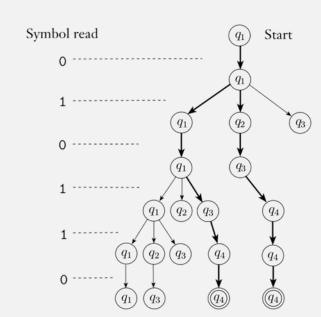
CS 420 / CS 620 Computing with NFAs

Monday, September 29, 2025 UMass Boston Computer Science



Announcements

- HW 3
 - Due: Mon 9/29 12pm (noon)

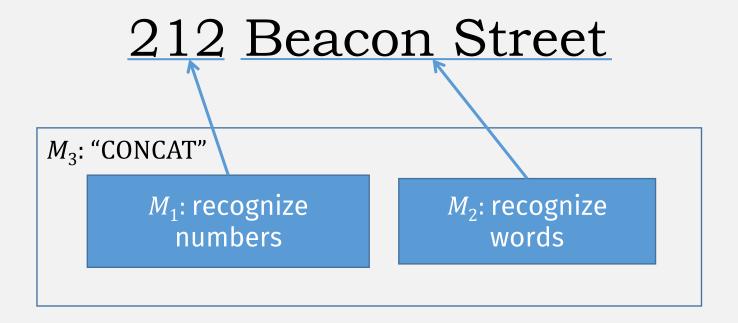
- HW 4
 - Out: Mon 9/29 12pm (noon)
 - Due: Mon 10/6 12pm (noon)

HW 2 Observations

- Don't change the problem
- E.g., Prove the exact theorem given
 - Don't change the wording
 - Don't change the notation
- Note:
 - $L(T) \neq L_T$
 - *L(T)*: all accepted strings of machine *T*
 - *L*_T: a given language (set of strings)
- Changed Problem Examples:
 - Proving: "L(T) is a Regular Language"
 - Proving: "L is a Regular Language"
- No outside theorems / notation
 - "The Standard Theorem" ???
 - "The Finite Theorem" ???
- String chars must come from alphabet

