CS 420 / CS 620

Nondeterminism
Wednesday, September 24, 2025
UMass Boston Computer Science

lecture0Q7

#/(/(0«/(&@/1(@/(5@

e HW 3
« Out: Mon 9/22 12pm (noon)
* Due: Mon 9/29 12pm (noon)

 Questions / Complaints about grading?
« GradeScope re-grade requests welcome
 Please be specific

e Do not ask the instructor
(we have many graders)

In-class question preview

« What are the different things the
epsilon symbol (€) can represent?

Last [ine

Why Care About Closed Ops on Reg Langs?

 Closed operations for Regular langs preserve “regularness”

* |.e., It preserves the same computation model!

« Enables “combining” smaller “regular” computations into bigger ones:

For Example:
OR: Regular Lang X Regular Lang — Regular Lang

* In general, this semester, we want operations that are closed!

Last [ine

s Union Closed For Regular Langs?

In this course, we are interested in (In general, 2 set is closed under an operation if
closed operations for a set of languages applying the operation t.o members of the set
(here the set of regular languages) 7" produces a result in the same set)
——— 'The class of regular languages is|closed/under the union operation.
ant to
prove this

statement

In other words, if A; and As are regular languages, so is A; U As.

Or this (same)
statement

Last [ine

Want to
prove this
statement

THEOREM -

/v

In other words, if
Or this (same) /

statement

...................................... /Z‘

The class of regular languages is

s Union Closed For Regular Langs?

applying the

(In general, a set is closed under an operation if

operation

to

members of the set

‘§et)

produces a result in the same
N

under the

union operation.

\

A; and Ay are regular languages

\

so1s A1 U As.

A member of the
set of regular
languages is ...

.. a regular language,
which itself Is a set
(of strings) ...

.. SO the operations
we're interested In
are set operations

Last [ine

s Union Closed For Regular Langs?

THEOREM ..

——— 'The class of regular languages is closed under the union operation.
antto

prove this
statement

In other words, if A; and As are regular languages, so is A; U As.

Or this (same)
statement

Flashback, Mathematical Statements: IF-THEN

Using:

If we know: P — Q 1S TRUE, -
what do we know about P and Q individually?

» Either P 1S FALSE (not too useful, can’t prove anything about Q), or
» [f Pis TRUE, then Q is TRUE (modus ponens)

Proving:

To prove: P— Q Is TRUE:

p 9 P—4q

True | True @ True -

True False | False

* Prove P is FALSE (usually hard or impossible) | Fase True = True

» Assume P Is TRUE, then prove Q 1s TRUE

False False True

s Union Closed For Regular Langs?

Definition of Regular Language
Stal po we know anything about 4, and 4,7 ||1 @ DFA recognizes a lang, then it's regular
A, and A, are regular languages 1. Assumptionofifpart o -

Corollary

ADFAM,=(Q, % 6, q,, F) recognizes A, 2. Def of Regular Language
ADFA M, =(Q,, %, 6, q,, F,) recognizes A, 3. Def of Regular Langu‘Lage
Construct DFA M = (Q, %, 9, q,, F) (todo 4. Def of DFA

! How to create this M? Don't : -
M recognizes Al U AZ know what 4, and A, are! Definition of Regular Language (Corol

lary)

A, UA, Isaregularlanguage |If a lang is regular, then it has a DFA

N o, W N R

The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

[n other words, if A; and A5 are regular languages. gis A U As.

To prove P— Qis TRUE: Assume P is TRUE, then prove Qi’s TRUE

s Union Closed For Regular Langs?

Statements
1. A,and A, are regular languages

4." Construct DFA M = (Q, Z, 6, q,, F) (todo)

5 MrecognizeSA UA How to create this M? Don’t
’ 1 2

know what A; and A, are!

6. A, UA,Isaregular language

[n other words, if A; and As are regular languages, so is A; U As.

