Announcements

• HW 9 in
 • Due Mon 11/21 11:59pm EST

• HW 10 out
 • Due Mon 12/5 11:59pm EST
 • 2 week assignment

• No class Thursday. Happy Thanksgiving!
Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a **computable function** $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

Step 1: Show there is computable fn f ... by creating a TM

Step 2: Prove the iff is true for f

Step 2a: "forward" direction (\Rightarrow): if $w \in A$ then $f(w) \in B$

Step 2b: "reverse" direction (\Leftarrow): if $f(w) \in B$ then $w \in A$

Step 2b: Equivalent (contrapositive): if $w \notin A$ then $f(w) \notin B$
Last Time: Using Mapping Reducibility

To prove decidability...

- If $A \leq_m B$ and B is decidable, then A is decidable.

To prove undecidability...

- If $A \leq_m B$ and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction!
Flashback: \(E_{Q_{TM}} \) is undecidable

\[E_{Q_{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Proof by contradiction:

- Assume \(E_{Q_{TM}} \) has decider \(R \); use to create \(E_{TM} \) decider:

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[S = \text{"On input } \langle M \rangle \text{, where } M \text{ is a TM:
1. Run } R \text{ on input } \langle M, M_1 \rangle \text{, where } M_1 \text{ is a TM that rejects all inputs.
2. If } R \text{ accepts, accept; if } R \text{ rejects, reject."} \]
Alternate Proof: EQ_{TM} is undecidable

Proof by mapping reducibility: $E_{TM} \leq_m EQ_{TM}$

Step 1: create computable fn f, computed by TM S

$S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$
1. \text{Construct: } \langle M, M_1 \rangle, \text{ where } M_1 \text{ is a TM that rejects all inputs.}$$
2. \text{Output: } \langle M, M_1 \rangle$

Step 2: show iff requirements of mapping reducibility

Do for HW 10!

And use theorem ...

If $A \leq_m B$ and A is undecidable, then B is undecidable.
Flashback: E_{TM} is undecidable

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Proof, by contradiction:

- Assume E_{TM} has decider R; use to create A_{TM} decider:

$S =$ “On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

 1. Use the description of M and w to construct the TM M_1

 $M_1 =$ “On input x:

 1. If $x \neq w$, reject.
 2. If $x = w$, run M on input w and accept if M halts.

 2. Run R on input $\langle M_1 \rangle$.

 3. If R accepts, reject; if R rejects, accept.”

If M accepts w, then M_1 not in E_{TM}! So do the opposite!

M_1:
- accepts w if M does not halt
- rejects everything else
Alternate Proof: \(E_{TM} \) is undecidable

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Proof, by mapping reducibility?: \(A_{TM} \leq_m E_{TM} \)

Step 1: create computable fn \(f: \langle M, w \rangle \rightarrow \langle M_1 \rangle \), computed by \(S \)

\[
S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n
1. Use the description of } M \text{ and } w \text{ to construct the TM } M_1
\]

\[
M_1 = \text{“On input } x: \\
1. \text{ If } x \neq w, \text{ reject.} \\
2. \text{ If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does.”}
\]

\[
2. \text{ Output: } \langle M_1 \rangle.
3. \text{ If } R \text{ accepts, reject; if } R \text{ rejects, accept.”}
\]

Step 2: show iff requirements of mapping reducibility:

Do for HW 10!

- **This reduces** \(A_{TM} \) **to** \(E_{TM} \) !!
- **It’s good enough, if:** undecidable langs are **closed** under complement
Turing Unrecognizable?

Is there anything out here?

Where do these undecidable languages go?

\[E_{TM} = \{ \{M\} | \text{M is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \{G, H\} | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{TM} = \{ \{M_1, M_2\} | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- **Lemma 1:** The set of all languages is *uncountable*
 - **Proof:** Show there is a bijection with another uncountable set ...
 - ... The set of all infinite binary sequences

- **Lemma 2:** The set of all TMs is *countable*

- Therefore, some language is not recognized by a TM
 (pigeonhole principle)
Mapping a Language to a Binary Sequence

\[\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \} \]
\[A = \{ 0, 00, 01, 000, 001, \ldots \} \]
\[\chi_A = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ \ldots \]

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise
Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

