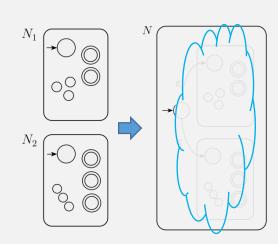
CS 420 / CS 620 Combining DFAs and Closed Operations

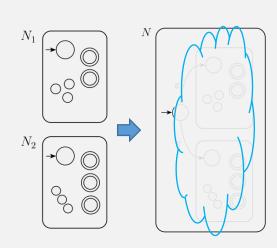
Monday, September 22, 2025

UMass Boston Computer Science



Announcements

- HW 2
 - Due Mon 9/22 12pm (noon)
- HW 3
 - Out: Mon 9/22 12pm (noon)
 - Due: Mon 9/29 12pm (noon)
- Check previous Piazza posts before posting!
- All questions about languages or machines must use examples!



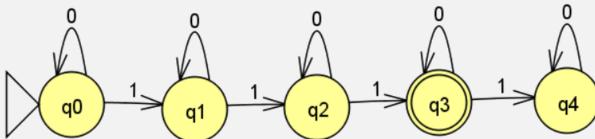
HW 1 Observations

- Problems must be <u>assigned to the</u> <u>correct pages</u> in GradeScope
- Proof format must be:
 Statements and Justifications table
- Questions / Complaints?
 - Open a GradeScope re-grade request ticket
 - Do not ask the instructor (they probably didn't grade it)!

- Extraneous defs,
 - $q_0 = q_0$
 - $Q = \{1,2,3\}$
 - but no use of Q
 - $M = (Q, \Sigma, \delta, q_0, F)$
 - with unbound vars!
- Wrong types!
 - $M = \{Q, \Sigma, \delta, q_0, F\}$
 - Or some other non-tuple
 - Or forgot / omitted the tuple
 - $F = q_3$
 - $\Sigma = \{ "1", "2" \}$

In-class exercise Solution

- Design finite automata recognizing the language: $\{w \mid w \text{ has exactly three 1's}\}$
- States:
 - Need one state to represent each count of 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:



• Start state:

- q₀
- Accept states:
 - $\{q_3\}$

So: a **DFA's computation** recognizes simple string patterns?

Yes!

Have you ever used a programming language feature for recognizing simple string patterns?

Regular Expressions! (stay tuned!)

Programming Advice: Break Down Complex Problems

2. Break down the problem

Complexity is really just a bunch of simple problems chained together. Try to break down your task into smaller chunks that are more manageable.

https://dev.to/nuxt-wimadev/7-powerful-principles-to-tackle-complex-coding-problems-40a5

Breaking big scary unknown problems into small manageable ones is a
core skill for developers. And unlike syntax, it can't be easily learned from google.

This last point should be obvious to anyone who's been coding for a while.

https://medium.com/@dannysmith/breaking-down-problems-its-hard-when-you-re-learning-to-code-f10269f4ccd5

2. Break it down

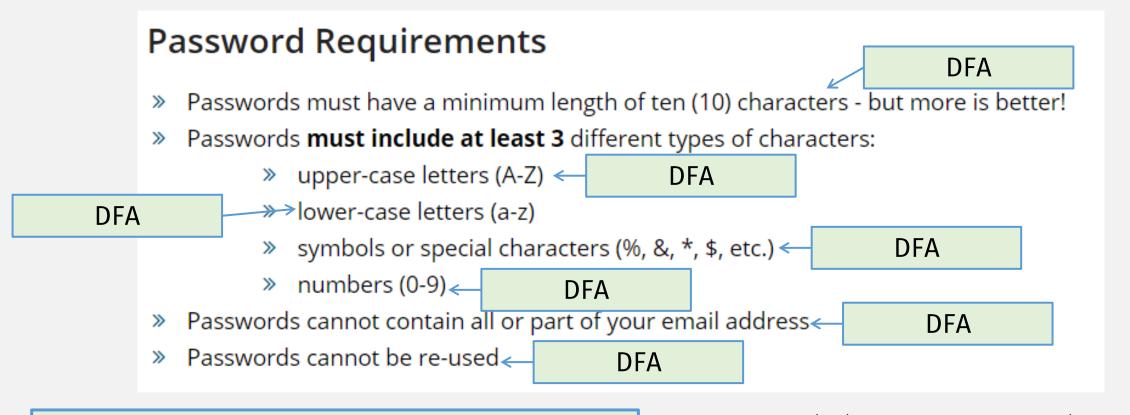
After understanding the problem, the next process is to break down the problem into smaller sub-problems.