Another (common string) operation: Concatenation

Example: Recognizing street addresses



Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a, b, \dots, z\}.
```

```
If A = \{ fort, south \} B = \{ point, boston \}
```

```
A \circ B = \{ \text{fortpoint, fortboston, southpoint, southboston} \}
```

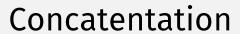
Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)



 M_1



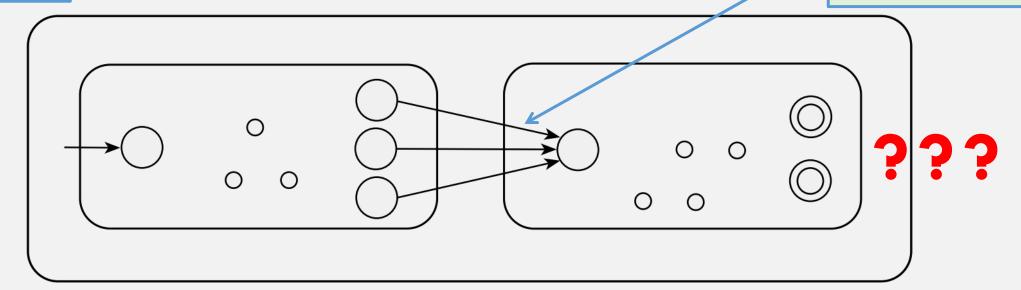
PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?



 M_2

Is Concatenation Closed?

FALSE?

THEOREM

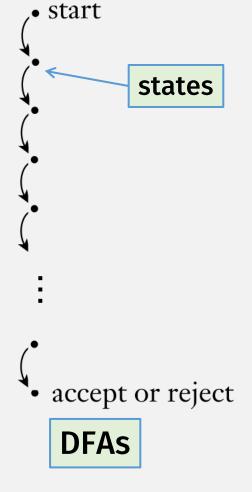
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

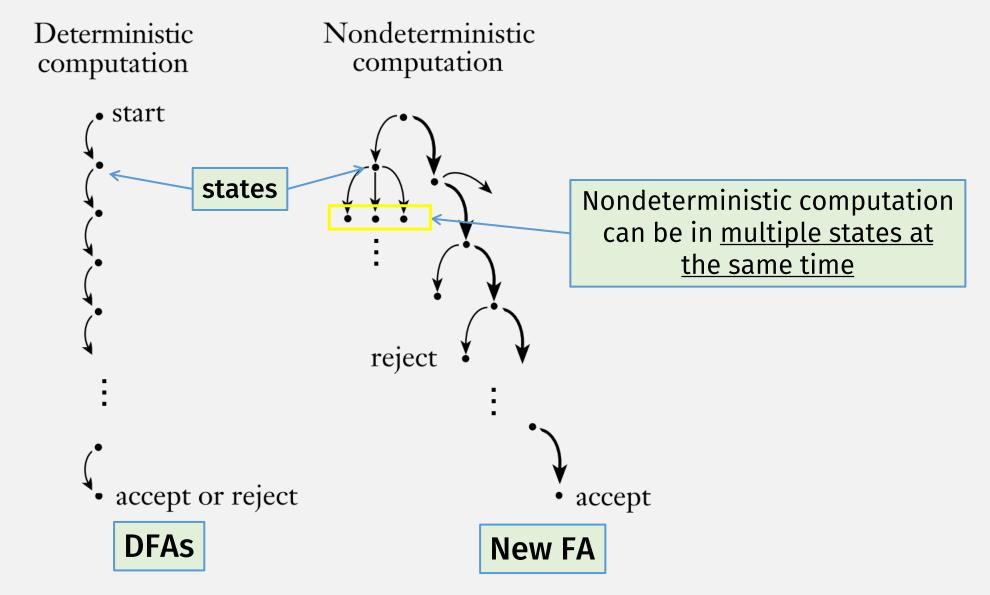
- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

Deterministic vs Nondeterministic

Deterministic computation



Deterministic vs Nondeterministic



DFAs: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** *Q* is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Fraition label can be "empty" accept states.

Transition label can be "empty", i.e., machine can transition without reading input

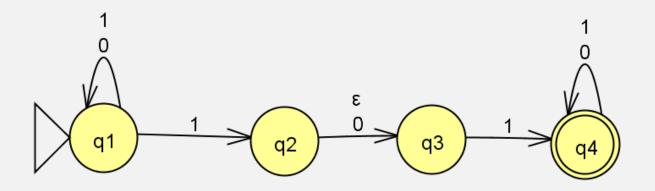
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

CAREFUL:

- ϵ symbol is <u>reused</u> here, as a transition label (ie, an argument to δ)
- It's not the empty string!
- And it's (still) not a character in the alphabet Σ!

NFA Example

• Come up with a formal description of the following NFA:



DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

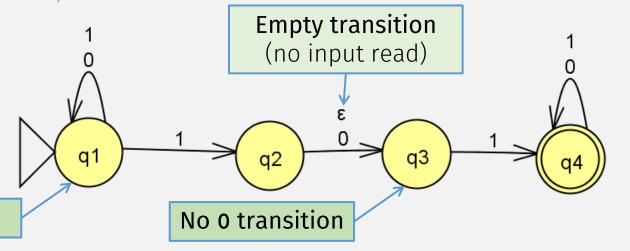
- 2. $\Sigma = \{0,1\},\$
- 3. δ is given as

Result of transition is a set

Empty transition

(no input read)

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$



 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

Multiple 1 transitions

In-class Exercise

Come up with a formal description for the following NFA

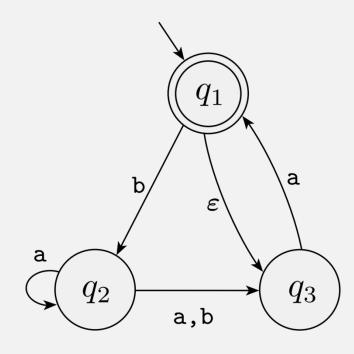
• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



In-class Exercise Solution

Let
$$N = (Q, \Sigma, \delta, q_0, F)$$

- $Q = \{ q_1, q_2, q_3 \}$
- $\Sigma = \{ a, b \}$
- δ ...

- $q_0 = q_1$
- $F = \{ q_1 \}$

$$\delta(q_1, a) = \{\}$$

$$\delta(q_1, b) = \{q_2\}$$

$$\delta(q_1, \varepsilon) = \{q_3\}$$

$$\delta(q_2, a) = \{q_2, q_3\}$$

$$\rightarrow \delta(q_2, b) = \{q_3\}$$

$$\delta(q_2, \varepsilon) = \{\}$$

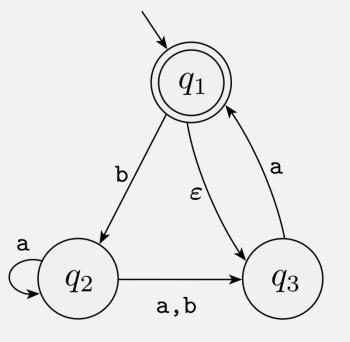
$$\delta(q_3, a) = \{q_1\}$$

$$\delta(q_3, b) = \{\}$$

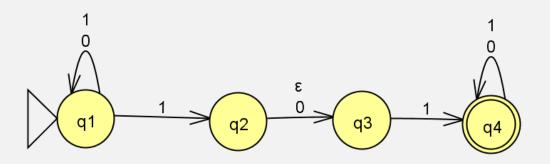
$$\delta(q_3, \varepsilon) = \{\}$$

Differences with DFA?

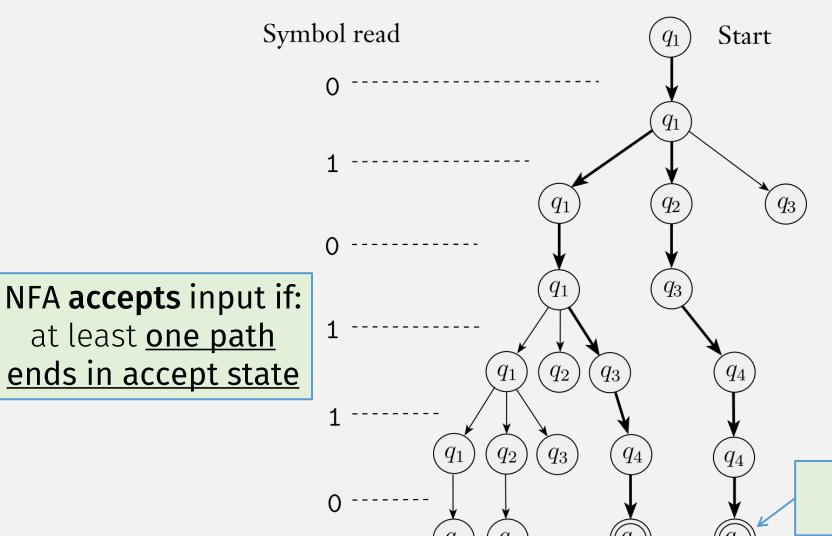
- δ output is a set
- state doesn't need transition for every alphabet symbol
- state can have multiple transitions for one symbol
- can have "empty" transitions $(\delta \text{ output is empty set})$



NFA Computation (JFLAP demo): 010110



NFA Computation Sequence



Each step can branch into multiple states simultaneously!

This is an accepting computation

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A DFA computation is a sequence of states:

- M accepts w if $\hat{\delta}(q_0,w) \in F$
- *M* rejects otherwise

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a **sequence of states:**

- M accepts w if $\hat{\delta}(q_0,w) \in F$
- *M* rejects otherwise

NFA Computation Rules

Informally

Given

- An **NFA** (~ a "Program")
- and Input = string of chars, e.g. "1101"

An **NFA** <u>computation</u> (~ "Program run"):

• Start in start state

• Repeat:

• Read 1 char from Input, and

For each "current" state go to <u>next states</u>

For each "current" state, according to transition rules

... then combine all "next states"

Result of computation:

- Accept if last set of states has accept state
- <u>Reject</u> otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

An NFA computation is a ...

- *M* accepts *w* if ...
- *M* rejects ...

NFA Computation Rules

Informally

Given

- An NFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

An NFA computation (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and

go to next states

For each "current" state, according to transition rules

... then combine all "next states"

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

An **NFA computation** is a **sequence of:** sets of states

- Result of computation:
 - Accept if last set of states has accept state
 - Reject otherwise

- *M* accepts *w* if ...
- M rejects ...

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$ (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

Base case

A **String** is either:

- the **empty string** (ϵ), or
- xa (non-empty string) where
 - *x* is a **String**
 - *a* is a "char" in Σ

Base case

$$\hat{\delta}(q,\varepsilon) =$$

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- <u>Domain</u> (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

(Defined recursively)

• state $q \in Q$ (doesn't have to be an accept state)

A **String** is either:

