) to construct the TM \(M_1\):
 \[M_1 = \text{"On input } x:\]
 1. If \(x \neq w\), reject.
 2. If \(x = w\), run \(M\) on input \(w\) and *accept* if \(M\) does."

 2. Run \(R\) on input \(\langle M_1 \rangle\).

 3. If \(R\) accepts, *reject*; if \(R\) rejects, *accept*.

- So this only reduces \(A_{TM}\) to \(E_{TM}\)

 If \(M\) accepts \(w\), \(M_1\) not in \(E_{TM}\)!
Alternate Proof: E_{TM} is undecidable

$E_{TM} = \{ \langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

Show mapping reducibility??: $A_{TM} \leq_m E_{TM}$

Step 1: create computable fn f: $\langle M, w \rangle \rightarrow \langle M' \rangle$, computed by S

$S =$ “On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M_1

 $M_1 =$ “On input x:
 1. If $x \neq w$, reject.
 2. If $x = w$, run M on input w and accept if M does.”

2. Output: $\langle M_1 \rangle$.
3. If R accepts, reject; if R rejects, accept.”

- So this only reduces A_{TM} to $\overline{E_{TM}}$
- It’s good enough! Still proves E_{TM} is undecidable
 - If ... undecidable langs are closed under complement

Step 2: show iff requirements of mapping reducibility (exercise)
Undecidable Langs Closed under Complement

Proof by contradiction

• **Assume** some lang L is undecidable and \overline{L} is decidable ...
 • Then \overline{L} has a decider

• **... then** we can create decider for L from decider for \overline{L} ...
 • Because decidable languages are closed under complement (hw10?)!

Contradiction!
Next Time: Turing Unrecognizable?

Is there anything out here?

Where do these undecidable languages go?

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Check-in Quiz 11/17

On gradescope