https://javascript.plainenglish.io/5-step-process-to-solve-complex-programming-problems-8e4f74cfd88e

... and then combine the (small) solutions

Combining DFA Computation?

(Programmers do this all the time)

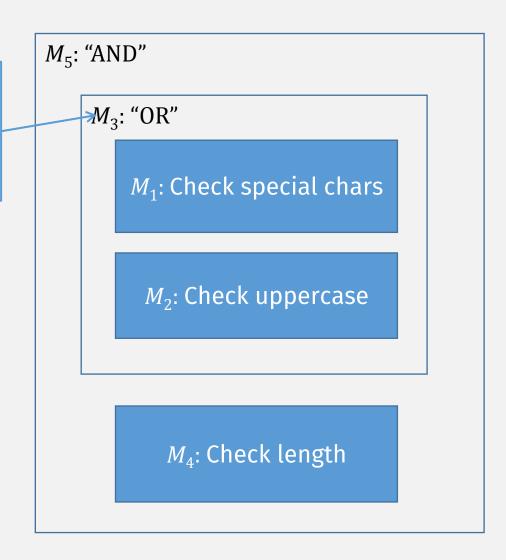


To match <u>all</u> requirements, <u>combine</u> smaller DFAs into one big DFA?

umb.edu/it/software-systems/password/

Password Checker DFAs

To <u>combine</u>
<u>more than</u>
<u>once</u>, this
must be a **DFA**



Want: to **easily**combine DFAs, i.e.,
composability

We want these operations:

"OR": DFA \times DFA \rightarrow DFA

"AND": DFA × DFA → DFA

To <u>combine more than once</u>, operations must preserve input type, i.e., be <u>closed!</u>

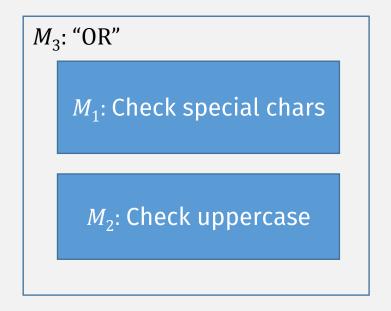
"Closed" Operations

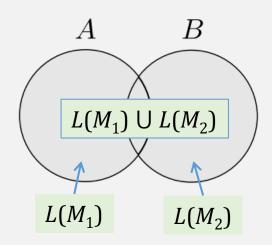
- Set of Natural numbers = $\{0, 1, 2, ...\}$
 - <u>Closed</u> under addition:
 - if x and y are Natural numbers,
 - then z = x + y is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no
- Integers = $\{..., -2, -1, 0, 1, 2, ...\}$
 - <u>Closed</u> under addition and multiplication
 - Closed under subtraction?
 - yes
 - · Closed under division?
 - · no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}$
 - Closed under division?
 - No?
 - Yes if *z* !=0

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set is <u>in the same set</u>

i.e., input set(s) = output set

Password Checker: "OR" = "Union"





A **DFA** is **equivalent** to a **language** (the set of all strings accepted by the DFA)

Combining DFAs is equivalent to combining languages (the set of all strings accepted by the DFAs)

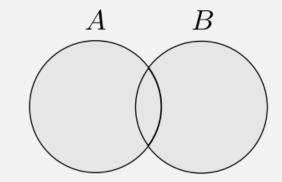
Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

```
If A = \{ fort, south \} B = \{ point, boston \}
```

 $A \cup B = \{ \text{fort, south, point, boston} \}$



Want: "Closed" Ops For Regular Langs!

