CS 420 / CS 620

NFA ⇔ **DFA**

Wednesday, October 1, 2025

UMass Boston Computer Science

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta : Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Announcements

• HW 4

- Out: Mon 9/29 12pm (noon)
- Due: Mon 10/6 12pm (noon)

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Is Concatenation Closed?

THEOREM

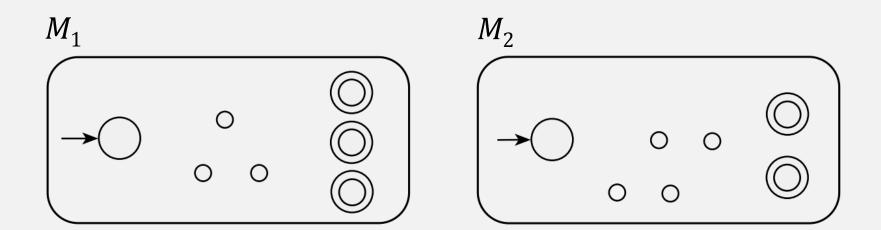
The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Proof requires: Constructing new machine

Key step: When to switch machines? (can only read input once)

Concatentation

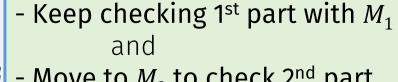


Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of N to recognize $A_1 \circ A_2$

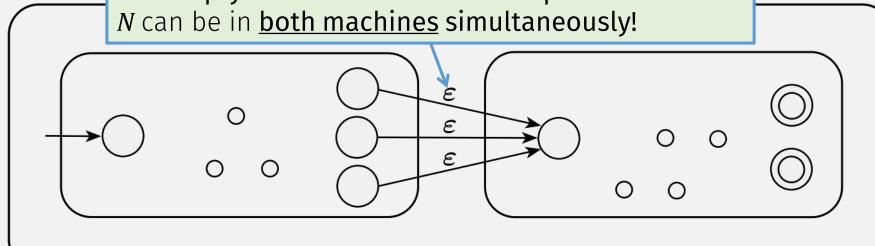
 ε = "empty transition" = reads no input

N



N is an **NFA!** It can:

- Move to M_2 to check 2^{nd} part



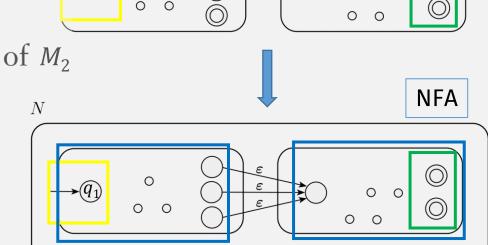
Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA
$$M_1 = [Q_1, \Sigma, \delta_1, q_1, F_1]$$
 recognize A_1
DFA $M_2 = [Q_2, \Sigma, \delta_2, q_2, F_2]$ recognize A_2

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

- 1. $Q = Q_1 \cup Q_2$
- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,



DFA

 M_1

DFA

Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1
DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Define the function:

(no other

empty

transitions)

CONCAT_{DFA-NFA}
$$(M_1, M_2) = N = (Q, \Sigma, \delta, q_1, F_2)$$
 to recognize $A_1 \circ A_2$

1.
$$Q = Q_1 \cup Q_2$$

- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \{\delta_1(q,a)\} & q \in Q_1 \text{ and } q \notin F_1 \\ \{\delta_1(q,a)\} & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$

$$\begin{cases} \{q_2\} & q \in F_1 \text{ and } a \neq \varepsilon \\ \{\delta_2(q,a)\} & q \in Q_2. \end{cases}$$