• the **empty string** (ε) , or

Recursive Input Data

needs
Recursive Function

- Recursive case xa (non-empty string) where Recursion
 - x is a **String** on String on String a is a "char" in Σ

String

char

Base case

$$\hat{\delta}(q,\varepsilon) = q$$

Recursion on String

String char

Recursive Case

 $\hat{\delta}(q, w'w_n) = \delta(\delta(q, w'))$

where $w' = w_1 \cdots w_{n-1}$

"second to last" state

"smaller" argument

(ccarsion on strii

DFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$ (doesn't have to be an accept state)

(Defined recursively)

Base case
$$\hat{\delta}(q,arepsilon)=q$$

Recursive Input Data needs Recursive Function

A **String** is either:

- the **empty string** (ε) , or
- xa (non-empty string) where
 - x is a **String**
 - a is a "char" in Σ

Recursive Case

$$\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)$$

where $w' = w_1 \cdots w_{n-1}$

Single step from "second to last" state and last char gets to last state

 $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{R}}$$

- Domain (inputs):
- Result is set of states
- state $q \in Q$ (doesn't have to be start state)
- String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states $qs \subseteq \zeta$

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{R}}$$

- Domain (inputs):
- Result is set of states
- state $q \in Q$ (doesn't have to be start state)
- String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states
$$qs \subseteq Q$$

(Defined recursively)

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursively Defined Input needs **Recursive Function**

Base case

A **String** is either:

- the **empty string** (ε), or
- xa (non-empty string) where
 - x is a **String**
 - *a* is a "char" in Σ

 $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states $qs \subseteq Q$

$$qs \subseteq Q$$

(Defined recursively)

Base case
$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursive Case

$$\hat{\delta}(q, w'w_n) =$$
where $w' = w_1 \cdots w_{n-1}$

Recursively Defined Input needs **Recursive Function** A **String** is either: • the **empty string** (ϵ), or Recursive case xa (non-empty string) where • x is a **String** Recursive part a is a "char" in Σ "second to last" set of states Recursion on recursive part $\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - String $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):

states $qs \subseteq Q$

(Defined recursively)

Base case

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Recursive Case

$$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\infty} \delta(q_i, w_n^{\vee})$$

where $w' = w_1 \cdots w_{n-1}$

For each "second to last" state, take single **step** on last char

Recursive Function A **String** is either:

• the **empty string** (ϵ), or

Recursively Defined Input

needs

- *xa* (non-empty string) whère
 - x is a **String**
 - a is a "char" in Σ

Last char

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \rightarrow \begin{array}{c} \text{Given} \\ \bullet \ \underline{\text{Domain}} \ (\text{inp} \\ \bullet \ \text{state} \ q \in \\ \bullet \ \text{string} \ w = \\ \bullet \ \underline{\text{Range}} \ (\text{outp} \\ \text{states} \ qs \subseteq \end{array}$$

$$\bullet \ \underline{\text{A DFA computation}} \ (\text{``Program run"}): \\ \bullet \ \underline{\text{Start}} \ \text{in } \ \underline{\text{start}} \ \text{states} \ and \ \underline{\text{Start}} \ \text{start} \ \text{st$$

Recursively Defined Input needs

- Repeat:
 - Read 1 char from Input, and

(Defined recurrent state, go to next states according to transition rules

This ignores ε transitions!

- the **empty string** (ϵ), or
- xa (non-empty string) where
 - x is a **String**
 - a is a "char" in Σ

... then combine all sets of "next states"

Recursive Case

$$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\delta(q_i, w_n)} \delta(q_i, w_n)$$
where $w' = w_1 \cdots w_{n-1}$

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

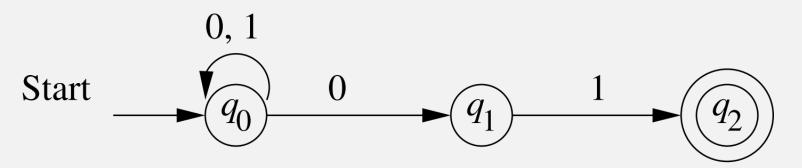
Base case:
$$\hat{\delta}(q, \epsilon) = \{q\}$$

NFA Multi-Step δ Example

Recursive case:
$$\hat{\delta}(q,w) = \bigcup_{i=1}^k \delta(q_i,w_n)$$

where:
$$i=1$$

$$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$



• $\hat{\delta}(q_0,\epsilon) =$

We haven't considered empty transitions!

•
$$\hat{\delta}(q_0,0) =$$

Combine result of recursive call with "last step"

•
$$\hat{\delta}(q_0, 00) =$$

•
$$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1)$$

Adding Empty Transitions

- Define the set ε -REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

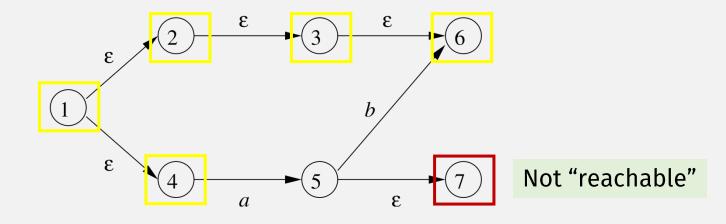
- Base case: $q \in \varepsilon$ -reachable(q)
- Recursive case:

A state is in the reachable set if ...

$$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$

... there is an empty transition to it from another state in the reachable set

ε -reachable Example



$$\varepsilon$$