- Set of Regular Languages = $\{L_1, L_2, ...\}$
 - Closed under ...?
 - OR (union)
 - AND (intersection)
 - •

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set is <u>in the same set</u>

i.e., input set(s) = output set

For Example:

OR: Regular Lang × Regular Lang

Why Care About Closed Ops on Reg Langs?

- Closed operations for regular langs preserve "regularness"
- I.e., it <u>preserves the same computation model!</u>
- Can "combine" smaller "regular" computations to get bigger ones:

For Example:

OR: Regular Lang × Regular Lang → Regular Lang

• In general, this semester, we want operations that are closed!

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Want to prove this statement

THEOREM

Or this (same)

statement

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

Want to prove this statement

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Want to prove this statement

Flashback: Mathematical Statements: IF-THEN

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Would have to prove: there are no

regular languages (not true!)

t Q), or

Proving:

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove P is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

p	q	p o q	
True	True	True	
True	False	False	
False	True	True	
False	False	True	

Statements Do we know anything about A_1 and A_2 ? If a lang has a **DFA**, then it's **regular**

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this M? Don't know what A_1 and A_2 are!

1. Assumption of If part of If-There is a second of If

Definition of Regular Language

- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. S Definition of Regular Language???
- 6. $A_1 \cup A_2$ is a regular language If a lang is regular, then it has a **DFA**???
- 7. The class of regular languages is closed under the union operation. 7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

To prove $P \rightarrow Q$ is TRUE: Assume P is TRUE, then prove Q is TRUE

?? "If A Then B" =?= "If B Then A" ??

(Actual) Definition of Regular Language

If a lang has a **DFA**, then it's regular

- 1. A_1 and A_2 are regular languages
 - 1. Assumption
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 2. Def of Regular Language
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 3. Def of Regular Language

Definition of Regular Language ???

If a lang is **regular**, then it has a **DFA**???

Equivalence of Conditional Statements

- Yes or No? "If *X* then *Y*" is equivalent to:
 - "If *Y* then *X*" (**converse**)
 - No!

If Regular, Then DFA?

If a **DFA** recognizes a language *L*, then *L* is a regular language

- Prove: If *L* is a **regular language**, then a **DFA** recognizes *L*
- Proof (Sketch)

Case analysis:

- Look at all If-then statements of the form:
 - "If ... language L, then L is a regular language"
- (At least one is true!)
- Figure out which one(s) led to conclusion:
 - "L is a regular language"
- (There's only 1!)
- So it must be that: (because there was only 1 possible way to show that the language is regular)

"Corollary"

If L is a **regular language**, then a **DFA recognizes** L

Statements

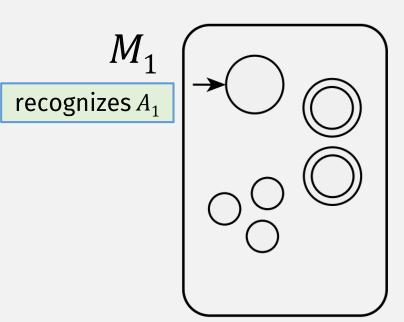
- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

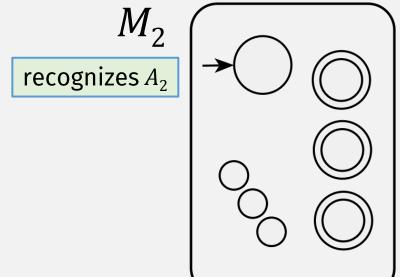
Justifications

1. Assumption

"Corollary"

- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6





DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

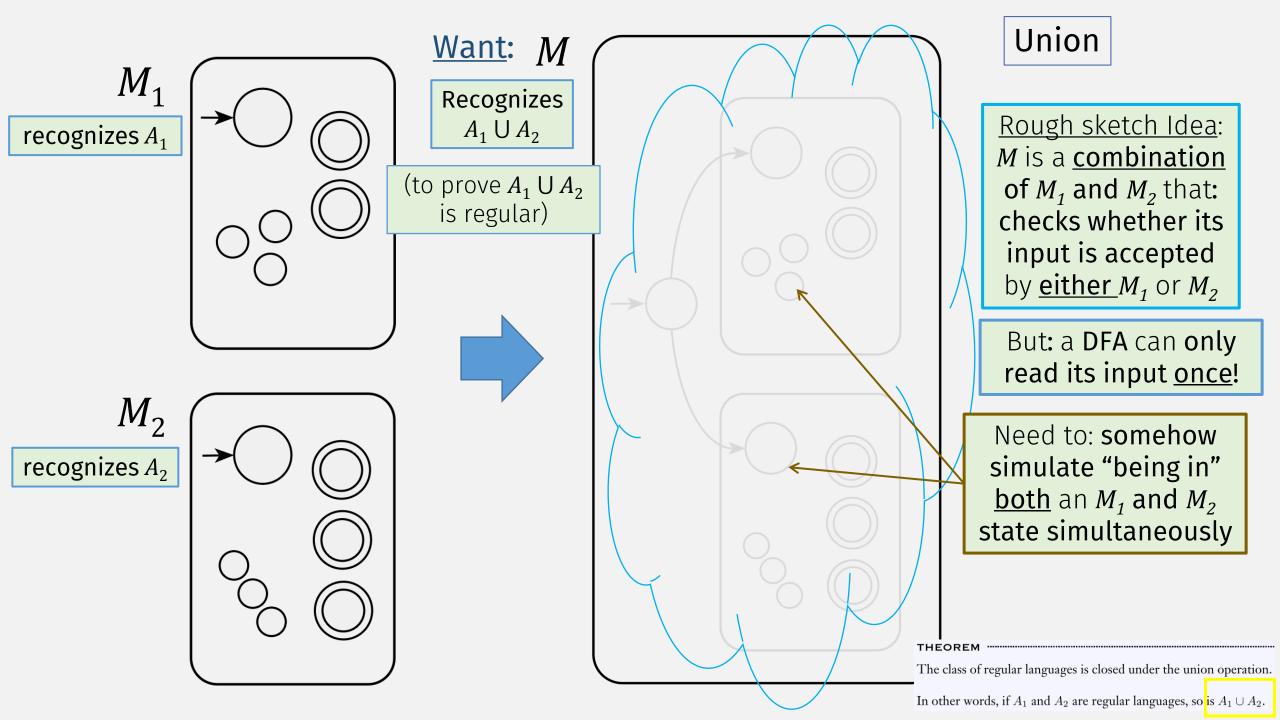
- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Regular language A_1 Regular language A_2

Even if we <u>don't know</u> what these languages are, <u>we still know</u>...

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

If L is a **regular language**, then a **DFA recognizes** L



Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: *M* that can simultaneously "be in" both an M_1 and M_2 state
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

