CS 420 / CS 620
Computing with NFAs

Monday, September 29, 2025
UMass Boston Computer Science

lecture08



HW 2 Observations

Aunoancements  Don’t change the problem |
* E.g, Prove the exact theorem given
« Don’t change the wording
« HW 3 - Don't change the notation
+ Pue-Moen-929-Ppm-{noen) * Note:
* L(T) 2Ly
* L(T):
c HW 4 o« L
» Out: Mon 9/29 12pm (noon)  « Changed Problem Examples:
 Due: Mon 10/6 12pm (noon) » Proving: “L(T) is a Regular Language”

* Proving: “L is a Regular Language”

« No outside theorems / notation
e “The Standard Theorem” ???
e “The Finite Theorem” ???

« String chars must come from alphabet



Last [ine

Another (common string) operation: Concatenation

Example: Recognizing street addresses

212 Beacon Street

\

M,: “CONCAT”
M,: recognize M,: recognize
numbers words




Last [ine

Concatenation: Ao B = {zy|x € Aand y € B}

Concatenation of Languages

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= {fort,south} B = {point,boston}

Ao B = { fortpoint, fortboston, southpoint, southboston }



s Concatenation Closed?

THEOREM -------------------------------------------------------------------------------------------------------------------------

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is 4; o As.

Construct new machine M recognizing Ao A,? (like union)
» Using DFA M, (which recognizes A,),
« and DFA M, (which recognizes 4,)



PROBLEM:
Can only
read input
once, can't
backtrack

O

Concatentation

O

<
©
©,

Let M, recognize Ay, and M, recognize A,.

Want: Construction of M to recognize A; o As

Need to switch
machines at some
point, but when?

-

~N

~

o 512?22

O ©




s Concatenation Closed?
FALSE?

THEOREM -------------------------------------------------------------------------------------------------------------------------

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

« Cannot combine A, and A,’s machine because:
« Need to switch from A, to 4, at some point ...
« ... but we don't know when! (we can only read input once)

 This requires a new kind of machine!
« But does this mean concatenation is not closed for regular langs?




Deterministic vs Nondeterministic

Deterministic
computation

e Start

states

b k£ Ak Ak— £k
.. [ ° ° ®

* accept or reject

DFAs



Deterministic vs Nondeterministic

Deterministic Nondeterministic
computation computation

L Stal't (.

. I

can be in multiple states at

. : f \' the same time
reject ( 1

( )

* accept or reject * accept

states fl\_ ,\\ Nondeterministic computation
e o v

b k£ Ak Ak— £k

DFAs New FA



2 /%W'ﬂ«@fy

DFAs: The Formal Definition

DEFINITION
deterministic

A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Deterministic Finite Automata (DFA)



Nondeterministic Finite Automata (NFA)

Compare with DFA:

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,

Difference

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. @ is a finite set called the states,

. X is a finite set called the alphabet,

. 0: Q x ¥—Q is the tramnsition function,
. Qo € Qs the start state, and

A7 C () is the set of accept states.

wi b~ W N

3.0: Q x X.—>P(Q) is the transition function,

4. qp € Q 1s the start state, and
5. F C (@ is the set of accept states.

Power set, i.e. a transition
results in set of states



Power Sets

* A power set is the set of all subsets of a set

« Example: S={a, b, c}

 Power set of S =
* {{},{a},{b},{c},{a, b}, {a,c},{b,c},{a,b,c}}

« Note: includes the empty set!



Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,
3.0: Q x3.—>P(Q) is the transition function,

; CAREFUL:
4. do € Q is the start state, and e symbol is reused here, as a transition label

E L r MNicslho coe ~F (ie, an argument to §)
. L[] acce t States. ,’ ®
Transition label can be “empty”, P - It's not the empty string!

' i 4 - And it’s (still) not a character in the alphabet 3!
l.e., machlne can trzfmsmon Y. =2 U {8} p
without reading input




NFA Example

« Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton
is a 5-tuple (Q, 3,46, qo, F), where
1. @ is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qp € @ is the start state, and
5. F C Q is the set of accept states.



The formal description of N; is (@, X, 6, q1, F'), where

1. Q — {glaQQaq.?nqé.L}a 0: Q X ZEHP(Q)

B Empty transition
2. Y = {0,1}; (no input read)

3. 0 1s given as

Result of transition
Is a set

: Empty transition
1
4. q; is the start state, and : T —
5. F ={qs}.

