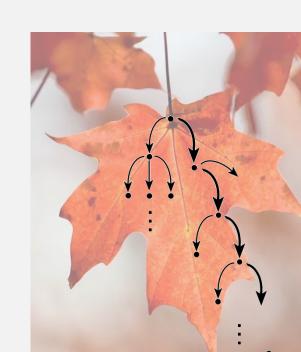
CS 420 / CS 620 Nondeterminism

Wednesday, September 24, 2025 UMass Boston Computer Science



Announcements

- HW 3
 - Out: Mon 9/22 12pm (noon)
 - Due: Mon 9/29 12pm (noon)
- Questions / Complaints about grading?
 - GradeScope re-grade requests welcome
 - Please be specific
 - Do not ask the instructor (we have many graders)

In-class question preview

• What are the different things the epsilon symbol (ε) can represent?

Why Care About Closed Ops on Reg Langs?

- Closed operations for Regular langs preserve "regularness"
 - I.e., it <u>preserves</u> the <u>same computation model!</u>
- Enables "combining" smaller "regular" computations into bigger ones:

For Example:

OR: Regular Lang × Regular Lang → Regular Lang

• In general, this semester, we want operations that are closed!

Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Want to prove this statement

Last Time

Is Union Closed For Regular Langs?

THEOREM

Or this (same)

statement

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

Want to prove this statement

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

Is Union Closed For Regular Langs?

THEOREM

Want to prove this statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Flashback: Mathematical Statements: IF-THEN

Using:

- If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 - Either P is FALSE (not too useful, can't prove anything about Q), or
 - If P is TRUE, then Q is TRUE (modus ponens)

Proving:

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove P is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

p	q	p o q		
True	True	True		
True	False	False		
False	True	True		
False	False	True		
True False	False True	False True		

Is Union Closed For Regular Langs?

Definition of Regular Language Do we know anything about A_1 and A_2 ? If a **DFA** recognizes a lang, then it's regular 1. Assumption of If part of If Then Corollary A_1 and A_2 are regular languages 2. Def of Regular Language 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 3. Def of Regular Language 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo) 4. Def of DFA 5. M recognizes $A_1 \cup A_2$ How to create this M? Don't know what A_1 and A_2 are! Definition of Regular Language (Corollary) 6. $A_1 \cup A_2$ is a regular language If a lang is regular, then it has a **DFA**

7. From stmt #1 and #6

To prove $P \rightarrow Q$ is TRUE: Assume P is TRUE, then prove Q is TRUE

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

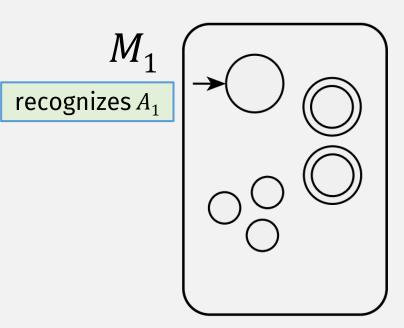
Is Union Closed For Regular Langs?

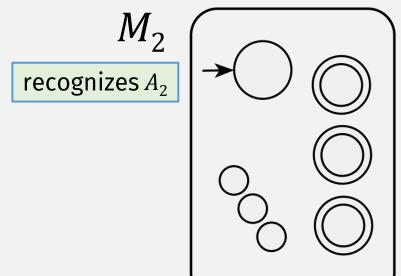
Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this M? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption of If part of If-Then Corollary
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6





DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

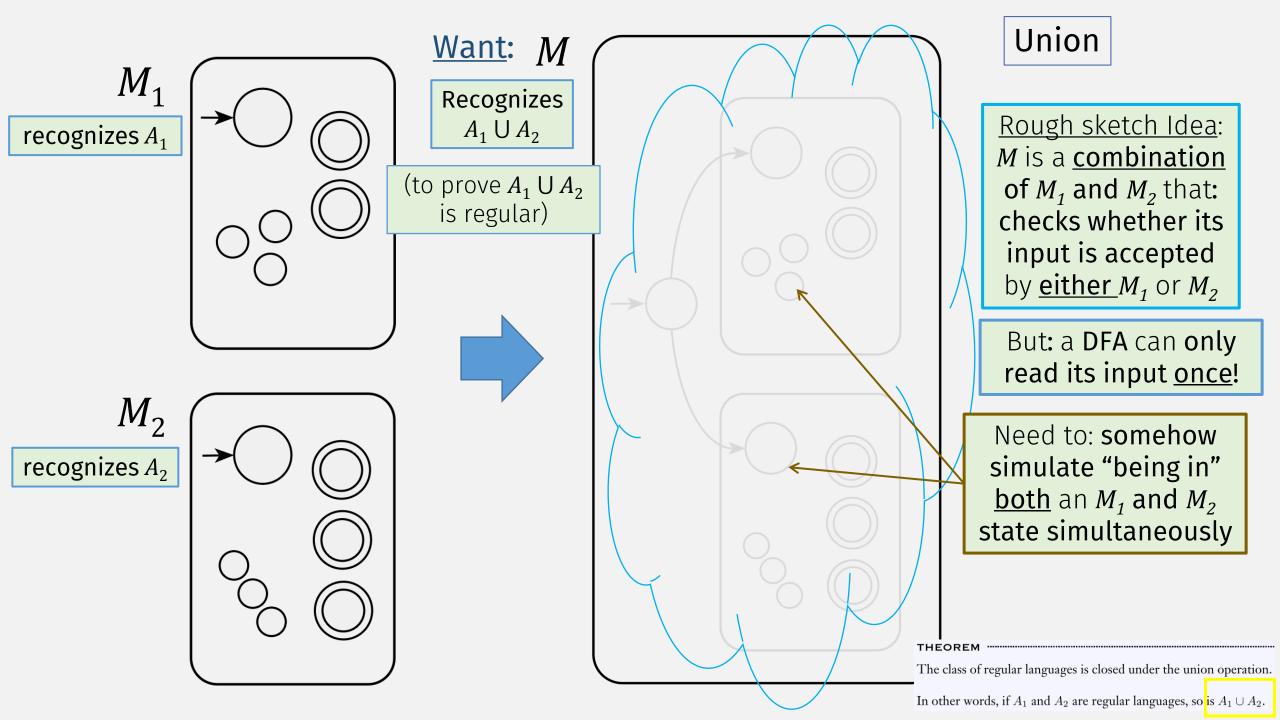
Regular language A_1 Regular language A_2

Even if we <u>don't know</u> what these languages are, <u>we still know</u>...

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

Definition of Regular Language (Corollary)

If L is a **regular language**, then a **DFA recognizes** L



Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: M that can simultaneously "be in" both an M_1 and M_2 state
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A **state** of *M* is a **pair**:

- <u>first</u> part: state of *M*₁
- second part: state of M_2

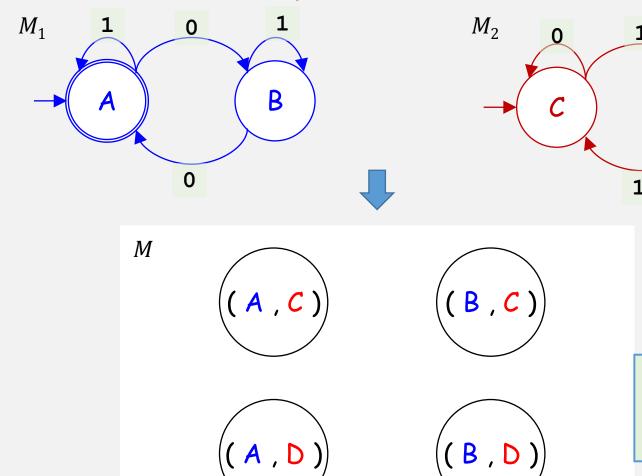
states of *M*:

all pair combos of M_1 and M_2 states

DFA Union Example

Note:

We do not know M_1 or M_2 exactly! But: a concrete example helps understanding



A **state** of *M* is a **pair**:

- <u>first</u> part: state of *M*₁
- second part: state of M_2

states of *M*:

