UMB CS 420
NP-Completeness

Thursday, December 8, 2022 MY HoBBY:

EMBEDDING NP-(DMPLETE PROBLEMS IN RESTRURANT ORDERS

CHOTCHKIES ResTAURAWT W VR O T IERS A
<« APPENZERS | . EXACTY? UHH.
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK.
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six OER
TABLES TO GET T0 —
SIDE SALAD 3.35 B e
HOT WINGS 5-55] SOMETHING ON TRAVELING SALESNAN? /
MOZZAREUA STIKS ~ 4-20 \
SAMPLER PATE 580 % O ‘%Ob %
—— SANDWICHES ~— d /
RARREN1IE Lsc

%/{/{0«/{0@#(@/{13’

« HW 11 out
« Due Monday 12/12 11:59pm

* HW 12

« Out Tuesday 12/13
« Due Monday 12/20 11:59pm

* Course eval today

last Tine: \NETITIETS, FOrmally

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}
|

extra argument:
can be any string that helps
to find a result in poly time
(is often just a result itself)

A = {w| V accepts (w, ¢) for some string cL. certificate, or proof

A verifier for a language A is an ‘flgorithm V, where

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

 Cert c has length at most n*, where n = length of w

Last Tive: THe class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers. 2 ways to Sh.OV.V that
a language Is In NP

T EIEGREIM e unaussumessasansaseas s ass ansa anaa s s s aun s ansan s | AR AR R R an R mnma e

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

Last Tive: NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
* A clique is a subgraph where every two nodes are connected

* A k-clique contains k nodes <t i T

set

sum O @

o« SUBSET-SUM = {(S,t)| S ={x1,...,xr}, and for some

subset

—{y1,...,u} CH{z1,..., 21}, we have Xy; = t}—

sum

« Some subset of a set of numbers S must sum to a total ¢

- eg, ({4,

11,16,]21

.27}, 25) € SUBSET-SUM

131

Theorem: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,...,xx}, and for some

PROOF IDEA The subsetis the c:f:rtif'uf.:atei

oo osu} C{x1,...,xL}, we have Xy; = t}

To prove a lang is in NP, create either:
- Deterministic poly time verifier
- Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V' = “On input ((S, 1), c):

1. Test whether ¢ is a collection of numbers that sum to ¢.

2. Test whether S

3. If both pass, accept; otherwise, reject.”

contains all the numbers in c.

Don't forget to compute run time!
Does this run in poly time?

132

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM = {<S= t>| S = {3'313 cee -'I»'k}, and for some
{yl"'"’yi} g {Ilz--ogﬂjk}g we h‘clVe Eyt :f}

To prove a lang is in NP, create either:
- Deterministic poly time verifier

- Nondeterministic poly time decider .
Don't forget to compute run time!

Does this run in poly time?

r S

| ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

| N =“On input (S,1):
Nondeterministically runs 1. Nondeterministically select a subset ¢ of the numbers in S.
the verifier on each 2. Test whether c is a collection of numbers that sum to ¢.
possible subset in parallel 3. If the test passes, accept; otherwise, reject.”

Last [ime: NP VS P

P The class of languages that have a deterministic poly time decider

.e., the class of languages that can be solved “quickly”
« Want search problems to be in here ... but they often are not

NP The class of languages that have a deterministic poly time verifier

Also, the class of languages that have a nondeterministic poly time decider

.e., the class of language that can be verified “quickly”
» Actual search problems (even those not in P) are often in here

One of the Greatest unsolved

B Question: Does P = NP?

o
chizgaybe wiy/ge CLIQUE

d tomofrow 27,

/ HAMPATH
, d/'scol/ere) COMPOSITES

Proving P # NP is hard: how do you prove that an algorithm

won't ever have a poly time solution?
(in general, it's hard to prove that something doesn't exist)

Not Much Progress on whether P=NP 7

The Status of the P Versus NP Problem

By Lance Fortnow o
Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 : 3
10.1145/1562164.1562186

LANCE FORTNOW

« One important concept:
 NP-Completeness

136

NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reduciblesto B.| hard????
single language

« How does this help the P = NP problem? | what's this?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.

tastback: Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

Arm = {{M,w)| M isa TM and M acce

w e A< f(w) € B. IMPORTANT: “if and only if” ...

The function £ is called the reduction from A to B| To show mapping reducibility:

1. create computable fn

... Means

2. and then show forward direction
3. and reverse direction
(or contrapositive of reverse direction)

A <m

B

A function f: ¥X*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Mapping Reducibility

To show poly time mapping reducibility:
Language A is mapping reducible to language | 1. Create computable fn

if there is a computable function f: 2*— »*, | 2. show computable fn runs in poly time
3. then show forward direction

w € A<= f(w) € B. |4 and show reverse direction
(or contrapositive of reverse direction)

The function f is called the reduction from A 1
Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: >*— >* exists, where for every
w,

weE A <— f(w) c B.< Don't forget: “if and only if” ...