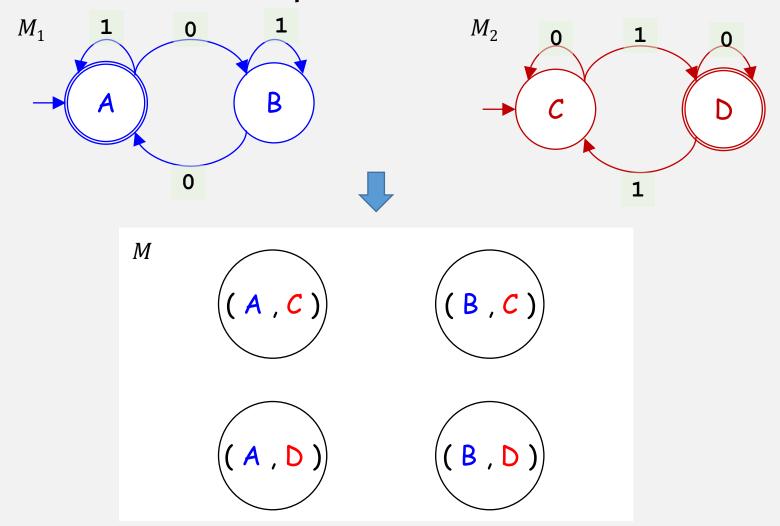
- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A state of *M* is a <u>pair</u>:

- $\underline{\text{first}}$ part: state of M_1
- second part: state of M_2

states of M: all possible pair combinations of states of M_1 and M_2

DFA Union Example



Union is Closed For Regular Languages

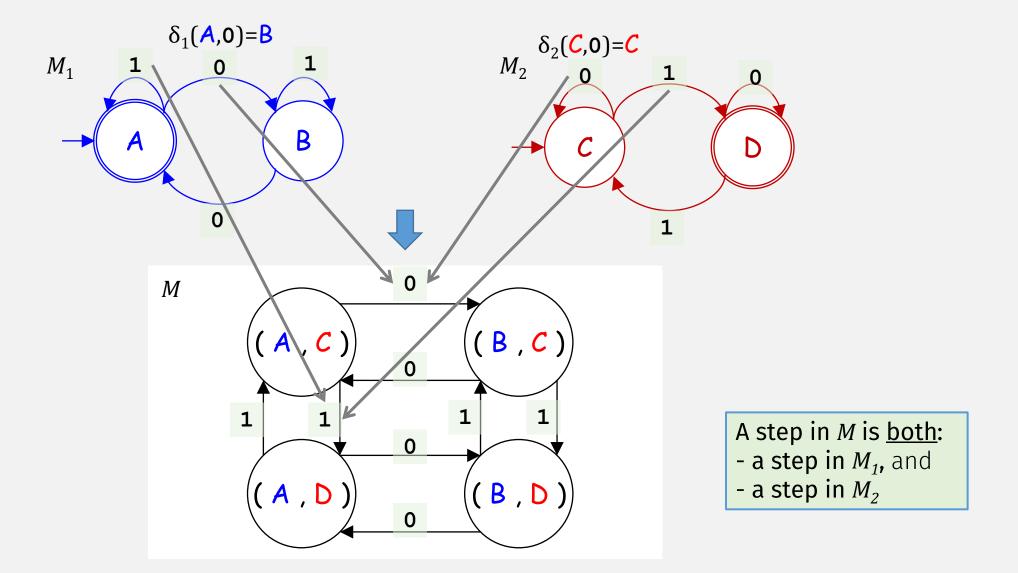
Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where $a = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both:

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

- a step in M_1 , and
- a step in M_2



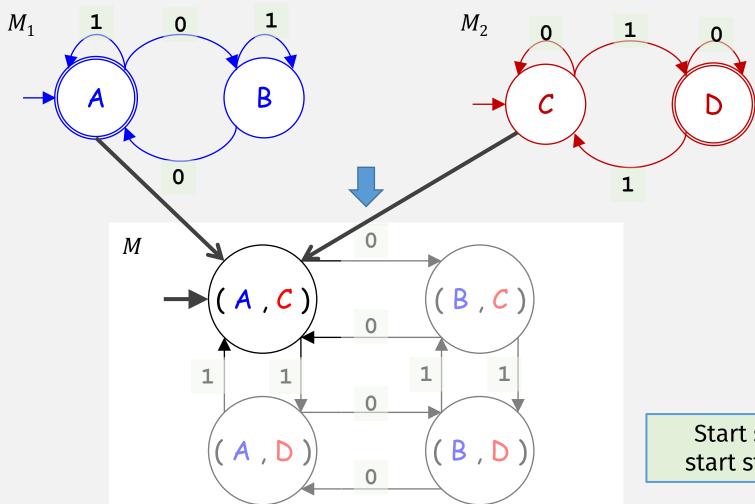
Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Start state of M is both start states of M_1 and M_2