all pair combos of M_1 and M_2 states

Union is Closed For Regular Languages

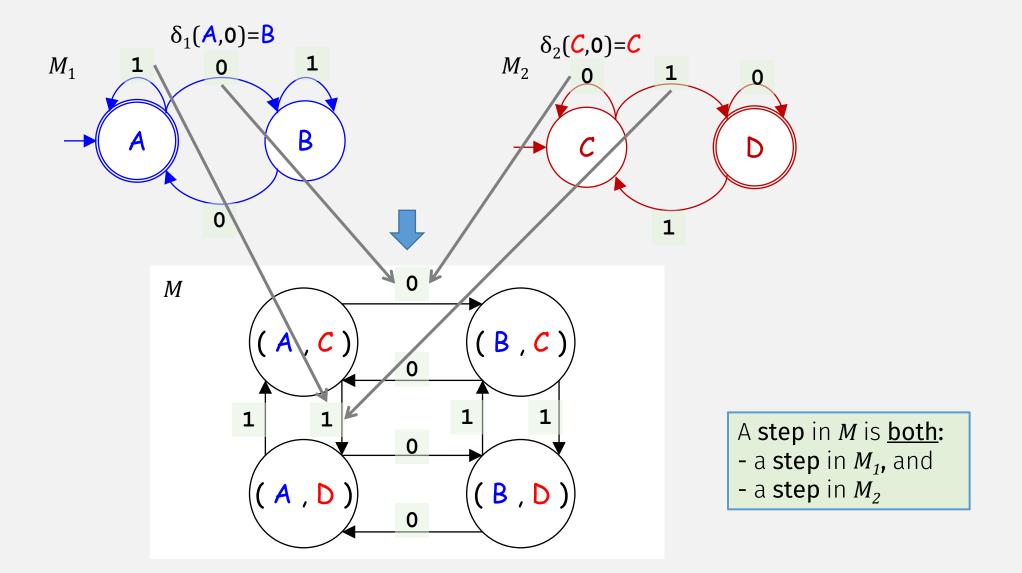
Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where $a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both:

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

- a step in M_1 , and
- a step in M_2



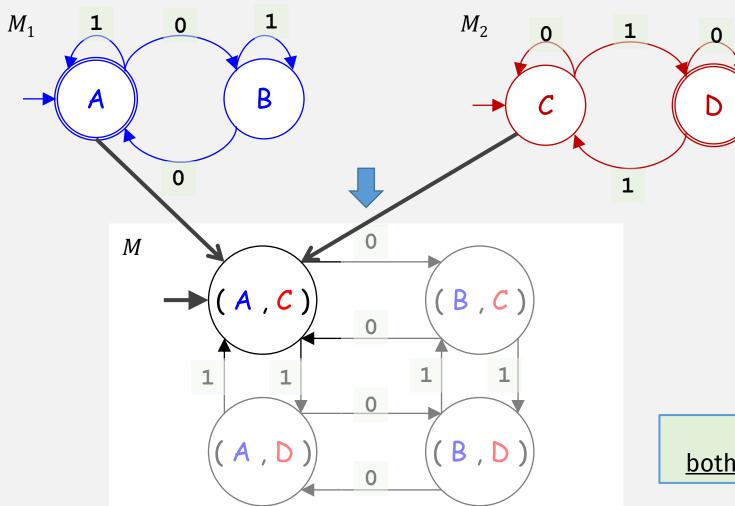
Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Start state of M is: both start states of M_1 and M_2

DFA Union Example



Start state of *M* is: both start states of *M*₁ and *M*₂

Union is Closed For Regular Languages

Proof (continuation)

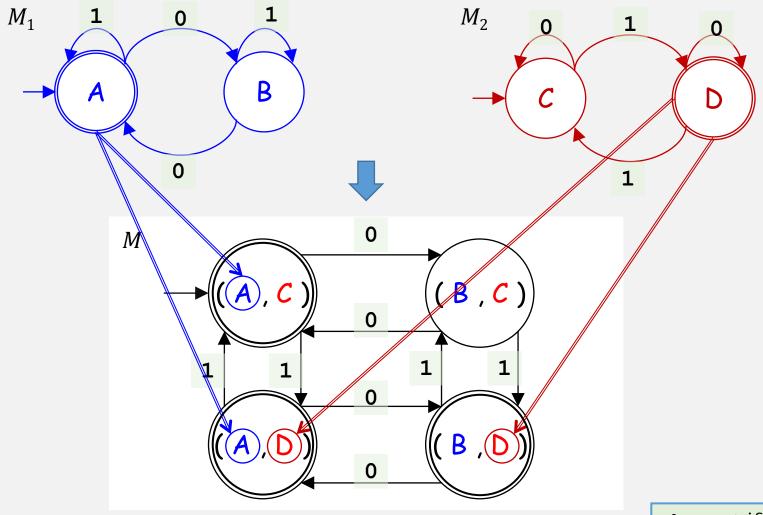
- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Remember:

Accept states must be subset of *Q*

• M accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ Accept if either M_1 or M_2 accept

DFA Union Example

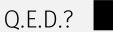


Accept if either M_1 or M_2 accept

Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , Define the function: $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- UNION_{DEA} $(M_1, M_2) = M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
 - $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ • states of *M*: This set is the *Cartesian product* of sets Q_1 and Q_2
 - *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
 - *M* start state: (q_1, q_2)
 - *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$



Is Union Closed For Regular Langs?