-REACHABLE(1) = $\{1, 2, 3, 4, 6\}$

Handling ε transitions now!

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - states $qs \subseteq Q$

(Defined recursively)

Base case
$$\hat{\delta}(q,\varepsilon) = \frac{\varepsilon\text{-REACHABLE}(q)}{\varepsilon}$$

Recursive Case
$$\hat{\delta}(q, w'w_n) =$$

where
$$w' = w_1 \cdots w_{n-1}$$

$$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$

$$\bigcup_{i=1}^k \delta(q_i, w_n) = \{r_1, \dots, r_\ell\}$$

Handling ε transitions now!

NFA Multi-Step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$

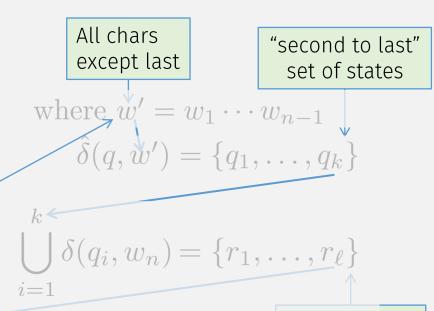
- Domain (inputs):
 - state $q \in Q$ (doesn't have to be start state)
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - states $qs \subseteq Q$

(Defined recursively)

Base case
$$\hat{\delta}(q, \varepsilon) = \varepsilon$$
-REACHABLE (q)

Recursive Case

$$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\varepsilon} \varepsilon\text{-REACHABLE}(r_j)$$



"last" set of states (no ε)

Summary: NFA vs DFA Computation

DFAs

- Can only be in <u>one</u> state
- Transition:
 - Must read 1 char

- Acceptance:
 - If final state <u>is</u> accept state

NFAs

- Can be in <u>multiple</u> states
- Transition
 - Has empty transitions

- Acceptance:
 - If one of final states is accept state

Is Concatenation Closed?

THEOREM

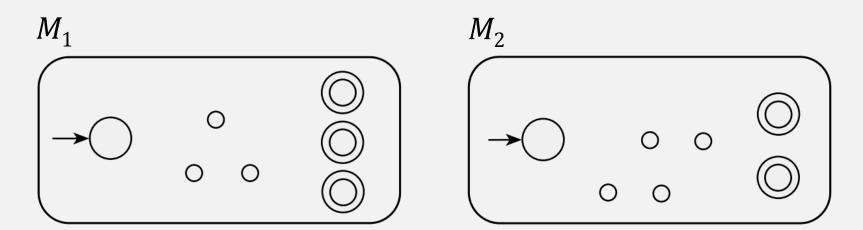
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof requires: Constructing new machine

- How does it know when to switch machines?
 - Can only read input once

Concatentation



Let M_1 recognize A_1 , and M_2 recognize A_2 .

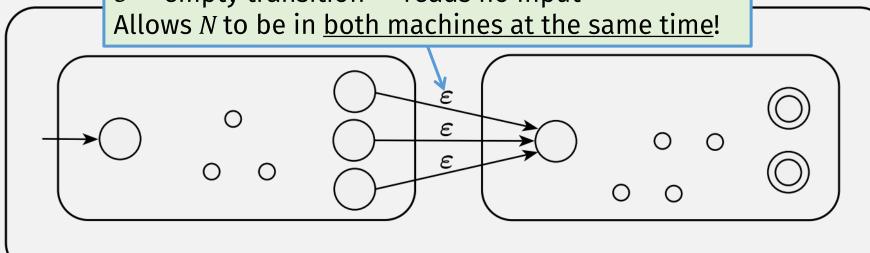
<u>Want</u>: Construction of N to recognize $A_1 \circ A_2$

 ε = "empty transition" = reads no input

N

N is an **NFA**! It can:

- Keep checking 1st part with M_1 and
- Move to M_2 to check 2^{nd} part



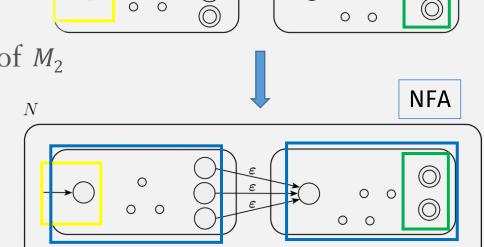
Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA
$$M_1 = [Q_1, \Sigma, \delta_1, q_1, F_1]$$
 recognize A_1
DFA $M_2 = [Q_2, \Sigma, \delta_2, q_2, F_2]$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

- 1. $Q = Q_1 \cup Q_2$
- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,



DFA

 M_1

DFA

Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1
DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Define the function:

CONCAT_{DFA-NFA}
$$(M_1, M_2) = N = (Q, \Sigma, \delta, q_1, F_2)$$
 to recognize $A_1 \circ A_2$

1.
$$Q = Q_1 \cup Q_2$$

- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon_*}$

$$\delta(q,a) = \begin{cases} \{\delta_1(q;a)\} & q \in Q_1 \text{ and } q \notin F_1 \\ \{\delta_1(q;a)\} & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$

$$? \quad \{q_2\} \quad q \in F_1 \text{ and } a = \varepsilon \end{cases}$$

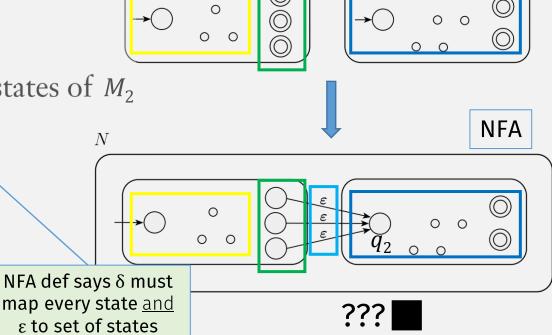
$$\{\delta_2(q;a)\} \quad q \in Q_2.$$

$$\underline{\text{And:}} \delta(q,\epsilon) = \emptyset, \text{ for } q \in Q, q \notin F_1$$

†

Wait, is this true?

DFA



DFA

Is Union Closed For Regular Langs?

Proof

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA M_1 recognizes A_1
- 3. A DFA M_2 recognizes A_2
- 4. Construct DFA $M = \text{UNION}_{\text{DFA}} (M_1, M_2)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. **Def of Reg Lang** (Coro)
- 3. **Def of Reg Lang** (Coro)
- 4. **Def of DFA** and UNION_{DFA}
- 5. See Examples Table
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Is Concat Closed For Regular Langs?

Proof?

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA M_1 recognizes A_1
- 3. A DFA M_2 recognizes A_2
- 4. Construct NFA $N = \text{CONCAT}_{DFA-NFA} (M_1, M_2)$
- 5. M recognizes $A_1 \cup A_2 \setminus A_1 \circ A_2$
- 6. $A_1 \cup A_2 \mid A_1 \circ A_2$ is a regular language
- 7. The class of regular languages is closed under Concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. **Def of Reg Lang** (Coro)
- 3. **Def of Reg Lang** (Coro)
- 4. Def of NFA and CONCAT DEA-NEA
- 5. See Examples Table
- 6. Does NFA recognize reg langs?
- 7. From stmt #1 and #6

Q.E.D.?

A DFA's Language

If a **DFA** recognizes a language *L*, then *L* is a regular language

• For DFA $M=(Q,\Sigma,\delta,q_0,F)$

• \emph{M} accepts \emph{w} if $\hat{\delta}(q_0, w) \in F$

• M recognizes language $\{w|\ M$ accepts $w\}$

Definition: A DFA's language is a regular language

An NFA's Language?

- For NFA $N=(Q,\Sigma,\delta,q_0,F)$

- Intersection ... with accept states ... $N \ \textit{accepts} \ w \ \text{if} \ \hat{\delta}(q_0,w) \cap F \neq \emptyset \qquad \text{... is not empty set}$
 - i.e., accept if final states contains at least one accept state
- Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: What kind of languages do NFAs recognize?

Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...

... produces an NFA

So to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must <u>prove</u>:

NFAs ⇔ regular languages

"If and only if" Statements