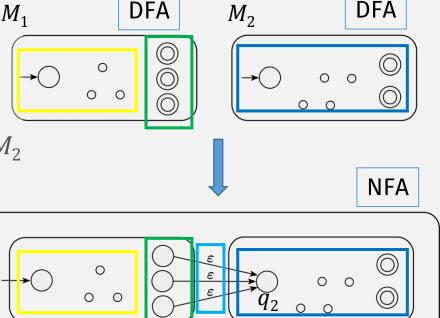
$$\begin{cases} \{\delta_1(q,a)\} & q \in F_1 \text{ and } a \neq \varepsilon \\ \{\delta_2(q,a)\} & q \in Q_2. \end{cases}$$

$$\begin{cases} \{\delta_1(q,a)\} & q \in F_1 \text{ and } a \neq \varepsilon \\ \{\delta_2(q,a)\} & q \in Q_2. \end{cases}$$

$$\begin{cases} \{\delta_1(q,a)\} & q \in F_1 \text{ and } a \neq \varepsilon \\ \{\delta_2(q,a)\} & q \in Q_2. \end{cases}$$

$$\begin{cases} \{\delta_1(q,a)\} & \{\delta_2(q,a)\} & \{\delta$$

Wait, is this true?



NFA def says:

and ε to **set of states**

Is Union Closed For Regular Langs?

Proof

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA M_1 recognizes A_1
- 3. A DFA M_2 recognizes A_2
- 4. Construct DFA $M = \text{UNION}_{\text{DFA}} (M_1, M_2)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. **Def of Reg Lang** (Coro)
- 3. **Def of Reg Lang** (Coro)
- 4. **Def of DFA** and UNION_{DFA}
- 5. See Examples Table
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Is Concat Closed For Regular Langs?

Proof?

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA M_1 recognizes A_1
- 3. A DFA M_2 recognizes A_2
- 4. Construct NFA $N = \text{CONCAT}_{DFA-NFA}(M_1, M_2)$
- 5. N recognizes $A_1 \cup A_2 A_1 \circ A_2$
- 6. $A_1 \cup A_2 \mid A_1 \circ A_2$ is a regular language
- 7. The class of regular languages is closed under Concatenation operation.

 In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. **Def of Reg Lang** (Coro)
- 3. **Def of Reg Lang** (Coro)
- 4. Def of NFA and CONCAT DEA-NEA
- 5. See Examples Table
- 6. Does NFA recognize reg langs?
- 7. From stmt #1 and #6

Q.E.D.?

A DFA's Language

If a **DFA** recognizes a language *L*, then *L* is a regular language

• For DFA $M=(Q,\Sigma,\delta,q_0,F)$

• \emph{M} accepts \emph{w} if $\hat{\delta}(q_0, w) \in F$

• M recognizes language $\{w|\ M$ accepts $w\}$

Definition: A DFA's language is a regular language

An NFA's Language?

- For NFA $N=(Q,\Sigma,\delta,q_0,F)$

- Intersection ... with accept states ... $N \ \textit{accepts} \ w \ \text{if} \ \hat{\delta}(q_0,w) \cap F \neq \emptyset \qquad \text{... is not empty set}$
 - i.e., accept if final states contains at least one accept state
- Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$

Q: What kind of languages do NFAs recognize?

Concatenation Closed for Reg Langs?

• Combining DFAs to recognize concatenation of languages ...

... produces an NFA

• So to prove regular languages closed under concatenation ...

... must prove that NFAs also recognize regular languages.

Specifically, we will <u>prove</u>:

NFAs ⇔ regular languages

"If and only if" Statements

```
X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y
```

Represents <u>two</u> statements:

- 1. \Rightarrow if X, then Y
 - "forward" direction
- 2. \Leftarrow if Y, then X
 - "reverse" direction

How to Prove an "iff" Statement

 $X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y$

Proof has two (If-Then proof) parts:

- 1. \Rightarrow if X, then Y
 - "forward" direction
 - assume *X*, then use it to prove *Y*
- 2. \Leftarrow if Y, then X
 - "reverse" direction
 - assume Y, then use it to prove X

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof: 2 parts Assume Assume Assume ⇒ If L is regular, then some NFA N recognizes it. (Easier)

Full Statements & Justifications?