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = UNION_{DFA} (M_1, M_2)$
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples (TODO!)
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Be careful when choosing examples!

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

String	In lang $A_1 \cup A_2$?	Accepted by M?
	Yes	
	???	
	???	

Don't know A_1 and A_2 exactly ...

... but we know ...

... they are **sets of strings**!

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1 \cup A_2$?

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let s₃ ∉ A₁ and s₄ ∉ A₂

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	
S 3	???	
S 4	222	
s_5		

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1 \cup A_2$?

Union is Closed For Regular Languages

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Let $s_1 \in A_1$ and $s_2 \in A_2$

(this column needed when machine is not concrete, i.e., can't directly run machine to check if string is accepted)

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?	Justification
s_1	Yes	Accept ??	
s_2	Yes	Accept	(J1)
S 3	222	???	
s_4	222	???	
s_5	No	Reject ??	(J2)

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

a string
$$\in A_2 \to \text{accepted by } M_2 \to \text{accepted by } M$$
 (J1)
string $\notin A_1 \text{ and } \notin A_2 \to M_1 \text{ and } M_2 \text{ rejects } \to M \text{ rejects}$ (J2)

constructed $M=(Q,\Sigma,\delta,q_0,F)$ to Accept if <u>either $\mathit{M_1}$ or $\mathit{M_2}$ accept | Else reject</u>

$$F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

Let $s_1 \in A_1$ and $s_2 \in A_2$

(required when machine is not concrete, i.e., can't directly run machine to check if string is accepted)

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M = UNI	$ON_{DFA} (M_1, M_2)$ n
s_1	Yes	Accept	(J1)
s_2	Yes	Accept	(J1)
S 3	???	???	
s_4	???	???	
s_5	No	Reject	(J2)

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

$$s_1 \in A_1 \to \text{accepted by } M_1 \to \text{accepted by } M$$
 (J1)
 $s_5 \notin A_1 \text{ and } \notin A_2 \to M_1 \text{ and } M_2 \text{ rejects} \to M \text{ rejects}$ (J2)

 $M = \text{UNION}_{\text{DFA}} (M_1, M_2)$

Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_5 \notin A_1$ and $\notin A_2$ (required when machine is not concrete, i.e., can't directly run machine to check if string is accepted)

Str	ing	∈ A ₁ ?	∈ A ₂ ?	M_1 result?	M_2 result?	$\in A_1 \cup A_2$?	$M = \text{UNION}_{\text{DFA}} (M_1, M_2)$ result?
S	1	Yes		Accept		Yes	Accept
S	2		Yes		Accept	Yes	Accept
S	3						
S	4						
S	5	No	No	Reject	Reject	No	Reject

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,

$$s_1 \in A_1 \to \text{accepted by } M_1 \to \text{accepted by } M$$

$$s_5 \notin A_1 \text{ and } \notin A_2 \to M_1 \text{ and } M_2 \text{ rejects} \to M \text{ rejects}$$

$$M = \text{UNION}_{\text{DFA}} (M_1, M_2) = (Q, \Sigma, \delta, q_0, F)$$

Accept if either M_1 or M_2 accept

where
$$F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

Is Union Closed For Regular Langs?

Statements

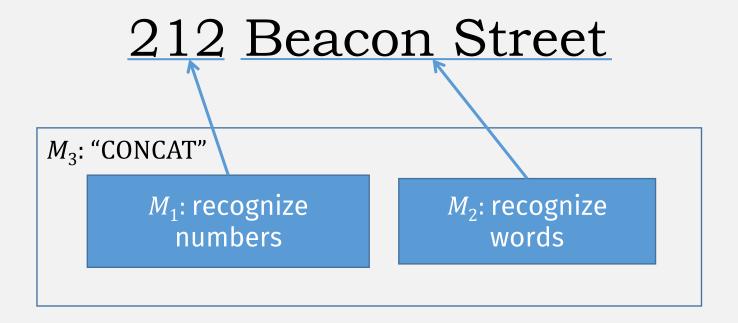
- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See Examples Table 🗹
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Another (common string) operation: Concatenation

Example: Recognizing street addresses



Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}.