Multiple 1 transitions No 0 transition



In-class Exercise

« Come up with a formal description for the following NFA
e X={a,b}

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 9, qo, F'), where
1. Q is a finite set of states,
2. ¥ is a finite alphabet,
3. 0: Q x X.—>P(Q) is the transition function,
4. qo € Q is the start state, and
5. F C @ is the set of accept states.




Differences with DFA?
- S output is a set

In-class Exercise Solution = gmbesmbat o oo

Let N=(Q, %, 6, q, F)
*Q0={91,92 93}

eX={a,b}
°J ...

*do =44
*F={q,}

- state can have multiple transitions for
one symbol
- can have “empty” transitions

0(qp,a)=1{} (6 output is empty set)
o(q,b)={q,}
6(q,€) =143}
0(qza)=1929s}
0(qyDb)={qs}

o(gye)={}
0(qsa)=14q,}
o(qsb)={}

o(q3€) =1}



NFA Computation (JFLAP demo): 010110

s
YOO OEN



NFA Computation Sequence

Symbol read

Each step can
branch into
multiple states
simultaneously!

This is an accepting
computation



Flashback

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):
o Start in start state

* Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise



Flashback

DFA Computation Rules

Informally Formally (ie, mathematically)
Glven

 ADFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW9 -+ Wy

A DFA computation (~ “Program run”): A DFA computation is a
 Start in start state sequence of states:

- Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise



lgnoring € transitions, for now!

NFA |Computation Rules

Informally

Given
« An| NFA |(~ a “Program”)
« and Input = string of chars, eg “1101"

An| NFA |computation (~ “Program run”):
e Start in start state

 Repeat:

« Read 1 char from Input, and

For each “current” state, |according to transition rules
g0 1o next states .. then combine all “next states”

Result of computation:

 Accept If last| set of states has accept state
« Reject otherwise




lgnoring € transitions, for now!

NFA [Computation Rules

Informally Formally (ie, mathematically)
Glven
e An| NFA |(~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW3 - Wy
An| NFA |computation (~ “Program run”): An NFA computation is a sequence of:
 Start in start state sets of states
) Repeat:
« Read 1 char from Input, and
For each “current” state, |according to transition rules 2999
go 1o next states .. then combine all “next states” ===

Result of computation:

 Accept If last| set of states has accept state
« Reject otherwise




Flashback

DFA Multi-Step Transition Function
0:Q XY = Q

« Domain (inputs):

e state q © Q (doesn't have to be start state)
* Stringw = wyiw2 -+ Wy where w; € X

Recursive Input Data
needs
Recursive Function

A String is either:
-—the empty string (), or

+ xa (non-empty string)
~ where

Base case 5((]75) — + xis a String

e gisa‘“char’inX

Base case



Flashback

DFA Multi-Step Transition Function

0:Q x X" = Q
« Domain (inputs):
e state q © Q (doesn't have to be start state)
* String w = wiW2 -+ Wy where w; € Y

- Range (output):
. state ¢ € () (doesn't have to be an accept state)

(Defined recursively)

Recursive case

0(q,e) = q

String char

Base case Recursion on String

A

6(q, w'w,) =

Recursive Case

“second to last” state
where w’ = wy -+ - w,_1

“smaller” argument

Recursive Input Data
needs
Recursive Function

A String is either:
 the empty string (), or

+ xa (non-empty string)
where Recursion

« xisaString“| onSstring
<« aisa “char’in X
String
char



Hshback 0: Q X ¥—Q is the transition function

DFA Multi-Step Transition Function
0:Q XY = Q

« Domain (inputs):
e state q © Q (doesn't have to be start state)
* String w = wWiws - Wy where w; € Y

- Range (output): |
. state ¢ € () (doesn't have to be anjaccept state) R

Recursive Function

A String is either:

(Defi ned reCU rSivel.y) ° the empty String (E), or
« xa (non-empty string)
~ where

Base case 5((]7 5) —q - xis a String

aisa“char’inX

ey e

. / /
Recursive Case 5(q, w wn) = 5((5(q, w ), wn) Single step from “second to last” state

and last char gets to last state
where w’ = wy -+ - w,_1



NFA

- Range (output):

states

s C Q

\ Result is set of states

d: @ x X¥e—>"P(Q) is the transition function

Multi-Step Transition Function
5:Q xT* 5 P(Q)