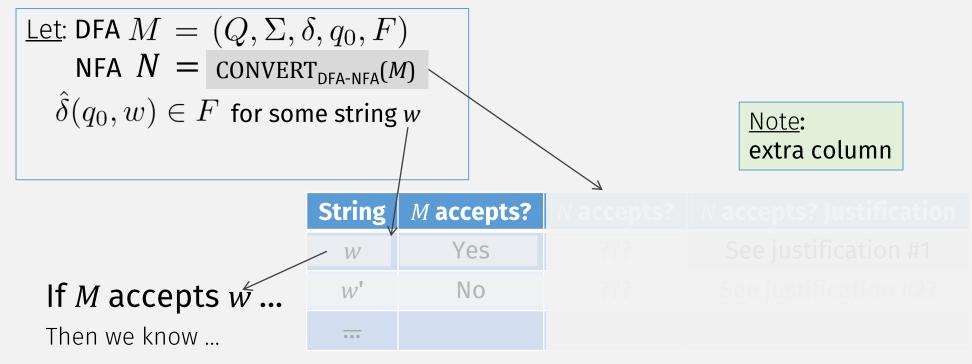
- We know: if L is regular, then a DFA exists that recognizes it.
- So to prove this part: Convert that DFA → an equivalent NFA! (see HW 4)
- \Leftarrow If an NFA N recognizes L, then L is regular.

"equivalent" =
"recognizes the same language"

\Rightarrow If L is regular, then some NFA N recognizes it

Justifications Statements Assume the 1. Assumption 1. L is a regular language "if" part ... 2. A DFA *M* recognizes *L* 2. Def of Regular lang (Coro) 3. See hw 4! 3. Construct NFA $N = \text{CONVERT}_{DFA-NFA}(M)$ 4. DFA *M* is **equivalent** to NFA *N* 4. See Equiv. table! ... use it to prove 5. An NFA N recognizes L 5. ??? "then" part 6. If L is a regular language, 6. By Stmts #1 and # 5 then some NFA N recognizes it

"Proving" Machine Equivalence (Table)



There is some sequence of states: $r_1 \dots r_n$, where $r_i \in Q$ and

$$r_1 = q_0$$
 and $r_n \in F$

Then N accepts?/rejects? w because ...

Exercise left for HW

Show that you know how an NFA computes

Justification #1?

There is an accepting sequence of (set of) states in $N \stackrel{\checkmark}{\dots}$ for string w

"Proving" Machine Equivalence (Table)

Let: DFA $M = (Q, \Sigma, \delta, q_0, F)$ $\mathsf{NFA} \ N = \mathsf{CONVERT}_{\mathsf{DFA-NFA}}(M)$ $\hat{\delta}(q_0, w) \in F \text{ for some string } w$ $\hat{\delta}(q_0, w') \not \in F \text{ for some string } w'$

	String	M accepts?	N accepts?	N accepts? Justification
	w	Yes	???	See justification #1
If M rejects w'	— w' [↓]	No	???	See justification #2?
Then we know	•••			

Then N accepts?/rejects? w' because ...

Justification #2?

Exercise left for HW

Show that you know how an NFA computes

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \boxtimes \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this p Assume /ert that DFA → Prove uivalent NFA! (see HW 4)
 - \Leftarrow If an NFA N recognizes L, then L is regular. (Harder)

"equivalent" =
"recognizes the same language"

- We know: for L to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA N → an equivalent DFA

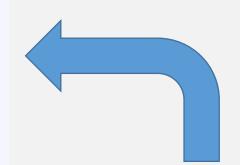
How to convert NFA→DFA?

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proof idea:

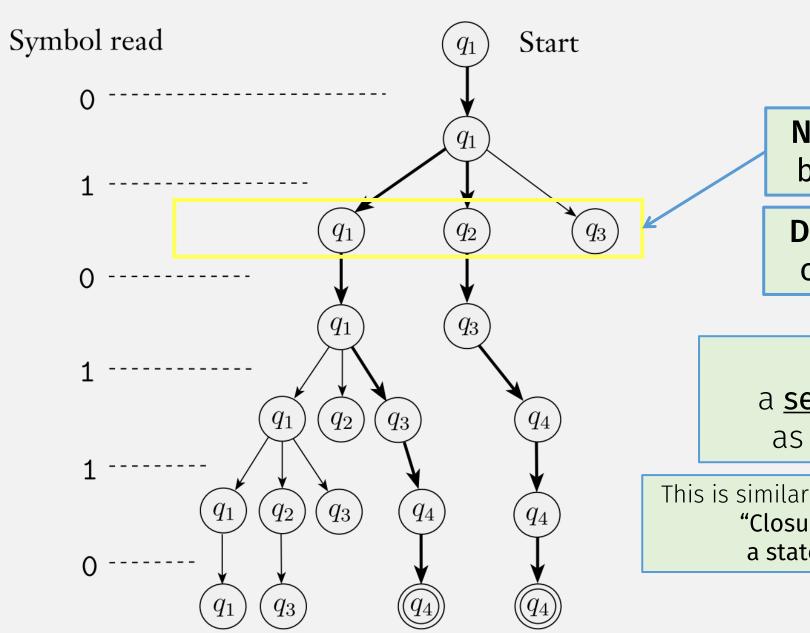
Let each "state" of the DFA = set of states in the NFA