- **Lemma 1:** The set of all languages is uncountable
 - **Proof:** Show there is a bijection with another uncountable set...
 - ... The set of all infinite binary sequences
 - Now just prove set of infinite binary sequences is uncountable (exercise)

- **Lemma 2:** The set of all TMs is countable
 - Because every TM M can be encoded as a string $<M>$
 - And set of all strings is countable (from hw9)

- Therefore, some language is not recognized by a TM
Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the **complement** of a Turing-recognizable language.
Thm: Decidable \iff Recognizable & co-Recognizable
Thm: Decidable \iff Recognizable & co-Recognizable

\Rightarrow If a language is \textbf{decidable}, then it is \textbf{recognizable} and \textbf{co-recognizable}
- Decidable \Rightarrow Recognizable:
 - A decider is a recognizer (that always halts)
- Decidable \Rightarrow Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above

\Leftarrow If a language is \textbf{recognizable} and \textbf{co-recognizable}, then it is \textbf{decidable}
Thm: Decidable \Leftrightarrow Recognizable & co-Recognizable

\Rightarrow If a language is **decidable**, then it is **recognizable** and **co-recognizable**
- Decidable \Rightarrow Recognizable:
 - A decider is a recognizer (that always halts)
- Decidable \Rightarrow Co-Recognizable:
 - To create co-decider from a decider ... switch reject/accept of all inputs
 - A co-decider is a co-recognizer, for same reason as above

\Leftarrow If a language is **recognizable** and **co-recognizable**, then it is **decidable**
- Let $M_1 = \text{recognizer for the language}$,
- and $M_2 = \text{recognizer for its complement}$
 - **Decider** M:
 - Run 1 step on M_1,
 - Run 1 step on M_2,
 - Repeat, until one machine accepts. If it’s M_1, accept. If it’s M_2, reject

Termination Arg: Either M_1 or M_2 must accept and halt, so M halts and is a decider
A Turing-unrecognizable language

• We’ve proved:

\[A_{TM} \text{ is Turing-recognizable} \]

\[A_{TM} \text{ is undecidable} \]

• So:

\[\overline{A_{TM}} \text{ is not Turing-recognizable} \]

• Because: recognizable & co-recognizable \(\Rightarrow\) decidable
Is there anything out here?

Where do these undecidable languages go?

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Using Mapping Reducibility to Prove ...

- Decidability
- Undecidability
- Recognizability
- Unrecognizability
More Helpful Theorems

If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

• Same proofs as:
 If $A \leq_m B$ and B is decidable, then A is decidable.
 If $A \leq_m B$ and A is undecidable, then B is undecidable.
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1$ and M_2 are TMs and $L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Mapping Reducibility implies Mapping Red. of Complements

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the **reduction** from A to B.

\[A \leq_m B \]

implies

\[\overline{A} \leq_m \overline{B} \]
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable

$EQ_{TM} = \{ (M_1, M_2) \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

1. EQ_{TM} is not Turing-recognizable

Two Choices:
- Create Computable fn: $A_{TM} \rightarrow EQ_{TM}$
- Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

And use theorem ...

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Thm: EQ_{TM} is not Turing-recognizable

$EQ_{TM} = \{(M_1, M_2) | M_1$ and M_2 are TMs and $L(M_1) \neq L(M_2)\}$

- **Create Computable fn:** $A_{TM} \rightarrow \overline{EQ_{TM}}$

 $\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

 \[F = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:} \]
 1. Construct the following two machines, M_1 and M_2.
 \[M_1 = \text{"On any input:} \]
 \[1. \text{ Reject."} \]
 \[M_2 = \text{"On any input:} \]
 \[1. \text{ Run } M \text{ on } w. \text{ If it accepts, accept."} \]
 2. Output $\langle M_1, M_2 \rangle$.

 - Accepts nothing
 - Accepts nothing or everything

Step 2, iff:

\Rightarrow If M accepts w, then $M_1 \neq M_2$

\Leftarrow If M does not accept w, then $M_1 = M_2$
Thm: EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

1. EQ_{TM} is not Turing-recognizable
 - Create Computable fn: $\overline{A_{TM}} \rightarrow EQ_{TM}$
 - Or Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$
 - **DONE!**

 If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

2. \overline{EQ}_{TM} is not co-Turing-recognizable
 - (A lang is co-Turing-recog. if it is complement of Turing-recog. lang)
EQ_{TM} is not Turing-recognizable

- Create Computable fn: $A_{TM} \rightarrow \overline{EQ_{TM}}$

Step 1

$\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle$ M_1 and M_2 are TMs and $L(M_1) \neq L(M_2)$

$$F = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:}$$

1. Construct the following two machines, M_1 and M_2.
 $M_1 = \text{“On any input:}$$
 1. \text{Reject.”}$

$M_2 = \text{“On any input:}$
 1. Run M on w. If it accepts, accept.”