« Domain (inputs):
. state ¢ € () (doe
« String w = wWw

't have to be start state)

*+* Wn where w; € X



d: @ x Xe—>"P(Q) is the transition function
NFA [Multi-Step Transition Function
0:Q x X —>73(Q)\

« Domain (inputs): Result is set of states
. state ¢ € () (doesn’t have to be/start state)
» String w = wiws - - Wy where w; € X

’ @gﬁ (OUtpUt)I Recursively Defined Input
states (@S C Q needs

Recursive Function

A String is either:
« the empty string (), or

(Deﬂned recurSively) « xa (non-empty string)

where
« xis a String

Base case 5((]7 5) —={q} + aisa‘char’ inz

Base case



d: @ x Xe—>"P(Q) is the transition function

NFA [Multi-Step Transition Function
6:0Q xY* — P(Q)

« Domain (inputs):
. state ¢ € () (doesn’t have to be start state)
» String w = wqw2 -+ Wy where w; € X

* @gg (OUtpUt)I Recursively Defined Input
states (@S C Q needs

Recursive Function

A String is either:
 the empty string (), or

(Deﬂ ned recursive ly) Recursive case |~ xah(non—empty string)
where
- « _xis a String
Base case 5 (Q7 6) p— {Q} Recursive part e agisa“char’inx
“second to last”
= Recursion on recursive part set of states

Recursive Case d(q, w’wn) — -
e 1] = 3 2> Wi 0(g,w") =1{q1,--,qr}



0: @ x X¥e—>"P(Q) is the transition function

5:Q xX* 5 P(Q)

« Domain (inputs):
. state ¢ € () (doesn't have to be start state)
 String w = wyiws2 - -+ Wy where w; € X
- Range (output):
states ¢s C ()

(Defined recursively) rsecond to last
state, take single
Base case 5((]7 6) _ {q} . step on last char

< _ U 5(Qiawn)

Recursive Case 5(q,w’wn) ==

NFA [Multi-Step Transition Function

Recursively Defined Input
needs
Recursive Function

A String is either:
 the empty string (), or

* xa (non-empty string)
where
« xis a String
e aisa‘char’inX
Last char

—1 A
where w/ — w; - (g, w') ={q1,...,qk}



d: Q x X.—P(Q) is the transition function

NFA [Multi-Step Transition Function

Glven

01 QX 2" =1 an NFA (~a “Program”)
« Domain (inp{+ and Input = string of chars, eg. “1101”

 state q ©
* string W = A DFA computation (~ “Program run”):
’ @gﬁ (OUtpL « Start in start state Recursively Defined Input
states (¢S ¢ . needs
. Repeat: This ignores € transitions!
. . * Read 1 char from Input, and - the empty string (&), or
(Deﬂned 'ECU For each “current” state, |according to transition rules - xa (non-empty string)
N where
go to next states . wic a String
—e—= — — ! — « gisa“char’inX
.. then combine all sets of “next states” \Lk:J
. A 0(q;, w
Recursive Case 6(q, w'w,) = i) Wn)
Wherew’:wl...wn_l Y 17"'7 k?



Base case: 5(q, €) = {q}

NFA Multi-Step 6 Example  secusiecse 5

0, 1

k
5((]’127 w’n)
1=1

where
o(q,wy -+ wp—1) ={q1,- .., qr }
Start m 0 1 1 : : :
—=(%) -(41)
. 0 — :
(90, €) We haven’t considered

empty transitions!

® ‘5(‘?09 0) —

Combine result of recursive call with “last step”
° 5(‘?0; 00) —

s

® 5(QU, 001) =



Adding Empty Transitions

» Define the set e-REACHABLE(q)
- .. to be all states reachable from g via zero or more empty transitions

(Defined recursively)

« Base case: ¢ € e-REACHABLE(q)

* Recursive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set



e-REACHABLE Example

(X /
o\

\@4@—-@ Not “reachable”
a €

e-REACHABLE(1) ={1,2,3,4,6}




Handling € transitions now!

NFA [Multi-Step Transition Function
6:0Q xY* — P(Q)

(Defined recursively)

A

Base case 5((]7 g) — g—REACHABLE(q)

Recursive Case



NFA

Handling € transitions now!