```
X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y
```

Represents <u>two</u> statements:

- 1. \Rightarrow if X, then Y
 - "forward" direction
- 2. \Leftarrow if Y, then X
 - "reverse" direction

How to Prove an "iff" Statement

```
X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y
```

Proof has two (If-Then proof) parts:

- 1. \Rightarrow if X, then Y
 - "forward" direction
 - assume X, then use it to prove Y
- 2. \Leftarrow if Y, then X
 - "reverse" direction
 - assume *Y*, then use it to prove *X*

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof: 2 parts

- \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 4)
- \Leftarrow If an NFA N recognizes L, then L is regular.

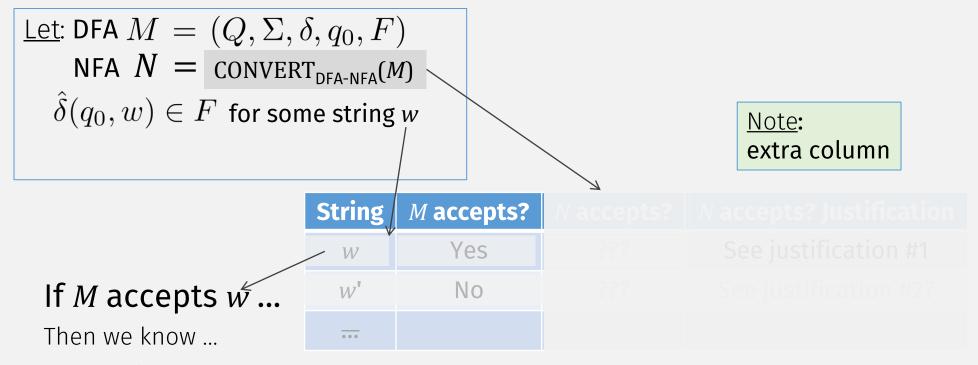
Full Statements & Justifications?

"equivalent" =
"recognizes the same language"

\Rightarrow If L is regular, then some NFA N recognizes it

Justifications Statements Assume the 1. Assumption 1. L is a regular language "if" part ... 2. A DFA *M* recognizes *L* 2. Def of Regular lang (Coro) 3. See hw 4! 3. Construct NFA $N = \text{CONVERT}_{DFA-NFA}(M)$ 4. DFA *M* is **equivalent** to NFA *N* 4. See Equiv. table! ... use it to prove 5. An NFA N recognizes L 5. ??? "then" part 6. If L is a regular language, 6. By Stmts #1 and # 5 then some NFA N recognizes it

"Proving" Machine Equivalence (Table)



There is some sequence of states: $r_1 \dots r_n$, where $r_i \in Q$ and

$$r_1 = q_0$$
 and $r_n \in F$

Then N accepts?/rejects? w because ...

Exercise left for HW

Show that you know how an NFA computes

Justification #1?

There is an accepting sequence of set of states in N ... for string w

"Proving" Machine Equivalence (Table)

Let: DFA $M = (Q, \Sigma, \delta, q_0, F)$ $\mathsf{NFA} \ N = \mathsf{CONVERT}_{\mathsf{DFA-NFA}}(M)$ $\hat{\delta}(q_0, w) \in F \text{ for some string } w$ $\hat{\delta}(q_0, w') \not \in F \text{ for some string } w'$

	String	M accepts?	N accepts?	N accepts? Justification
	w	Yes	???	See justification #1
If M rejects w'	— w' [↓]	No	???	See justification #2?
Then we know	•••			

Then N accepts?/rejects? w' because ...

Justification #2?

Exercise left for HW

Show that you know how an NFA computes

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \boxtimes \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 4)
 - ← If an NFA N recognizes L, then L is regular. (Harder)

"equivalent" =
"recognizes the same language"

- We know: for L to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA N → an equivalent DFA

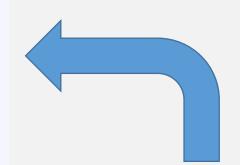
How to convert NFA→DFA?

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proof idea:

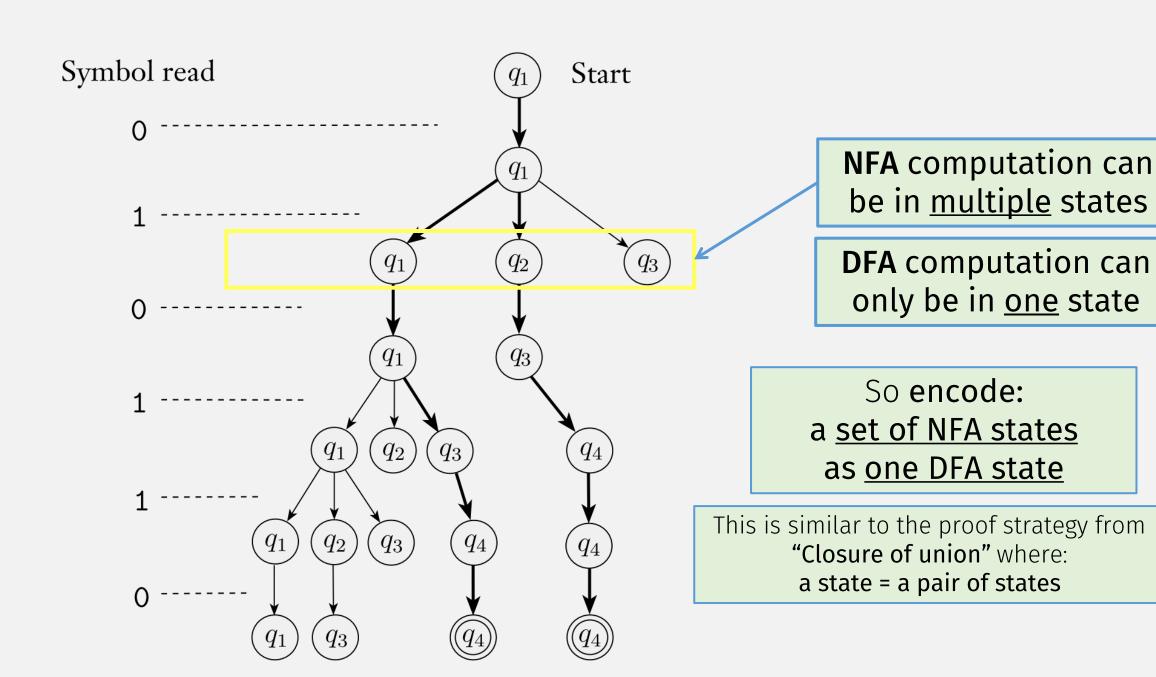
Let each "state" of the DFA = set of states in the NFA



A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