If A=\{fort, south\} B=\{point, boston\}
A\circ B=\{fortpoint, fortboston, southpoint, southboston\}
```

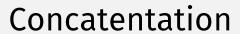
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)



 M_1



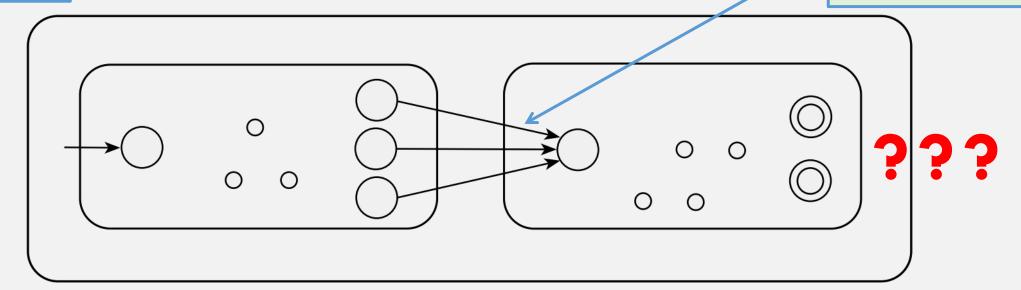
PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?



 M_2

Overlapping Concatenation Example

- Let M₁ recognize language A = { jen, jens }
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmith**)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct *M* to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmit**h)
 - or switch to M_2 (correct, if full input is **jensmith**)
- But to recognize A B, it needs to handle both cases!!
 - Without backtracking

A **DFA** can't do this!

Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

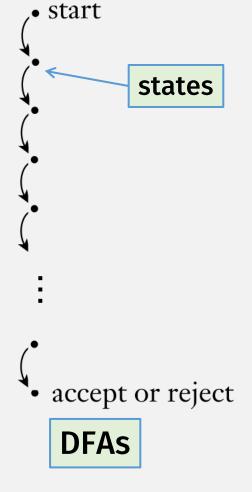
In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

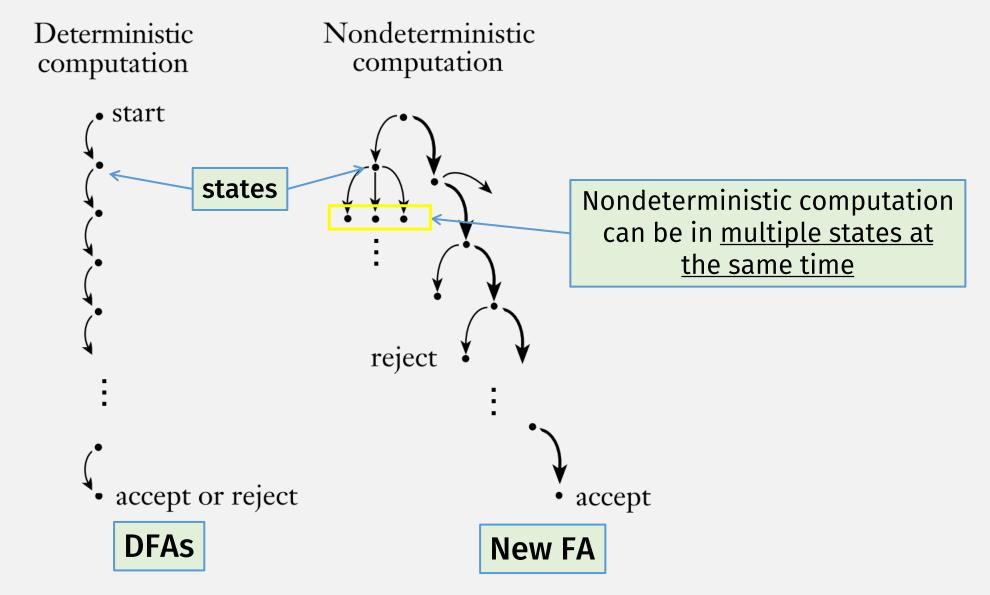
Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation



Deterministic vs Nondeterministic



DFAs: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** *Q* is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Fraition label can be "empty" accept states.

Transition label can be "empty", i.e., machine can transition without reading input

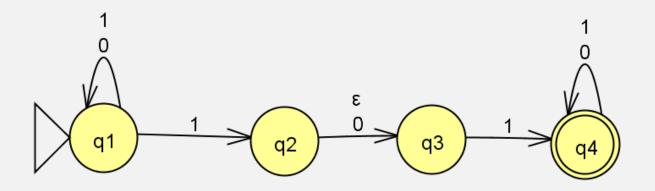
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

CAREFUL:

- ϵ symbol is <u>reused</u> here, as a transition label (ie, an argument to δ)
- It's not the empty string!
- And it's (still) not a character in the alphabet Σ!

NFA Example

• Come up with a formal description of the following NFA:



DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

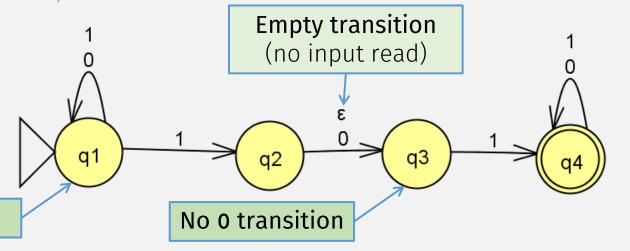
- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

Result of transition is a set

Empty transition

(no input read)

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$



 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Multiple 1 transitions

In-class Exercise

Come up with a formal description for the following NFA

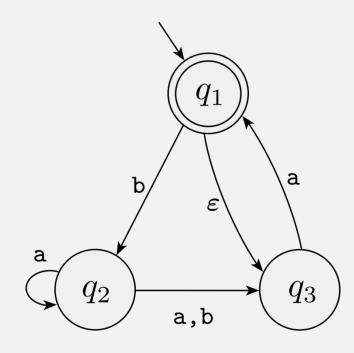
• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



In-class Exercise Solution

Let
$$N = (Q, \Sigma, \delta, q_0, F)$$

- $Q = \{ q_1, q_2, q_3 \}$
- $\Sigma = \{ a, b \}$
- δ ...

- $q_0 = q_1$
- $F = \{ q_1 \}$

$$\delta(q_1, a) = \{\}$$

$$\delta(q_1, b) = \{q_2\}$$

$$\delta(q_1, \varepsilon) = \{q_3\}$$

$$\delta(q_2, a) = \{q_2, q_3\}$$

$$\rightarrow \delta(q_2, b) = \{q_3\}$$

$$\delta(q_2, \varepsilon) = \{\}$$

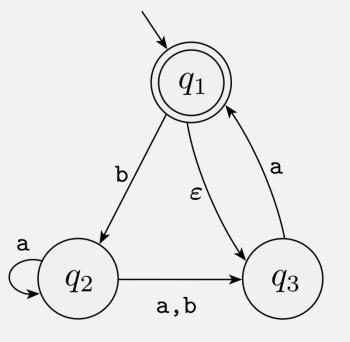
$$\delta(q_3, a) = \{q_1\}$$

$$\delta(q_3, b) = \{\}$$

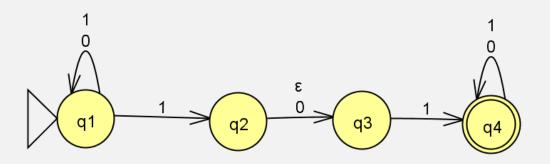
$$\delta(q_3, \varepsilon) = \{\}$$

Differences with DFA?

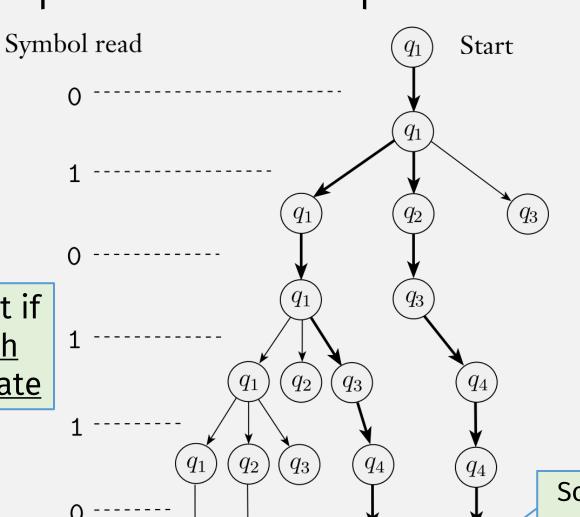