Multi-Step Transition Function

S:QXZ*%P(Q)

All chars “second to last”
except last set of states
(Defined recursively)
Base case 5((]7 g) — 6—REACHABLE(Q) :
“last” set O
| X / 14 states (no ¢)
Recursive Case | 0(q, w'wn) = | | e-REACHABLE(r;)

j=1



Summary: NFA vs DFA Computation

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition
« Must read 1 char « Has empty transitions
* Acceptance: * Acceptance:

« If final state is accept state * If one of final states is accept state




Previnusty Concatenation: Ao B = {xy|x € Aand y € B}

s Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof requires: Constructing new machine
« How does it know when to switch machines?
« Can only read input once




Concatentation

_ oo©/\ ° © ©/

N is an NFA! It can:
- Keep checking 15t part with M,

: : and
Want: Construction of N to recognize A1 © Aa|_ pmove to M. to check 21
2

Let M, recognize A;, and M, recognize As.

N part
e = “empty transition” = reads no input
( Allows N to be in both machines at the same time! N\
~ 4 N\

O L
O ° OfH30 oo
O~ o




Concatenation Is Closed for Regular Langs

PROOF (part of)
Let DFA Ml = [Qli Z; 61; CI1, Fl) recognize Al
DFA MZ = [QZ’ Z; 52; qz, Fz) reCOgniZG AZ

Construct N = (Q, X, 9, q1, F») to recognize A; o A
L|QI= Q1 UQ>

2. The state ¢; is the same as the start state of M,

3. The accept states|F; jare the same as the accept states of M,

4. Define § so that for any ¢ € @ and any a € X,

M, DFA M, DFA
- ©
-0 @J [»O ©J
o © o ©
N l NFA
p
—
Ofe L. ©)
__,O : 5@ @




Concatenation iIs Closed for Regular Langs
PROOF (part of) 0
Lot DFAM, =(Q,, %, 6, q, F;) recognize 4, Wait, Is this true?
| DFA M, = (Q,, %, 6,, q,, F,) recognize A,
Define the function:
CONCAT s (M,M,) =N = (Q), 32,0, q1, F») to recognize A; o Ay M, DFA M, DFA
.Q=Q:1UQ ©
e -0 ° lof| |Fo oo ©
2. The state ¢; is the same as the start state of M, °° 1O oo ©
3. The accept states F5 are the same as the accept states of M, l
NFA

4. Define ¢ so that for any ¢ € ) and any a € X

(15 (® a)}

{01(R a)}
0(ga) =

{02(q@ a)}

\
And: 6(q,€) =9, for q€Q,q € F,

m

NFA def says § must

map every state and
e to set of states




2 /‘w/'a«@é

s Union Closed For Regular Langs?

Proof

Statements Justifications

1. A,and A, are regular languages 1. Assumptionof if part of If-Then
2. A DFA M, recognizes A, 2. Def of Reg Lang (Coro)

3. ADFA M, recognizes A, 3. Def of Reg Lang (Coro)

4. Construct DFA M = UNIONpg, (M, M,) 4. Def of DFA and UNIONyg,
5. Mrecognizes A, U A, 5. See Examples Table

6. A, UA, Is aregular language 6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A; U As.

0ED. IR



|s Concat Closed For Regular Langs?

Proof?

Statements Justifications
1. A,and A, are regular languages Assumptionof if part of If-Then

1.
2. A DFA M, recognizes A, 2. Def of Reg Lang (Coro)
A DFA M, recognizes A, 3. Def of Reg Lang (Coro)
A
5

Construct|NFA| N=CONCAT,, .. (M,M,) [/] Def of| NFA |and CONCAT,,...

M recognizes A,-J-A, A 0 A, . See Examples Table
A4, A, 0A,is aregular language 6. P22 Does NFA recognize reg langs?
The class of regular languages is closed under| concatenation operation. 7 From stmt H#1 and H6

N LW

In other words, if A; and As are regular languages then so is A; o As.

Q.E.D.?



Definition of Regular Language

2 /‘w/'a«@é

If a DFA recognizes a language L,

A DFA’s Language then L is a regular language

« For DFAM = (Q, %, 0, qo, F)

» M accepts wif 6(gy,w) € F

« M recognizes language {w| M accepts w}

Definition: A DFA’s language is a regular language



An NFA's Language?

- For NFA N = (Q, %, 6, qo, F)

Intersection ... ... With accept states ...