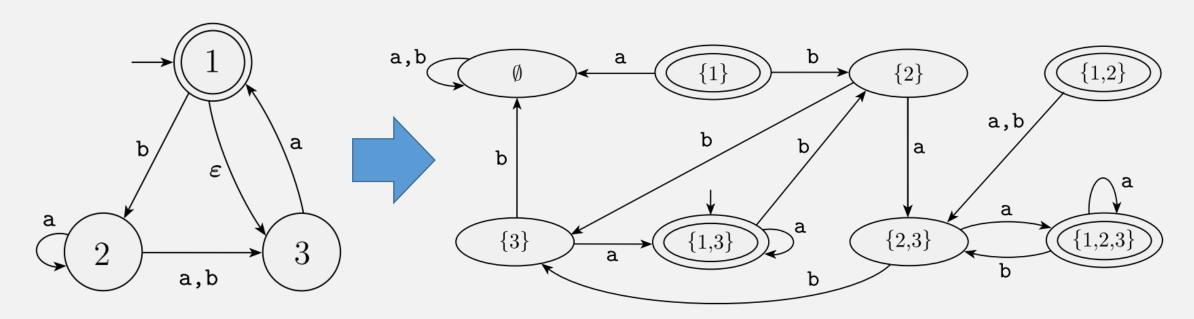


Convert **NFA→DFA**, Formally

- Let NFA N = $(Q, \Sigma, \delta, q_0, F)$
- An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)

Example:

- Let NFA N_4 = $(Q, \Sigma, \delta, q_0, F)$
- An equivalent DFA D has states = $\mathcal{P}(Q)$ (power set of Q)



The NFA N_4

A DFA D that is equivalent to the NFA N_4

NFA→DFA

<u>Have</u>: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$

<u>Want</u>: **DFA** $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$

1. $Q_{\text{DFA}} = \mathcal{P}(Q_{\text{NFA}})$ A DFA state = a set of NFA states

qs = DFA state = set of NFA states

- 2. For $qs \in Q_{DFA}$ and $a \in \Sigma$
 - $\delta_{\mathsf{DFA}}(qs, a) = \bigcup_{q \in qs} \delta_{\mathsf{NFA}}(q, a)$

A DFA step = an NFA step for all states in the set

- 3. $q_{\text{ODFA}} = \{q_{\text{ONFA}}\}$
- 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$

Flashback: Adding Empty Transitions

- Define the set ε -REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- Base case: $q \in \varepsilon$ -reachable(q)
- Recursive case:

A state is in the reachable set if ...

$$\varepsilon$$
-reachable $(q) = \{ r \mid p \in \varepsilon$ -reachable $(q) \text{ and } r \in \delta(p, \varepsilon) \}$

... there is an empty transition to it from another state in the reachable set

NFA→DFA

Have: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$

<u>Want</u>: DFA $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$

Almost the same, except ...

- 1. $Q_{\text{DFA}} = \mathcal{P}(Q_{\text{NFA}})$
- 2. For $q \in \Sigma$ and $a \in \Sigma$ $\delta_{DFA}(q, a) = \delta_{NFA}(q, a)$

$$\bigcup_{s \in S} \varepsilon\text{-REACHABLE}(s)$$

- 3. $q_{\text{0DFA}} = \{q_{\text{0NFA}}\}_{\varepsilon\text{-REACHABLE}}(q_{\text{0NFA}})$
- 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 4)
- \Leftarrow If an NFA *N* recognizes *L*, then *L* is regular. (Harder)

Examples table?

- We know: for L to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA N → an equivalent DFA ...
 using our NFA to DFA algorithm!

Statements & Justifications?

Concatenation is Closed for Regular Langs 🗹

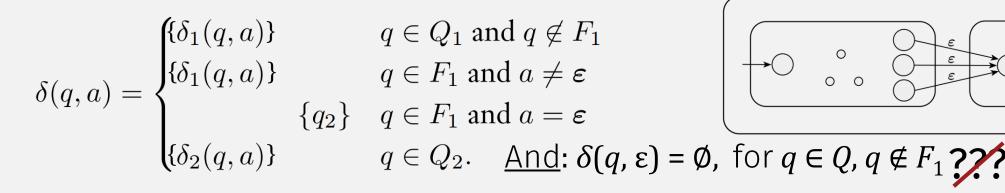
PROOF

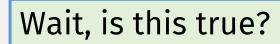
Let DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1
DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

CONCAT_{DFA-NFA} $(M_1, M_2) = N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

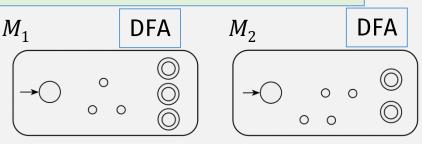
1.
$$Q = Q_1 \cup Q_2$$

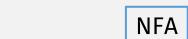
- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

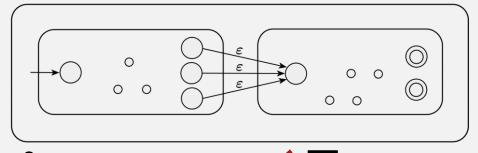




If a language has an NFA recognizing it, then it is a regular language







Concat Closed for Reg Langs: Use NFAs

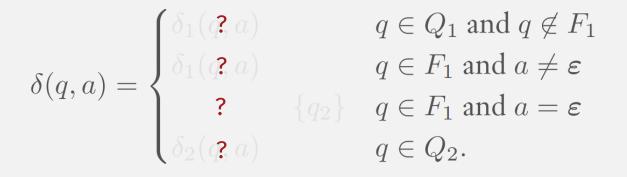