- δ output is a set
- state doesn't need transition for every alphabet symbol
- state can have multiple transitions for one symbol
- can have "empty" transitions $(\delta \text{ output is empty set})$



NFA Computation (JFLAP demo): 010110



NFA Computation Sequence



Each step can branch into multiple states at the same time!

So this is an accepting computation

NFA accepts input if at least one path ends in accept state

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A DFA computation is a sequence of states:

• specified by $\hat{\delta}(q_0, w)$ where:

- M accepts w if $\hat{\delta}(q_0,w) \in F$
- *M* rejects otherwise

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a **sequence of states:**

• specified by $\hat{\delta}(q_0, w)$ where:

- M accepts w if $\hat{\delta}(q_0,w) \in F$
- *M* rejects otherwise

NFA Computation Rules

Informally

Given

- An **NFA** (~ a "Program")
- and Input = string of chars, e.g. "1101"

An **NFA** computation (~ "Program run"):

• Start in start state

Repeat:

• Read 1 char from Input, and

go to next states

For each "current" state, according to transition rules

... then combine all "next states"

Result of computation:

- Accept if last set of states has accept state
- <u>Reject</u> otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

An **NFA computation** is a ...

• specified by $\hat{\delta}(q_0, w)$ where:

- *M* accepts *w* if ...
- M rejects ...

NFA Computation Rules

Informally

Given

- An NFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** computation (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and

go to <u>next states</u>

For each "current" state, according to transition rules

... then combine all "next states"

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

An **NFA computation** is a **sequence of:** sets of states

• specified by $\hat{\delta}(q_0, w)$ where:

Result of computation:

- Accept if last set of states has accept state
- Reject otherwise

- *M* accepts *w* if ...
- M rejects ...

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$ (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

Base case

A **String** is either:

- the **empty string** (ϵ), or
- xa (non-empty string) where
 - x is a **string**
 - a is a "char" in Σ

Base case

$$\hat{\delta}(q,\varepsilon) =$$

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- <u>Domain</u> (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$ (doesn't have to be an accept state)

needs
Recursive Function

A String is either:

Recursive Input Data

(Defined recursively)

Base case

$$\hat{\delta}(q,\varepsilon) = q$$

string

Recursion on string

"smaller" argument

• the **empty string** (ϵ), or

Recursive case xa (non-empty string) where Recursion