« N accepts w it 6((]07 ’LU) NF 7& @ ... is not empty set
* |.e,, accept If final states contains at least one accept state

« Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: What kind of languages do NFAs recognize?



Concatenation Closed for Reg Langs?

« Combining DFAs to recognize concatenation of languages ...

... produces an NFA

SO to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs < regular languages



‘If and only If” Statements

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Represents two statements:

1. =>ifX, thenY
« “forward” direction

2. <ifY, thenX
* “reverse” direction



How to Prove an “Iff” Statement

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Proof has two (If-Then proof) parts:

1. =>ifX, thenY
e “forward” direction
« assume X, then use it to prove Y

2. <ifY, thenX

« “reverse” direction
« assume Y, then use it to prove X



Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Full Statements
&
Justifications?

Proof: 2 parts

= If L iIs regular, then some NFA N recognizes it
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
« So to prove this part: Convert that DFA — an equivalent NFA (see HW 4)

& If an NFA N recognizes L, then L is regular. “equivalent” =
“recognizes the same language”




= If L 1S regular, then some NFA N recognizes it

Statements Justifications

1. Lis aregular language 1. Assumption fra s
2. A DFA M recognizes L 2. Def of Regular lang (Coro)
3. Construct NFA N = CONVERTys (M) 3. See hw 4!

4. DFA M is equivalentto NFAN 4. See Equiv. table! <mmm
5. An NFA N recognizes L 5. 277 B e
6. If Lis a regular language, 6. By Stmts #1and #5

then|some NFA N recognizes it




“Proving” Machine Equivalence (Table)

Let: DFA M = (Q, %, 4, qo, F)
NFA' N = CONVERT,s nea(M)

A

5(q0,w) c I’ for some string w Note:

extra column

/

If M acceptsw ...
Then we know ...

There i1s some sequence of states: r, ...r, where r,e Q and

1= 4o and ry, € F Exercise left for HW

Then N accepts?/rejects? w because ... Show that you know how an NFA computes

Justification #1?
There is an accepting sequence of set of states in N ... for string w




“Proving” Machine Equivalence (Table)

Let: DFA M = (Q,%,6, qo, F)
NFA' N = CONVERTz yea(M)

(qo,w) € F for some string w

0
0(go, w) & F for some string)/v’

M accepts? N accepts? Justification

w Yes See justification #1
If M rejectsw’ .5 W No 7?77 See justification #2?

Then we know ...

Exercise left for HW
Then N accepts?/rejects? w' because ... Show that you know how an NFA computes

Justification #27? / /




Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

M = If L is regular, then some NFA N recognizes it.
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
« So to prove this part: Convert that DFA — an equivalent NFA! (see HW 4)

& If an NFA N recognizes L, then L is regular. “equivalent” =
(Harder) “recognizes the same language”

. We know: for L to be regular, there must be a DFA recognizing it
« Proof Idea for this part: Convert given NFA N — an equivalent DFA




How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, : ]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

. 1. @ is a finite set of states,
Proof 1dea: > T is a finite alphabet
Let each “state” of the DFA T TS TR i o .
= set of states in the NFA 3.0: Q x ¥.—>P(Q) is the transition function,
4. gy € () 1s the start state, and
5. F C @ is the set of accept states.



Symbol read @ Start

T
@ NFA computation can
{ e be in multiple states
\ DFA computation can
0 - only be in one state
TR So encode:
@ @ @ @ a set of NFA states
as one DFA state
T
This is similar to the proof strategy from
@ @ @ @ @ “Closure of union” where:
(GEETEEEE ‘ a state = a pair of states
(2) (2



Convert NFA-DFA, Formally

+LetNFAN = (Q, 22, 3, qo, F')
 An equivalent DFA M has states Q' = P(Q) (power set of Q)



Example:

+ Let NFA N, =(Q), X2, 9, qo, F')
« An equivalent DFA D has states

P(Q) (power set of Q)

The NFA N4

A DFA D that is equivalent to the NFA N,



NFA-DFA

Have: NFA N = (Qura 2, Onrar Gonrar Frira)
Want: DFA D = (Qpra 2, Sprar Gonrar Fora)

iy U= P Ohes) A DFA state = a set of NFA states

gs = DFA state = set of NFA states
2. Forgse€eQppuanda€l

No empty transitions

* Opralgs, a)= A DFA step = an NFA step for all states in the set

3. qopra = 190nFA)

4. Fpea=1{gs € Qpea | gs contains accept state of N}




thshback: ADdINg Empty Transitions

- Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

« Base case: ¢ € e-REACHABLE(q)

e Recursive case:

A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set



With empty transitions

NFA-DFA

Have: NFA N = (Qura 2, Onrar Gonrar Frira)

Almost the same, except ...