PROOF

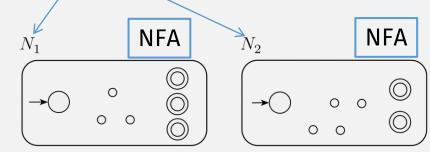
Let
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 recognize A_1 , and NFAs $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize A_2 .

If language is regular, then it has an NFA recognizing it ...

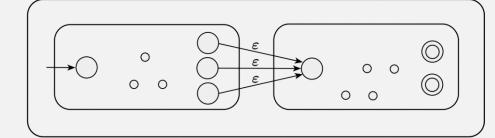
CONCAT_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

- 1. $Q = Q_1 \cup Q_2$
- 2. The state q_1 is the same as the start state of N_1
- 3. The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in \mathbb{Q}$ and any $a \in \Sigma_{\varepsilon}$,





NFA



Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Flashback: Union is Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a <u>DFA or NFA</u>?

Flashback: Union is Closed For Regular Langs

Proof

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: UNION_{DFA} $(M_1,M_2) = M = (Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

State in $M = M_1$ state + M_2 state

• *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

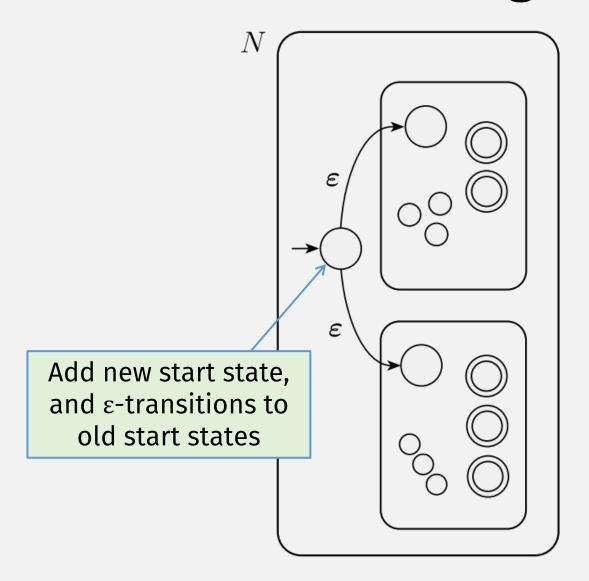
M step = a step in M_1 + a step in M_2

• M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Union is Closed for Regular Languages



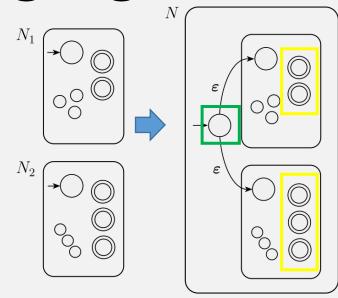
Union is Closed for Regular Languages

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

UNION_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.



Union is Closed for Regular Languages

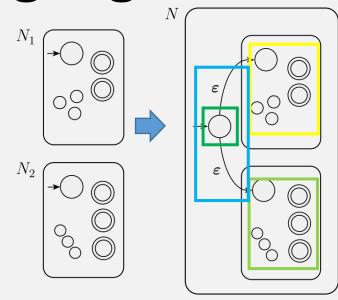
PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

UNION_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \\ \delta_2(?, a) & q \in Q_2 \\ \{q_1?q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & ? & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$



Don't forget
Statements
and
Justifications!

Concat Closed for Reg Langs: Use NFAs

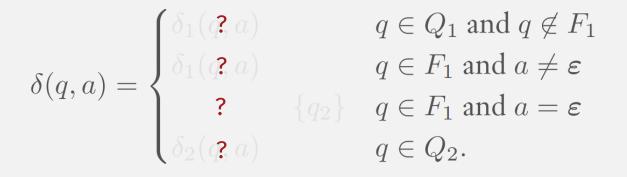
PROOF

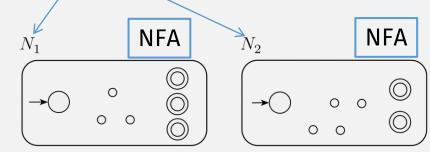
Let
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 recognize A_1 , and NFAs $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize A_2 .

If language is regular, then it has an NFA recognizing it ...

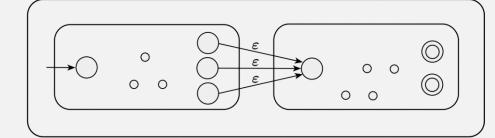
CONCAT_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

- 1. $Q = Q_1 \cup Q_2$
- 2. The state q_1 is the same as the start state of N_1
- 3. The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in \mathbb{Q}$ and any $a \in \Sigma_{\varepsilon}$,





NFA



List of Closed Ops for Reg Langs (so far)

✓ • Union

• Concatentation

Kleene Star (repetition) ?

Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Kleene Star Example

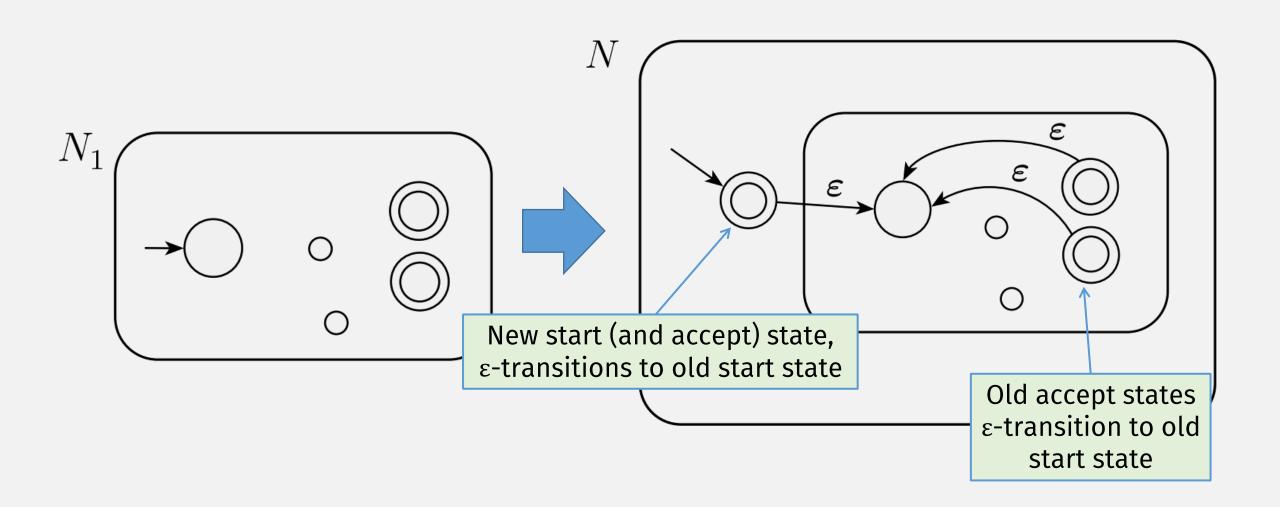
```
Let the alphabet \Sigma be the standard 26 letters \{a, b, \dots, z\}.
```

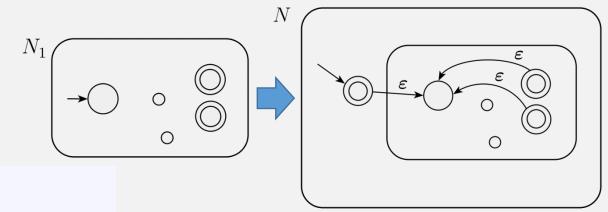
```
If A = \{ good, bad \}
```