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turlng
machine M, on every input w, halts with just f(w) on its tape

Flastback If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

This proof only works because of the if-and-only-if requirement

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.

e ¥ c¥
Thm: IfA gml_)B and B rs—deetrdable; then A 1s-deetdable-

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 2*, where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.

c? c?¥
Thm: IfA gml_)B and B rsdeetdable; then A 1is-deeidable:

oly time oly time
PROOF Welet M be tht—"-Adecider for B and f be th%educdon from A to B.
We describe &lecider N for A as follows.
poly time

“On input w:

N =
1. Compute f(w).
2. Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
poly time |
Language A igynapping reducible to language B, written A <, B,
; if there is a computable function f: ¥* — 3%, where for every w,
.] 143
The function f is called the reduction from A to B.

THEOREM = o

If B is NP-complete and B € P, then P = NP.

To prove P = NP, must show:

1. every language in P is in NP\ jeriniTionN

» Trivially true (why?) ANanguage B is NP-complete if it satisfies two conditions:
2. every language in NP is In P/ 1\Bisin NP, and
 Given a language A € NP ... 2. every A in NP is polynomial time reducible to B.

e ... can poly time mapping redjice A to B
« because Bis NP-Complete

« Then Aalso €P... Next: How to do poly
 Because A <p Band B € P,then A € P time mapping
reducibility

Thus, If a language B i1s NP-complete and in P, then P = NP

Theorem: 3SAT is polynomial time reducible to CLIQUE.

last Tive: CLIQUE 1s in NP j/ QCE Q
CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA 'The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V = “On mput ((G, k), c):
1. Test whether c is a subgraph with & nodes in G.
2. ’Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

146

Theorem: 3SAT is polynomial time reducible to CLIQUE.

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE

150

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z

151

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

152

Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (TAyY) V (xAZ)

153

Boolean Satisfiability

« A Boolean formula is satisfiable if ...

. ... there is some assignment of TRUE or FALSE (1 or 0) to its
variables that makes the entire formula TRUE

e |Is (TAy) V (zAZ) satisfiable?
* Yes
 x = FALSE,

y = TRUE,
7z = FALSE

The Boolean Satisfiability Problem

SAT = {(¢)| ¢ is a satisfiable Boolean formula}
Theorem: SAT Is in NP:

e Let n =the number of variables in the formula

Verifier:

On input <¢, c>, where c is a possible assignment of variables in ¢ to values:
* Plug values from c into ¢, Accept if result is TRUE

Running Time: O(n)

| Non-deterministic Decider: - - }
On input <¢>, where ¢ is a boolean formula:
« Non-deterministically try all possible assignments in parallel
« Accept If any satisfy ¢ }

‘Running Time: Checking each assignment takes time 0O(n)

Theorem: 3SAT is polynomial time reducible to CLIQUE.

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (T N 'y) V (:1: N E)

157

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)

Literal A var or a negated var T Or T.

158

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.

Clause Literals ORed together (:1'31 VIoVIzV 334)

159

More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

160

More Boolean Formulas

" hmoolean | s | campe

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)
3CNF Formula Three literals in each clause (z1 V@ vas) A (23 VIS Vag) A (a3 VTGV ag)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

161

The 3SAT Problem

3SAT = {(¢)| ¢ is a satistiable 3cnf-formula}

Theorem: SAT Is Poly Time Reducible to 3SAT

SAT = {(®)| ¢ is a satisfiable Boolean formula} e * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}

To show poly time mapping reducibility:
1. create computable fn f,
2. show that it runs in poly time,
3. then show forward direction of mapping red.,
= if ¢ € SAT, then f(¢) € 3SAT
4. and reverse direction
< if f¢p) € 3SAT, then ¢ € SAT
(or contrapositive of reverse direction)
& (alternative) if ¢ & SAT, then f(¢p) & 3SAT

Theorem: SAT Is Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formula} « * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}
f
‘/’_—__—_\—\.

Want: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVasVasVay) < (@1VaxVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... this thm is special,
don't need to separate
forward/reverse dir for

this thm: bc each step is
already a known “law”

heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

To show poly time mapping reducibility:
1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red.
4. and reverse direction

(or contrapositive of reverse direction)

heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

« Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢p € 3SAT - # edges poly in #
« Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the clique!
e Eg,x,=0,x,=1

< If ¢ & 3SAT

« Then for any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won't be connected to another group, preventing the clique

heorem: 3SAT is polynomial time reducible to CLIQUE.

A B
f

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
-

 But this a single language reducing to another single language

NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reducible to B. hard????
single language

It's very hard to prove the first
NP-Complete problem!

(Just like figuring out the first

. undecidable problem was hard!)
But after we find one, then we use that problem

to prove other problems NP-Complete!
TH EOREM ..

It B is NP-complete and B <p C for C' in NP, then C' is NP-complete.

Mewt Time: The Cook-Levin Theorem

The first NP-
Complete

problem
THEOREM -------------------

SAT is NP-complete. But it makes sense that every

problem can be reduced to it ...

No quiz!
Fill out course evals

On gradescope