2. Output $\langle M_1, M_2 \rangle$."

Accepts nothing

Accepts nothing or everything
Now: \(\overline{EQ_{TM}} \) is not Turing-recognizable

- Create Computable fn: \(A_{TM} \rightarrow \overline{EQ_{TM}} \)

Step 1: \(\langle M, w \rangle \rightarrow \langle M_1, M_2 \rangle \)
\(M_1 \) and \(M_2 \) are TMs and \(L(M_1) \neq L(M_2) \)

\[F = \text{“On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ a string:} \]

1. Construct the following two machines, \(M_1 \) and \(M_2 \).
 \[M_1 = \text{“On any input:} \]
 \[\begin{align*}
 \text{1. Accept.”} \\
 \text{M_2 = “On any input:} \\
 \text{1. Run } M \text{ on } w. \text{ If it accepts, accept.”}
 \end{align*} \]

2. Output \(\langle M_1, M_2 \rangle \).

Step 2, iff:
\(\Rightarrow \) If \(M \) accepts \(w \), then \(M_1 \equiv M_2 \)
\(\Leftarrow \) If \(M \) does not accept \(w \), then \(M_1 \not\equiv M_2 \)

DONE!
Unrecognizable Languages?

Where do these go?

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{\text{CFG}} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]
Unrecognizable Languages

A_{TM}

Turing-recognizable

decidable

context-free

regular

$E_{TM} = \{\{M\} | M \text{ is a TM and } L(M) = \emptyset\}$

$EQ_{TM} = \{\{G, H\} | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$

Where do these go?

next
Thm: EQ_{CFG} is not Turing-recognizable

Recognizable & co-recognizable implies decidable

• We’ve proved:
 EQ_{CFG} is undecidable

• We now prove:
 EQ_{CFG} is co-Turing recognizable

• And conclude that:
 • EQ_{CFG} is not Turing recognizable
Thm: EQ_{CFG} is co-Turing-recognizable

$EQ_{CFG} = \{ (G, H) | G$ and H are CFGs and $L(G) = L(H) \}$

Recognizer for $\overline{EQ_{CFG}}$:

- On input $<G, H>$:
 - For every possible string w:
 - Accept if $w \in L(G)$ and $w \notin L(H)$
 - Or accept if $w \in L(H)$ and $w \notin L(G)$
 - Else reject

This is only a recognizer because it loops for ever when $L(G) = L(H)$
Unrecognizable Languages

Where do these go?

\[E_{TM} = \{ \{M\} \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\[EQ_{CFG} = \{ \{G, H\} \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]
Unrecognizable Languages

Where do these go?

\[E_{TM} = \{ \{M\} | M \text{ is a TM and } L(M) = \emptyset \} \]
Thm: E_{TM} is not Turing-recognizable

Recognizable & co-recognizable implies decidable

• We’ve proved:
 • E_{TM} is undecidable

• We now prove:
 E_{TM} is co-Turing recognizable

• And then conclude that:
 • E_{TM} is not Turing recognizable
Thm: E_{TM} is co-Turing-recognizable

$E_{TM} = \{\langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}$

Recognizer for $\overline{E_{TM}}$:

Let s_1, s_2, \ldots be a list of all strings in Σ^*

“On input $\langle M \rangle$, where M is a TM:
1. Repeat the following for $i = 1, 2, 3, \ldots$
2. Run M for i steps on each input, s_1, s_2, \ldots, s_i.
3. If M has accepted any of these, accept. Otherwise, continue.”

This is only a recognizer because it loops for ever when $L(M)$ is empty
Unrecognizable Languages

- A_{TM}
- Turing-recognizable
- Decidable
- Context-free
- Regular

E_{TM}
$E_{Q_{TM}}$
$E_{Q_{CFG}}$
Check-in Quiz 11/22
On gradescope