Justifications

1.
2. ADFA Ml = (Q]_J Z) 51; ql; Fl) FECOgniZES Al 2.
%’é DFA MZ = (QZJ Z) 52; qz; Fz) FECOgniZES AZ 3.
4,

Assum
Def of
Def of
Def of

tionoris part of If-Then

Corollary

Regular Language
Regular Language
DFA

5. See examples

6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

DEFINITION
4 N\ A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where

M,

1. Q is a finite set called the states,
. A 2. ¥ is a finite set called the alphabet,
recogn 1Z€S 1 3. §: Q x ¥—Q is the transition function,

4. qo € Q is the start state, and

© 5. F C Q is the set of accept states.

Regular language A4,
Regular language A4,

M

Even if we don't know what these
languages are, we still know...

My = (Q2, %, 92, q2, F2), recognize As,
A

\
© My = (Q1,%,01,q1, F1), recognize Ay,

Definition of Regular Language (Corollary)

\
[
recognizes A, _)O
O
O
O
.

/| If L'is a regular language, then a DFA recognizes L

M,

recognizes A,

M

recognizes A,

Want: M

Recognizes
A, UA4,

(to prove 4, U 4,
is regular)

=

>/ \\} Union

Rough sketch Idea:
M is a combination
of M, and M, that:
checks whether its
input is accepted
by either M, or M,

But: a DFA can only
read its input once!

Need to: somehow

X_ simulate “being in”
both an M, and M,

state simultaneously

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A, and A3 are regular languages, so is A4; U As.

Union i1s Closed For Regular Languages

Proof (continuation)

: M, =) F i :
* Glven: Ml B (@1, E’ il’ AL Fl)’ Hecoghze A1, Want: M that can simultaneously
2 = (Q2, 202, 42, F2), recognize Az, | pe in” both an M, and M, state

 Construct: M = (@, %, 6, qo,-F), using M, and M,, that recognizes A, U A4,

. . Q={(ri,r2)|m € Qrand ro € Q2} =0, %@,
states of M. This set is the Cartesian product of sets ()1 and Q-

A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where A S.tate of M Is a pair:
- first part: state of M,

1. @ is a fini lled th
@ is a finite set called the states, - second part: state of M,

2. ¥ is a finite set called the alphabet,
3. 0: Q x X—Q is the transition ﬁmction,l

4. qo € Q is the start state, and states. of M:
5. F C Q is the set of accept states. all pair combos of M, and M, states

Note:
We do not know M, or M, exactly!
But: a concrete example helps understanding

DFA Union Example

M, 1 0 1 M, 0 1

(-7
o

A state of M Is a pair:
- first part: state of M,
- second part: state of M,

<

states of M:
all pair combos of M, and M, states

https://cs.wellesley.edu/~cs235/falll0/lectures/14 DFA operations_revised 2.pdf

Union i1s Closed For Regular Languages

Proof (continuation)
e Glven: My = (Ql;2951.,Q1,F1),recognize Ay,
- My = (Q2,%, 02,42, F2), recognize A,

 Construct: M = (@, %, 6, go:-F'), using M, and M,, that recognizes A, U A4,

' This set is the Caxtesianproduct of sets Q1 and (-
P

A finite automaton is a 5S-tuple (Q, X, 6, qo, F'), where g) — (51 (?"1 , &), 52 (T'Qj QJ)) A step in M is both:
1. Q is a finite set called the states, -astep ?ﬂ M;, and
2. ¥ is a finite set called the alpbhabet, -astepin M,
3. 0: Q x X—Q is the transition ﬁmctionﬂ
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

Sllee)E 5,(C,0)=C
y 2(C,0)

A step in M is both:
- a step in M,, and

(B,D) - astepin M,

https://cs.wellesley.edu/~cs235/falll0/lectures/14 DFA operations_revised 2.pdf

Union i1s Closed For Regular Languages

Proof (continuation)
e Glven: My = (Ql;2951,Q1,F1),recognize Ay,
- My = (Q2,%,02,q2, F2), recognize A,

 Construct: M = (@, %, 6, qo, F'), using M, and M,, that recognizes A, U 4,

. . Q={(ri,r2)|r € Qrand r2 € Q2} =0, %0,
states of M. "This set is the Cartesian product of sets ()1 and Q)