Want: DFA D = (Qpra 2, Sprar Gonrar Fora)
L Qoea= P (Quen)

2. Forg-~",,anda€X
Tg e | ) e-REACHABLE(s)
T (e UqEqS ONFACH

ses

_ |
3. Qopra = %g_REACHABLE(qom FA )

4. Fpea=1{gs € Qpea | gs contains accept state of N}



Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Statements
Proof: 2
= If L Is regular, then some NFA N recognizes It. Justifications?
(Easier)

. We know: If L Is regular, then a DFA exists that recognizes it.
» So to prove this part: Convert that DFA — an equivalent NFA! (see HW 4)

& If an NFA N recognizes L, then L is regular. Examoles table?
(Harder) P :
. We know: for L to be regular, there must be a DFA recognizing it
:> « Proof Idea for this part: Convert given NFA N — an equivalent DFA ...
... using our NFA to DFA algorithm!




Concatenation iIs Closed for Regular Langs &

PROOF — .
Walt, is this true?

If a language has an NFA recognizing it,
then it is a regular language

Let DFA Ml = (Qli Z; 51; CI1, Fl) recognize Al
DFA MZ = (QZ) Z; 52; Clz, Fz) I’eCognlze A2

CONCAT s (M,M,) =N = (Q), 3,0, q1, F») to recognize A; o Ay M, DFA M, DFA
1. Q =Q1UQ:> ., ©
. ~O | [0 ¢o @
2. The state q; is the same as the start state of M; °° O oo ©
3. The accept states F5 are the same as the accept states of M, ﬂ
4. Define ¢ so that for any ¢ € () and any a € X, N NFA
s R
(01(q, a)} g€ Qrand g ¢ I, @\ -
SRS o
{(51(9,&)} qg € F; anda;és o o [ (O oo o
5(q?a) = < o o o
{¢2} g€ Fanda=¢ N )
{d2(q, a)} q € Q2. And: 6(q, €) =0, forqu,qefFl‘y? H




New possible proof strategy!

Concat Closed for Reg Langs: Use

PROOF

Sipser Theorem 1.47

NFAs | Only

If language is regular,

NFAs |Ny = (Q2, X, 62, g2, F>) recognize As.
CONCATg, (N,N,) =N = (Q, X, 9, q1, F>) to recognize A; o A

1. Q = Q1 UQ2

2. The state ¢; is the same as the start state of IV;

3. The accept states ij@,tﬁefame as the accept states of N

4. Define ¢ so that for #hy?¢% ¥ and any a € X,

(01 (c® g€ Qiand g & I}
5(q.a) — ? g€ Fianda # ¢
’ ? ge Fianda=¢
\ i q € Qo.

Let Ny = (Q1,%, 61, q1, F1) recognize A1,ay then it has an NFA recognizing it ...

S

N NFA
- O
O O @

All NFAs

N

NFA

=)




Union: AUB ={z|z € Aorz € B}

thstback: UNioN 1S Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, it A; and As are regular languages, so is A; U As.

Proof:

« How do we prove that a language is regular?
« Create a DFA or| NFA recognizing it!

« Combine the machines recognizing A, and A4,
* Should we create a DFA o1 NFA P




Proof, with DFA

thstback: UNioN 1S Closed For Regular Langs

Proof
Gi . My = (Q1,%,01,4q1, F1), recognize Ay,
e Ulven:. .
My = (Q2, X, 02, q2, F2), recognize A,

 Construct: UNIONye, (M,M,) =M= (Q, %, 9, qo, F') using M, and M,

* states of M: Q= {(r1,r2)[r1 € Qrand rz € Q2} =0;x0Q; Sﬁtgt;ntéw
This set is the Cartesian product of sets Q1 and Q2 | "y state

« M transition fn: 5((?"1, r9), (L) — (51 (r1,a),d2(rs, (L)) M step =

a stepin M, + a step in M,

« M start state:  (q1,42)

Accept if either M, or M, accept
* M accept states: F = {(ry,r3)|r1 € Fy orry € Fy}




Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

N

Add new start state,
and e-transitions to
old start states

L

~




Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

UNIONyp (N,N,)) =N= (Q,X,d,|q0,|F) to recognize A; U As.
1. Q =Hqo}jU Q1 U Q2.