A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.



NFA computation can be in <u>multiple</u> states

DFA computation can only be in <u>one</u> state

So encode: a set of NFA states as one DFA state

This is similar to the proof strategy from "Closure of union" where:

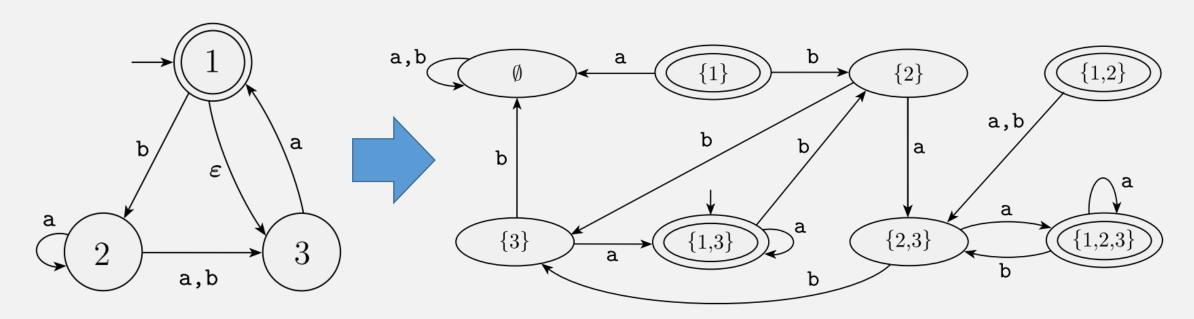
a state = a pair of states

Convert **NFA→DFA**, Formally

- Let NFA N = $(Q, \Sigma, \delta, q_0, F)$
- An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q)

Example:

- Let NFA N_4 = $(Q, \Sigma, \delta, q_0, F)$
- An equivalent DFA D has states = $\mathcal{P}(Q)$ (power set of Q)



The NFA N_4

A DFA D that is equivalent to the NFA N_4

NFA→DFA

<u>Have</u>: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$

<u>Want</u>: **DFA** $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$

1. $Q_{\text{DFA}} = \mathcal{P}(Q_{\text{NFA}})$ A DFA state = a set of NFA states

qs = DFA state = set of NFA states

- 2. For $qs \in Q_{DFA}$ and $a \in \Sigma$
 - $\delta_{\mathsf{DFA}}(qs, a) = \bigcup_{q \in qs} \delta_{\mathsf{NFA}}(q, a)$

A DFA step = an NFA step for all states in the set

- 3. $q_{\text{ODFA}} = \{q_{\text{ONFA}}\}$
- 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$

Flashback: Adding Empty Transitions

- Define the set arepsilon-REACHABLE(q)
 - ... to be all states reachable from q via zero or more empty transitions

(Defined recursively)

- Base case: $q \in \varepsilon$ -reachable(q)
- Recursive case:

A state is in the reachable set if ...

$$\varepsilon$$
-reachable $(q) = \{ \overrightarrow{r} \mid p \in \varepsilon$ -reachable $(q) \text{ and } r \in \delta(p, \varepsilon) \}$

... there is an empty transition to it from another state in the reachable set

NFA→DFA

<u>Have</u>: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$

<u>Want</u>: **DFA** $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$

Almost the same, except ...