* M transition fn: §((ry,r2),a) = (61(r1, a), d2(r2, a))

Start state of M is:
* M start state: (q1,q2) both start states of M, and M,

DFA Union Example

M, 0 1 0

M, 0 1
oo 6oRO
¥

M 0
(B,C)
0
1 1 1 1
0
Start state of M is:

(A.D) (B,D) both start states of M, and M,

https://cs.wellesley.edu/~cs235/falll0/lectures/14 DFA operations_revised 2.pdf

Union i1s Closed For Regular Languages

Proof (continuation)
e Glven: My = (Ql;2951,Q1,F1),recognize Ay,
- My = (Q2,%,02,q2, F2), recognize A,

 Construct: M = (@, %, 6, qo, F'), using M, and M,, that recognizes A, U 4,

o . Q={(r1,r2)|m € Qrand ry € Q2} =0; %0,
states of M. "This set is the Cartesian product of sets ()1 and Q)

* M transition fn: §((ry,72),a) = (61(r1, a), d2(r2, a))
Remember:

e M start state: (ql, q:,;»_) Accept states must
be subset of Q

* M accept states: F' = {(ry,r2)| r1 € F} or ro € Fy}| Accept if either M, or M, accept

xample

0

DFA Union E

Accept if either M, or M, accept

Union i1s Closed For Regular Languages

Proof (continuation)
: . My = (Q1,%,01,4q1, F1), recognize Ay,
-leen.M_(Q)) A
Define the function: 2 * 2’ » 02,42, I'2), recognize Ao,

UNIONpes (M, M) =M= (Q, 3, 6, qo, F'), using M, and M,, that recognizes A, U A4,

o . Q={(r1,r2)|m € Qrand ry € Q2} =0; %0,
states of M. "This set is the Cartesian product of sets ()1 and Q)

* M transition fn: §((ry,r2),a) = (61(r1, a), d2(r2, a))

e M start state: (¢1,92)

* M accept states: F = {(ry,r2)|r1 € Fy orry € Fy} aen? B

/0/‘&&/'0«&{%

s Union Closed For Regular Langs?

Statements Justifications

1. A, and A, are regular languages 1. Assumption

2. ADFAM,=(0Q,, %, 6,,q, F;) recognizes A; 2. Def of Regular Language
(ﬁné DFA M, = (Q,, %, 8,, q,, F,) recognizes A, 3. Def of Regular Language

4.” Construct DFA M = UNIONyq, (M,M,) V] 4. Def of DFA

5. Mrecognizes A, U A, [euioceaethiszbont 5 See examples (toboy

know what A, and A, are!

6. A, UA,Isaregular language

6. Def of Regular Language

7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A7 U As.

“Prove” that DFA recognizes a language

Lets, €A, and s, €A,

Be careful when choosing examples!

Lets; € A, and s, € A,

In this class, a table like this
is sufficient to “prove” that a
DFA recognizes a language

"Suing | Intang, U 4,7 | Accepted by 17

Don’t know A4; and A, exactly ...

My = (Q1, 3,01, q1, F1), recognize Aj,
My = (Q2,3, 02, q2, F2), recognize A,

... but we know ...

.. they are sets of strings!

constructed M = (Q, 2, (5, q0, F) recognizes A, U 4,?

“Prove” that DFA recognizes a language

Lets, €A, and s, €A,

PYCYRCLTR svice | intangs,Ud,z | Accepted by i

Sq Yes
S, Yes
S5

My = (Q1, 3,01, q1, F1), recognize Aj,
My = (Q2,3, 02, q2, F2), recognize A,

constructed M = (Q, 2, (5, q0, F) recognizes A, U 4,?