```
A^* = \begin{cases} \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \dots \end{cases}
```

Note: repeat zero or more times

(this is an infinite language!)





THEOREM

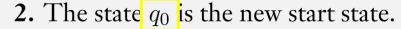
The class of regular languages is closed under the star operation.

(part of)

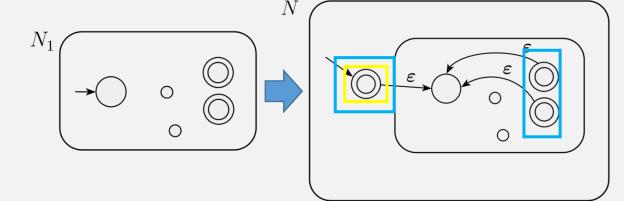
PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{\text{NFA}}(N_1) = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$



3.
$$F = \{q_0\} \cup F_1$$



Kleene star of a language must accept the empty string!

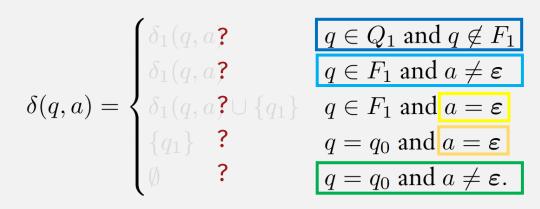
(part of)

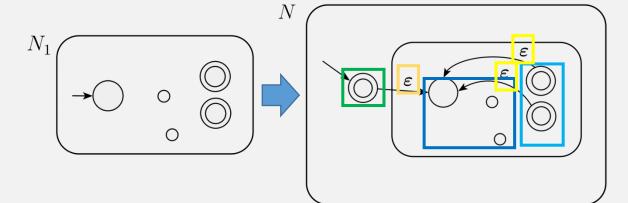
PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{NFA}(N_1) = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$

- **2.** The state q_0 is the new start state.
- **3.** $F = \{q_0\} \cup F_1$
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,





Next Time: Why These Closed Operations?

- Union
- Concat
- Kleene star

All regular languages can be constructed from:

- single-char strings, and
- these three combining operations!

List of Closed Ops for Reg Langs (so far)

✓ • Union

- $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatentation $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
 - Kleene Star (repetition) ?

Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Kleene Star Example

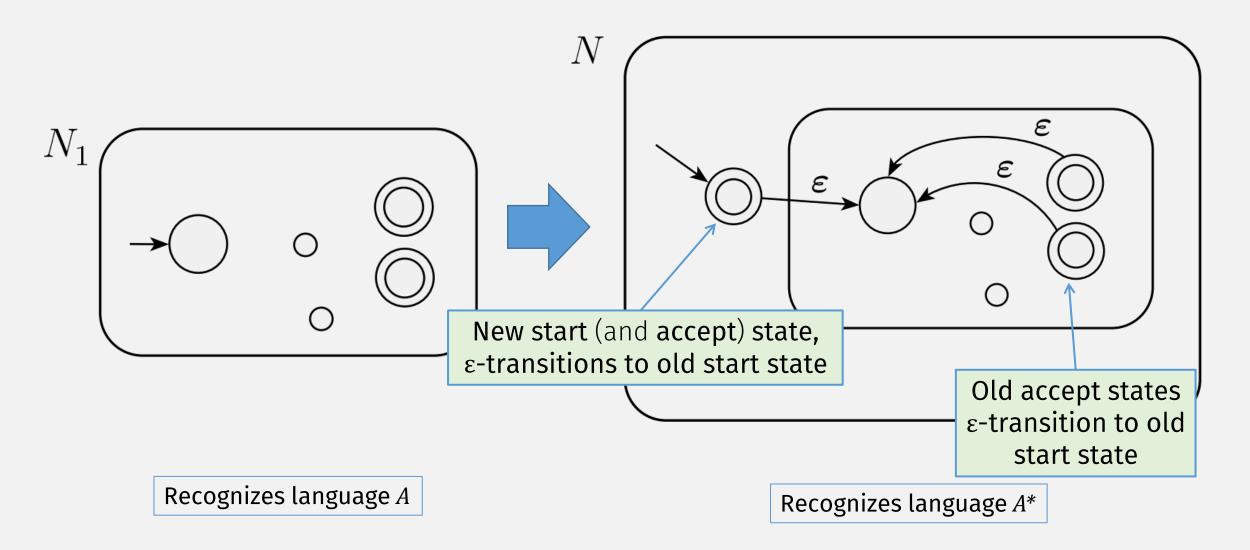
```
Let the alphabet \Sigma be the standard 26 letters \{a, b, \dots, z\}.
```

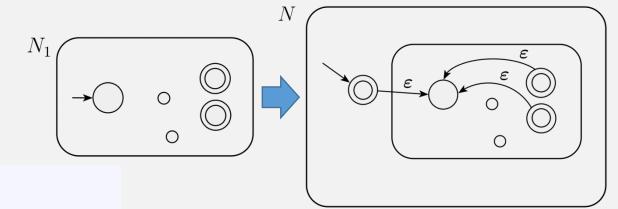
```
If A = \{ good, bad \}
```

```
A^* = \begin{cases} \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \dots \end{cases}
```

Note: repeat zero or more times

(this is an infinite language!)





THEOREM

The class of regular languages is closed under the star operation.

Why These (Closed) Operations?

- Union
- Concatenation
- Kleene star (repetition)

- $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!