2. The state|qp|is the start state of V.

3. The set of accept states F' = F} U F5.

Alternate Proof, with NFAs

N ) —_—
Vo -0 0
08© E/Oo©

> [

NQ/_,O©‘ € @/ ©\
OO © O ©
o> O L O




Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

UNIONyp (N,N))=N= (Q,X, 0, qo, F') to recognize A; U As.
1. Q@ ={g0} U Q1 UQx.

2. The state gg 1s the start state of V.
3. The set of accept states F' = F} U F5.
4. Define ¢ so that for any ¢ € Q and any a € X,

(51(q q <€ Q1
? q € Q2

) —
(4:) ? g=¢qoand a = €

? q=qoanda # €

Alternate Proof, with NFAs

M

uOle -0 9
08© E/ Oo©
e Ol

~-00 Noo6
0008 %08

Don't forget
Statements
and
Justifications!




New possible proof strategy!

Concat Closed for Reg Langs: Use

PROOF

Sipser Theorem 1.47

NFAs | Only

If language is regular,

NFAs |Ny = (Q2, X, 62, g2, F>) recognize As.
CONCATg, (N,N,) =N = (Q, X, 9, q1, F>) to recognize A; o A

1. Q = Q1 UQ2

2. The state ¢; is the same as the start state of IV;

3. The accept states ij@,tﬁefame as the accept states of N

4. Define ¢ so that for #hy?¢% ¥ and any a € X,

(01 (c® g€ Qiand g & I}
5(q.a) — ? g€ Fianda # ¢
’ ? ge Fianda=¢
\ i q € Qo.

Let Ny = (Q1,%, 61, q1, F1) recognize A1,ay then it has an NFA recognizing it ...

S

N NFA
- O
O O @

All NFAs

N

NFA

=)




List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

- Kleene Star (repetition) ?



Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad}

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)



Kleene Star

N
4 e
s | 90O ©
© ©
\ O Y,
New start (and accept) state,
e-transitions to old start state
\ Old accept states

e-transition to old
start state



lh=ctass exercrse

Kleene Star 1s Closed for Regular Langs

N

B0 R

The class of regular languages is closed under the star operation.

\

THEOREM
/




lu-class sobulion

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let N1 = (Q1,%,01,q1, 1) recognize Aj. M

N = STARy, (N,) = (Q,%,0,qo, F) to recognize A7. @

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

‘@_

=

o

=

O
O

O
O




lu-class sobulion

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let N1 = (Q1,%,01,q1, 1) recognize Aj. M
N = STARy, (N,) = (Q,%,0,qo, F) to recognize A7. @ o 8
®
1. Q@ ={q} U

2. The state qq is the new start state.
3. F = {qO} U F1
4. Define § so that for any g € @ and any a € X,

.

g€ Qrandq & F
g€ Fianda # ¢
gc€ Fianda=c¢

d(q,a) =
g=¢qoanda=¢€

¢ = qo and a # €.

=) =) =) =) =)

&

~

Q0O

/
Eﬁé
O
©)
-




Nest Time: WOy These Closed Operations?

e Union
e Concat
* Kleene star

All regular languages can be constructed from:
- single-char strings, and
- these three combining operations!




List of Closed Ops for Reg Langs (so far)

V]« Union AUB ={z|z € Aorx € B}

vl e Concatentation AoB={zy|z < Aandy € B}

- Kleene Star (repetition) ?



Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad}

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)



Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Is Closed for Regular Langs?

N N

Ny~ N 4 S )
5 c ©
j> \© (6 ®

O
N O [ K o
ew start (and accept) state,
~| e-transitions to old start state
\ Old accept states

e-transition to old
start state



# W4 exercise

Kleene Star 1s Closed for Regular Langs

N

B0 R

The class of regular languages is closed under the star operation.

\

THEOREM
/




Why These (Closed) Operations?

e Union AUB={x|x € Aorx € B}
« Concatenation AoB={zy|z € Aand y € B}
* Kleene star (repetition) A* = {z122... 25| k > 0and each z; € A}

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!