Union i1s Closed For Regular Languages

Proof (continuation)
. Given: My = (Q1,%,91,q1, F1), recognize Ay,
- My = (Q2,%,02,q2, F2), recognize A,

 Construct: M = (@, %, 46, qo, F'), using M, and M,, that recognizes 4, U 4,

. . Q={(r1,r2)|m € Q1 and ry € Q2} =0, %0,
states of M. "This set is the Cartesian product of sets ()1 and Q)

* M transition fn: §((ry,r2),a) = (61(r1, a), d2(r2, a))

e M start state: (¢1,92)

Accept if either M, or M, accept
* M accept states: F' = {(ry,r2)|r1 € Frorry € F5}

“Prove” that DFA recognizes a language

Lets, €A, and s, €A,

Letsc € A, and € A4,

]Lfl = (Ql, E, 61, qi, Fl), recognize Al,
Ms = (Q2, X, 02, q2, Fz), recognize As,

(this column needed when
machine is not concrete, i.e.,
can’t directly run machine to
check if string is accepted)

BT T

S, Yes

Se No

astrlng €A~ accepted by I\/ﬁ—> accepted by M | (J1)

strlng €A @A, > M ana M, rejects - M rejects | (J2)

constructed M — (Q >, 0, qo, F) to | Accept if either M, or M, accept

Else reject

F ={(r1,r3)|r1 € F1 orre € F5}

Alternate Examples Table

“Prove” that DFA recognizes a language

Lets, €A, and s, €A,

Letsc € A, and € A,

My = (Q1, 3,01, q1, F1), recognize Aj,
My = (Q2,3, 02, q2, F2), recognize A,

M = UNION,, (M,,M,)

(required when machine is not concrete,
i.e,, can’t directly run machine to check
if string is accepted)

‘ AN TR M = UNION e, (M, M,)

Yes Accept (J1)
Yes Accept (J1)
No Reject (J2)

s, €A, - accepted by M, - accepted by M | (]J1)
Sc € Ajand & Ay = M, ana M, rejects - M rejects | (J2)

Alternate Examples Table

“Prove” that DFA recognizes a language

S1 Yes Accept
S, Yes Accept
Ss No No Reject Reject
M, = (Q1,%,01,¢1, F1), recognize Ay,
My = (Q2, X, 02, g2, I'2), recognize As,
M = UNION,;, (M,M,) = (F)

where ' = {(?"1

(required when machine is not concrete,
i.e., can't directly run machine to check
if string is accepted)

M = UNION;, (M, M,)

Yes Accept
Yes Accept
No Reject

Accept if either M, or M, accept
?"2)‘ 1 € F1 Or 1o & Fg}

2 /‘w/'a«@é

s Union Closed For Regular Langs?

Justifications

5. See Examples Table]

Assum
Def of
Def of

Def of

ntion
Regular Language
Regular Language

DFA

6. Def of Regular Language

Statements

1. A, and A4, are regular languages 1.

2. ADFAM,=(Q %, 64, q, F;) recognizes A, 2.

3. ADFA M, =(Q,, %, 6,, q,, F,) recognizes A, 3.

4. Construct DFAM=(Q,%,6,q,F) ™ b,

5. Mrecognizes A, U A,

6. A, UA, Is aregular language

7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A; U As.

0ED. IR

Another (common string) operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

\

M,: “CONCAT”
M,: recognize M,: recognize
numbers words

Concatenation: Ao B = {zy|x € Aand y € B}

Concatenation of Languages

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= {fort,south} B = {point,boston}

Ao B = { fortpoint, fortboston, southpoint, southboston }

s Concatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is 4; o As.

Construct a new machine M recognizing Ao A,? (like union)
» Using DFA M, (which recognizes A,),
« and DFA M, (which recognizes 4,)

PROBLEM:
Can only
read input
once, can't
backtrack

O

Concatentation

O

<
©
©,

Let M, recognize Ay, and M, recognize A,.

Want: Construction of M to recognize A; o As

Need to switch
machines at some
point, but when?

-

~N

~

o 512?22

O ©

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

* Let M, recognize language A={ jen, jens}
« and M, recognize language B={smith}
« Want: Construct M to recognize AoB = {Eensmith,\jenssmith }

 |f M sees jen ...
« M must decide to either:

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

* Let M, recognize language A={ jen, jens}
« and M, recognize language B={smith}
« Want: Construct M to recognize AoB={ jensmith, jenssmith}

 |f M sees jen ...