x is a **string** on string a is a "char" in Σ

a is a char in

string

char

Recursive Case

 $\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'))$

where $w' = w_1 \cdots w_{n-1}$

char

"second to last" state

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$ (doesn't have to be an accept state)

(Defined recursively)

Base case
$$\hat{\delta}(q,arepsilon)=q$$

Recursive Input Data needs Recursive Function

A **String** is either:

- the **empty string** (ε) , or
- xa (non-empty string) where
 - x is a **string**
 - a is a "char" in Σ

Recursive Case

$$\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)$$

Single step from "second to last" state and last char gets to last state

 $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{N}}$$

- Domain (inputs):
- Result is set of states
- state $q \in Q$ (doesn't have to be start state)
- string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states $qs \subseteq Q$

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{R}}$$

- Domain (inputs):
- Result is set of states
- state $q \in Q$ (doesn't have to be start state)
- string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states
$$qs \subseteq Q$$

(Defined recursively)

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursively Defined Input needs **Recursive Function**

Base case

A **String** is either:

- the **empty string** (ε), or
- xa (non-empty string) where
 - x is a **string**
 - *a* is a "char" in Σ

 $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- <u>Domain</u> (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

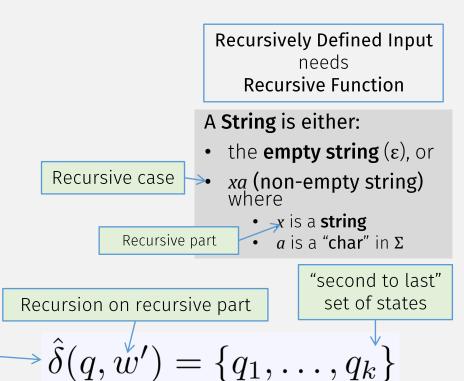
states $qs \subseteq Q$

(Defined recursively)

Base case
$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursive Case

$$\hat{\delta}(q, w'w_n) =$$
where $w' = w_1 \cdots w_{n-1}$



 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states $qs \subseteq Q$

(Defined recursively)

Base case

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursive Case

$$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\infty} \delta(q_i, w_n)$$

where $w' = w_1 \cdots w_{n-1}$

For each "second to last" state. take single step on last char

Recursive Function A **String** is either:

• the **empty string** (ϵ), or

Recursively Defined Input

needs

- *xa* (non-empty string) whère
 - x is a **string**
 - a is a "char" in Σ

Last char

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \rightarrow \begin{array}{c} \text{Given} \\ \bullet \text{ an NFA (\sim a "Program")} \\ \bullet \text{ state } q \in \\ \bullet \text{ string } w = \\ \bullet \text{ Range (outpostates } qs \subseteq \\ \hline \\ \bullet \text{ Repeat:} \\ \bullet \text{ Read 1 char from Input, and} \\ \end{array}$$

needs

go to next states