DFA Union Example



Start state of M is both start states of M_1 and M_2

Union is Closed For Regular Languages

Proof (continuation)

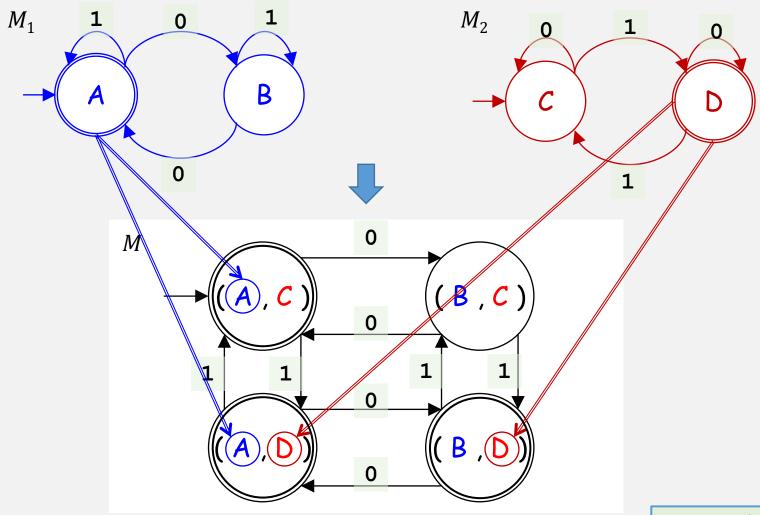
- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Remember:

Accept states must be subset of *Q*

• M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ Accept if either M_1 or M_2 accept

DFA Union Example



Accept if either M_1 or M_2 accept

Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,
- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ • states of *M*: This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- *M* start state: (q_1, q_2)
- *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$



Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples (TODO!)
- 6. Def of Regular Language
- 7. From stmt #1 and #6

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Be careful when choosing examples!

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

String	In lang $A_1 \cup A_2$?	Accepted by M?
	Yes	
	???	
	???	

Don't know A_1 and A_2 exactly ...

... but we know ...

... they are **sets of strings**!

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1 \cup A_2$?

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let s₃ ∉ A₁ and s₄ ∉ A₂

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	
S 3	???	
S 4	222	
s_5		

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1 \cup A_2$?

Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

(this column needed when machine is not concrete, i.e., can't directly run machine to check if string is accepted)

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?	Justification
s_1	Yes	Accept ??	(J1)
s_2	Yes	Accept	(J1)
S 3	???	???	
S 4	222	???	
s_5	No	Reject ??	(J2)

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , a string $\in A_1 \to \text{accepted by } M_1 \to \text{accepted by } M$ (J1) $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 , string $\notin A_1 \text{ and } \notin A_2 \to M_1 \text{ and } M_2 \text{ rejects} \to M \text{ rejects}$ (J2)

constructed $M=(Q,\Sigma,\delta,q_0,F)$ to Accept if <u>either M_1 or M_2 accept Else reject</u>

$$F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

Is Union Closed For Regular Langs?

Statements

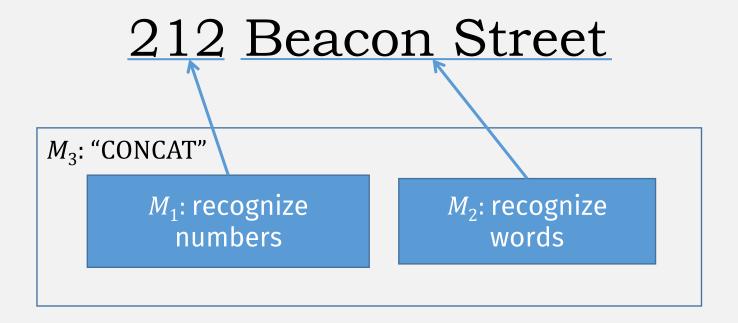
- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See Examples Table 🗹
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Another (common string) operation: Concatenation

Example: Recognizing street addresses



Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}.