« M must decide to either:
e stay in M, (correct, if full inputis jenssmith)

Concatenation: Ao B = {zy|z € Aand y € B}

Overlapping Concatenation Example

* Let M, recognize language A={ jen, jens}
« and M, recognize language B={smith}
« Want: Construct M to recognize AocB={ jensmith, jenssmith}

/

. If M sees jen ... A DFA can’t do this!

« M must decide to either:
e stay in M, (correct, if full input is jenssmith)
« or switch to M, (correct, if full input is jensmith)

« But to recognize AoB, it needs to handle both cases!!
« Without backtracking

s Concatenation Closed?
FALSE?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

« Cannot combine A, and A,’s machine because:
« Need to switch from A, to 4, at some point ...
« ... but we don't know when! (we can only read input once)

 This requires a new kind of machine!
« But does this mean concatenation is not closed for regular langs?

Nondeterminism

Deterministic vs Nondeterministic

Deterministic
computation

e Start

states

b k£ Ak Ak— £k
.. [° ° ®

* accept or reject

DFAs

Deterministic vs Nondeterministic

Deterministic Nondeterministic
computation computation

L Stal't (.

. I

can be in multiple states at

. : f \' the same time
reject (1

()

* accept or reject * accept

states fl_ ,\\ Nondeterministic computation
e o v

b k£ Ak Ak— £k

DFAs New FA

2 /%W'ﬂ«@fy

DFAs: The Formal Definition

DEFINITION
deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

Compare with DFA:

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,

Difference

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. @ is a finite set called the states,

. X is a finite set called the alphabet,

. 0: Q x ¥—Q is the tramnsition function,
. Qo € Qs the start state, and

A7 C () is the set of accept states.

wi b~ W N

3.0: Q x X.—>P(Q) is the transition function,

4. qp € Q 1s the start state, and
5. F C (@ is the set of accept states.

Power set, i.e. a transition
results in set of states

Power Sets

* A power set is the set of all subsets of a set

« Example: S={a, b, c}

 Power set of S =
* {{},{a},{b},{c},{a, b}, {a,c},{b,c},{a,b,c}}

« Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,
3.0: Q x3.—>P(Q) is the transition function,

; CAREFUL:
4. do € Q is the start state, and e symbol is reused here, as a transition label

E L r MNicslho coe ~F (ie, an argument to §)
. L[] acce t States. ,’ ®
Transition label can be “empty”, P - It's not the empty string!

' i 4 - And it’s (still) not a character in the alphabet 3!
l.e., machlne can trzfmsmon Y. =2 U {8} p
without reading input

NFA Example

« Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton
is a 5-tuple (Q, 3,46, qo, F), where
1. @ is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qp € @ is the start state, and
5. F C Q is the set of accept states.

The formal description of N; is (@, X, 6, q1, F'), where

1. Q — {glaQQaq.?nqé.L}a 0: Q X ZEHP(Q)

B Empty transition
2. Y = {0,1}; (no input read)

3. 0 1s given as

Result of transition
Is a set

: Empty transition
1
4. q; is the start state, and : T —
5. F ={qs}.

Multiple 1 transitions No 0 transition

In-class Exercise

« Come up with a formal description for the following NFA
e X={a,b}

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 9, qo, F'), where
1. Q is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qo € Q is the start state, and
5. F C @ is the set of accept states.

Differences with DFA?
- S output is a set

In-class Exercise Solution = gmbesmbat o oo

Let N=(Q, %, 6, q, F)
*Q0={91,92 93}

eX={a,b}
°J ...

*do =44
*F={q,}

- state can have multiple transitions for
one symbol
- can have “empty” transitions

0(qp,a)=1{} (6 output is empty set)
o(q,b)={q,}
6(q,€) =143}
0(qza)=1929s}
0(qyDb)={qs}

o(gye)={}
0(qsa)=14q,}
o(qsb)={}

o(q3€) =1}

NFA Computation (JFLAP demo): 010110

s
YOO OEN

NFA Computation Sequence

Symbol read

Each step can
branch into
multiple states at
the same time!