(Defined recur For each "current" state, according to transition rules

• the **empty string** (ϵ), or

Recursively Defined Input

- xa (non-empty string)
 - x is a **string**
 - a is a "char" in Σ

... then combine all sets of "next states"

Recursive Case

$$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\delta(q_i, w_n)} \delta(q_i, w_n)$$
where $w' = w_1 \cdots w_{n-1}$

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

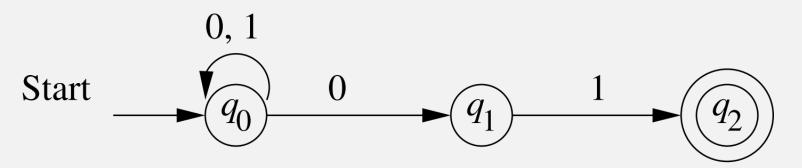
Base case:
$$\hat{\delta}(q, \epsilon) = \{q\}$$

NFA Multi-Step δ Example

Recursive case:
$$\hat{\delta}(q,w) = \bigcup_{i=1}^k \delta(q_i,w_n)$$

where:
$$i=1$$

$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$



• $\hat{\delta}(q_0,\epsilon) =$

We haven't considered empty transitions!

•
$$\hat{\delta}(q_0,0) =$$

Combine result of recursive call with "last step"

•
$$\hat{\delta}(q_0, 00) =$$

•
$$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1)$$

Adding Empty Transitions

- Define the set ε -REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

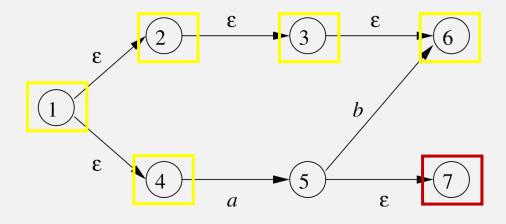
- Base case: $q \in \varepsilon$ -reachable(q)
- Recursive case:

A state is in the reachable set if ...

$$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$

... there is an empty transition to it from another state in the reachable set

ε -reachable Example



 ε -REACHABLE(1) = $\{1, 2, 3, 4, 6\}$

Handling ε transitions now!

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - states $qs \subseteq Q$

(Defined recursively)

Base case
$$\hat{\delta}(q,\varepsilon) = \frac{\varepsilon\text{-REACHABLE}(q)}{\varepsilon}$$

Recursive Case
$$\hat{\delta}(q, w'w_n) =$$

where
$$w' = w_1 \cdots w_{n-1}$$

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

$$\bigcup_{i=1}^k \delta(q_i, w_n) = \{r_1, \dots, r_\ell\}$$

Handling ε transitions now!

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

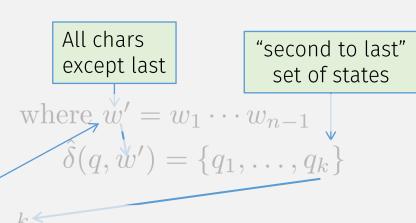
- <u>Domain</u> (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - states $qs \subseteq Q$

(Defined recursively)

Base case
$$\hat{\delta}(q,\varepsilon) = \varepsilon$$
-REACHABLE (q)

Recursive Case

$$\hat{\delta}(q, w'w_n) =$$



$$\int_{=1}^{\kappa} \delta(q_i, w_n) = \{r_1, \dots, r_{\ell}\}$$

"last" set of states (no ε)

Summary: NFA vs DFA Computation

DFAs

- Can only be in <u>one</u> state
- Transition:
 - Must read 1 char

- Acceptance:
 - If final state <u>is</u> accept state

NFAs

- Can be in <u>multiple</u> states
- Transition
 - Has empty transitions

- Acceptance:
 - If one of final states is accept state

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof requires: Constructing new machine

- How does it know when to switch machines?
 - Can only read input once