If A=\{fort, south\} B=\{point, boston\}
A\circ B=\{fortpoint, fortboston, southpoint, southboston\}
```

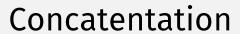
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)



 M_1



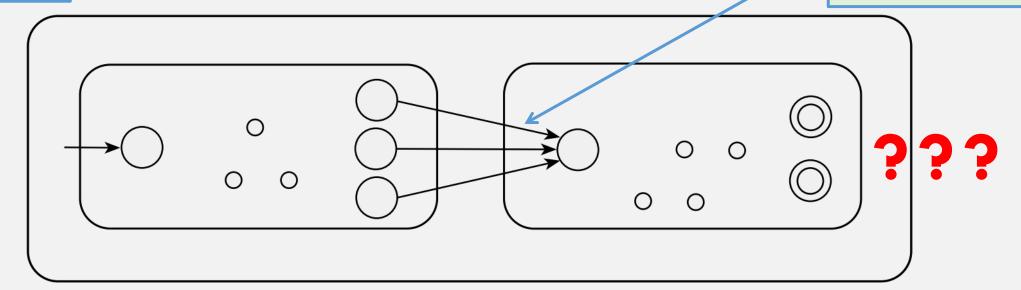
PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?



 M_2

Overlapping Concatenation Example

- Let M₁ recognize language A = { jen, jens }
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct *M* to recognize $A \circ B = \{ jensmith, jensmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmith**)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct *M* to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmit**h)
 - or switch to M_2 (correct, if full input is **jensmith**)
- But to recognize A B, it needs to handle both cases!!
 - Without backtracking

A **DFA** can't do this!

Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

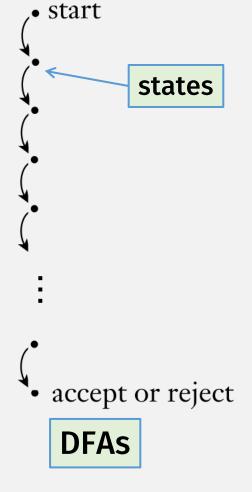
In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

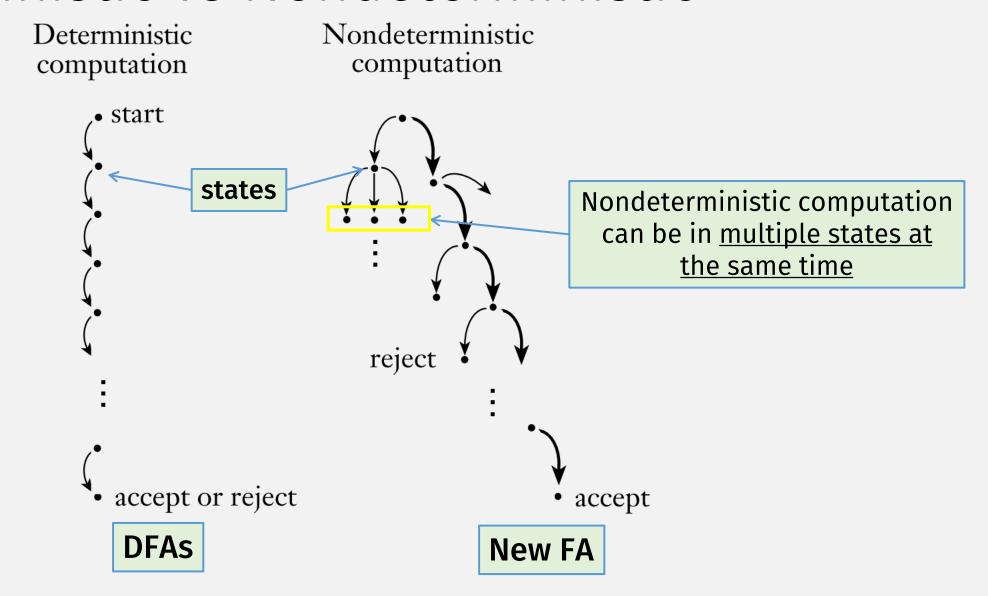
Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation



Deterministic vs Nondeterministic



DFAs: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** *Q* is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Fraition label can be "empty" accept states.

Transition label can be "empty", i.e., machine can transition without reading input