So this is an accepting
computation

Flashback

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):
o Start in start state

* Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

Flashback

DFA Computation Rules

Informally Formally (ie, mathematically)
Glven

 ADFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW9 -+ Wy

A DFA computation (~ “Program run”): A DFA computation is a
 Start in start state sequence of states:

- Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

NFA

Computation Rules

Informally

Glven

e AN

NFA [(~ a “Program”)

« and Input = string of chars, eg “1101"

An

NFA

computation (~ “Program run”):

e Start in start state

 Repeat:

« Read 1 char from Input, and

For each “current” state, |according to transition rules
go to next states ... then combine all “next states”

lgnoring € transitions, for now!

Result of computation:

 Accept If last| set of states has accept state

* Reject otherwise

lgnoring € transitions, for now!

NFA [Computation Rules

Informally Formally (ie, mathematically)
Glven
e An| NFA |(~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW3 - Wy
A DFA computation (~ “Program run”): An NFA computation is a sequence of:
 Start in start state sets of states
) Repeat:
« Read 1 char from Input, and
For each “current” state, |according to transition rules 990
go to next states ... then combine all “next states” ===

Result of computation:

 Accept If last| set of states has accept state
« Reject otherwise

Flashback

DFA Multi-Step Transition Function
0:Q XY = Q

« Domain (inputs):

e state q © Q (doesn't have to be start state)
* string w = wiws2 - -+ Wy where w; € X

Recursive Input Data
needs
Recursive Function

A String is either:
-—the empty string (), or

+ xa (non-empty string)
~ where

Base case 5((]7 5‘) — xis a string

e gisa‘“char’inX

Base case

Flashback

DFA Multi-Step Transition Function

0:Q x X" = Q
« Domain (inputs):
e state q © Q (doesn't have to be start state)
e string w = wiw2 -+ Wy where w; € X

- Range (output):
. state ¢ € () (doesn't have to be an accept state)

(Defined recursively)

Recursive case

0(q,e) = q

string char

Base case Recursion on string

A

6(q, w'w,) =

Recursive Case

“second to last” state
where w’ = wy -+ - w,_1

“smaller” argument

Recursive Input Data
needs
Recursive Function

A String is either:
 the empty string (), or

+ xa (non-empty string)
where Recursion

« xisastring“ onstring
<« aisa “char’in X
string
char

Hshback 0: Q X ¥—Q is the transition function

DFA Multi-Step Transition Function
0:Q XY = Q

« Domain (inputs):
e state q © Q (doesn't have to be start state)
* string w = wiws - Wy where w; € 3

- Range (output): |
. state ¢ € () (doesn't have to be anjaccept state) R

Recursive Function

A String is either:

(Defi ned reCU rSivel.y) ° the empty String (E), or
« xa (non-empty string)
~ where

Base case 5((]7 5‘) — q x is a string

aisa“char’inX

ey e

. / /
Recursive Case 5(q, w wn) = 5((5(q, w), wn) Single step from “second to last” state

and last char gets to last state
where w’ = wy -+ - w,_1

NFA

- Range (output):

states

s C Q

\ Result is set of states

d: @ x X¥e—>"P(Q) is the transition function

Multi-Step Transition Function
5:Q xT* 5 P(Q)

« Domain (inputs):
. state ¢ € () (doe
« string w = wWw

't have to be start state)

+ Wn where w; € X

d: @ x Xe—>"P(Q) is the transition function
NFA [Multi-Step Transition Function
0:Q x X —>73(Q)\

« Domain (inputs): Result is set of states
. state ¢ € () (doesn’t have to be/start state)
 string w = wWiws - - Wy where w; € 2

’ @gﬁ (OUtpUt)I Recursively Defined Input
states (@S C Q needs

Recursive Function

A String is either:
« the empty string (), or

(Deﬂned recurSively) « xa (non-empty string)

where
« xis astring

Base case 5((]7 5) —={q} + aisa‘char’ inz

Base case

d: @ x Xe—>"P(Q) is the transition function

NFA [Multi-Step Transition Function
6:0Q xY* — P(Q)