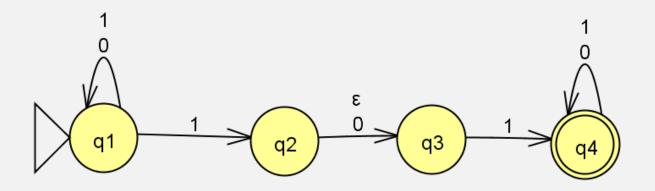
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

CAREFUL:

- ϵ symbol is <u>reused</u> here, as a transition label (ie, an argument to δ)
- It's not the empty string!
- And it's (still) not a character in the alphabet Σ!

NFA Example

• Come up with a formal description of the following NFA:



DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

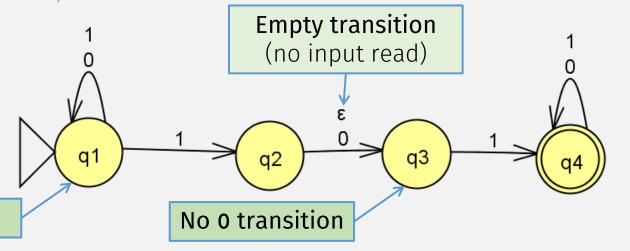
- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

Result of transition is a set

Empty transition

(no input read)

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$



 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Multiple 1 transitions

In-class Exercise

Come up with a formal description for the following NFA

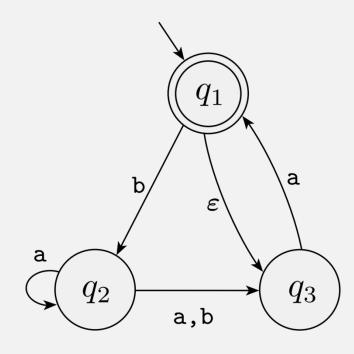
• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

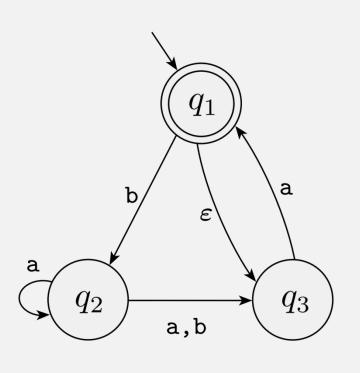
is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



In-class Exercise Solution

Let
$$N = (Q, \Sigma, \delta, q_0, F)$$
 $\delta(q_1, a) = \{\}$
• $Q = \{q_1, q_2, q_3\}$ $\delta(q_1, b) = \{q_2\}$
• $\Sigma = \{a, b\}$ $\delta(q_1, \epsilon) = \{q_3\}$
• $\delta(q_2, a) = \{q_2, q_3\}$
• $\delta(q_2, b) = \{q_3\}$
• $\delta(q_2, b) = \{q_3\}$
• $\delta(q_2, \epsilon) = \{\}$
• $\delta(q_3, a) = \{q_1\}$
• $\delta(q_3, b) = \{\}$
• $\delta(q_3, \epsilon) = \{\}$



NFA Computation (JFLAP demo): 010110