« Domain (inputs):
. state ¢ € () (doesn’t have to be start state)
e string w = wWiwW2 -+ Wy where w; € X

* @gg (OUtpUt)I Recursively Defined Input
states (@S C Q needs

Recursive Function

A String is either:
 the empty string (), or

(Deﬂ ned recursive ly) Recursive case |~ xah(non—empty string)
where
A « _xis astring
Base case 5 (Q7 6) p— {Q} Recursive part e agisa“char’inx
“second to last”
= Recursion on recursive part set of states

Recursive Case d(q, w’wn) — -
e 1] = 3 2> Wi 0(g,w") =1{q1,--,qr}

0: @ x X¥e—>"P(Q) is the transition function

5:Q xX* 5 P(Q)

« Domain (inputs):
. state ¢ € () (doesn't have to be start state)
* string w = wiws2 - - Wy where w; € 2
- Range (output):
states ¢s C ()

' ' h “second
(Defined recursively) o last” state,
take single step

Base case 5((]’ 6) —{q} . on last char

~

Recursive Case 5((], w’wn) _ LJI 5(%7 wn)
1=

where w’ = wy -+ - w,_1

0(q, w

NFA [Multi-Step Transition Function

Recursively Defined Input
needs
Recursive Function

A String is either:

 the empty string (), or

* xa (non-empty string)
where
« xis astring
e aisa‘char’inX
Last char

’):{Qh---,%}

d: Q x X.—P(Q) is the transition function

NFA [Multi-Step Transition Function

Glven

01 QX 2" =1 an NFA (~a “Program”)
« Domain (inp{+ and Input = string of chars, eg. “1101”

e state g ©

* string w = A DFA computation (~ “Program run”):

* Range (0UtPU. start in start state

states (¢S ¢

* Repeat:

« Read 1 char from Input, and

Recursively Defined Input
needs

Still ignoring € transitions!

(Defined recur{ror each “current” state,
go to next states

according to transition rules
N

D~ ~ a \ [Y | 1

... then combine all sets of “next states”

Recursive Case S(Q, w’wn)

where w' = w;y -

k

~

 the empty string (¢), or
 xa (non-empty string)

where
« xis a string
e agisa‘“char’ inX

—]|
..w:;_l 5(qaw,) — {Q17"'7Qk}

Base case: 5(q, €) = {q}

NFA Multi-Step 6 Example secusiecse 5

0, 1

k
5((]’127 w’n)
1=1

where
o(q,wy -+ wp—1) ={q1,- .., qr }
Start m 0 1 1 : : :
—=(%) -(41)
. 0 — :
(90, €) We haven’t considered

empty transitions!

® ‘5(‘?09 0) —

Combine result of recursive call with “last step”
° 5(‘?0; 00) —

s

® 5(QU, 001) =

Adding Empty Transitions

» Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

« Base case: ¢ € e-REACHABLE(q)

* Recursive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

e-REACHABLE Example

e-REACHABLE(1) ={1,2,3,4,6}

Handling € transitions now!

NFA [Multi-Step Transition Function
6:0Q xY* — P(Q)

(Defined recursively)

A

Base case 5((]7 g) — g—REACHABLE(q)

Recursive Case

NFA

Handling € transitions now!

Multi-Step Transition Function

S:QXZ*%P(Q)

All chars “second to last”
except last set of states
(Defined recursively)
Base case 5((]7 g) — 6—REACHABLE(Q) :
“last” set O
| X / 14 states (no ¢)
Recursive Case | 0(q, w'wn) = | | e-REACHABLE(r;)

j=1

Summary: NFA vs DFA Computation

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition
« Must read 1 char « Has empty transitions
* Acceptance: * Acceptance:

« If final state is accept state * If one of final states is accept state

Previnusty Concatenation: Ao B = {xy|x € Aand y € B}

s Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof requires: Constructing new machine
« How does it know when to switch machines?
« Can only read input once