- 1. $Q_{\mathsf{DFA}} = \mathcal{P}(Q_{\mathsf{NFA}})$
- 2. For q: S = A and $a \in \Sigma$ • $\delta_{DFA}(q: S, a) = A$ $\delta_{NFA}(q: a)$ ε -REACHABLE(s)
- 3. $q_{\text{0DFA}} = \{q_{\text{0NFA}}\}_{\varepsilon\text{-REACHABLE}}(q_{\text{0NFA}})$
- 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$

Proving NFAs Recognize Regular Langs

Theorem:

A language L is regular **if and only if** some NFA N recognizes L.

Proof:

- \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier)
 - We know: if L is regular, then a DFA exists that recognizes it.
 - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 4)
- \Leftarrow If an NFA *N* recognizes *L*, then *L* is regular. (Harder)

Examples table?

Statements

Justifications?

- We know: for L to be regular, there must be a DFA recognizing it
- Proof Idea for this part: Convert given NFA $N \rightarrow$ an equivalent DFA ... using our NFA to DFA algorithm!

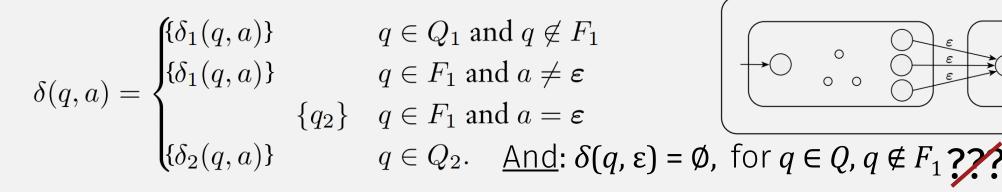
Concatenation is Closed for Regular Langs 🗹

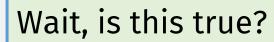
PROOF

Let DFA
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1
DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

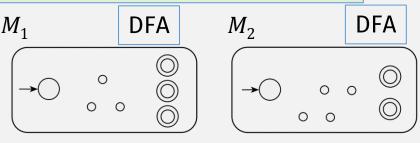
CONCAT_{DEA-NEA} $(M_1, M_2) = N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$

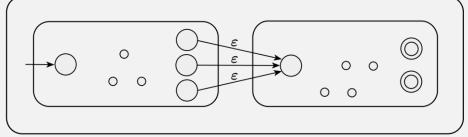
- 1. $Q = Q_1 \cup Q_2$
- 2. The state q_1 is the same as the start state of M_1
- 3. The accept states F_2 are the same as the accept states of M_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,





If a language has an NFA recognizing it, then it is a regular language





Is Concat Closed For Regular Langs?

Proof?

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA M_1 recognizes A_1
- 3. A DFA M_2 recognizes A_2
- 4. Construct NFA $N = \text{CONCAT}_{DFA-NFA} (M_1, M_2)$
- 5. N recognizes $A_1 \circ A_2$
- 6. $A_1 \circ A_2$ is a regular language
- 7. The class of regular languages is closed under Concatenation operation.

 In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. **Def of Reg Lang** (Coro)
- 3. **Def of Reg Lang** (Coro)
- 4. Def of NFA and CONCAT DEA-NEA
- 5. See Examples Table Thm1.40€
- 6. If NFA recognizes lang, then it's Regular
- 7. From stmt #1 and #6

New possible proof strategy!

Use **NFAs** Only

Is Concat Closed For Regular Langs?

Proof?

Statements

- 1. A_1 and A_2 are regular languages
- 2. A NFA N_1 recognizes A_1
- 3. A NFA N_2 recognizes A_2
- 4. Construct NFA $N = \text{CONCAT}_{NFA} (N_1, N_2)$
- 5. N recognizes $A_1 \circ A_2$
- 6. $A_1 \circ A_2$ is a regular language
- 7. The class of regular languages is closed under Concatenation operation.

 In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

Justifications

- 1. Assumption of If part of If-Then
- 2. If a lang is Regular, then it has an NFA Thm1.40=
- 3. If a lang is Regular, then it has an NFA
- 4. Def of NFA and CONCAT_{NFA}
- 5. See Examples Table
- 6. If NFA recognizes lang, then it's Regular
- 7. From stmt #1 and #6

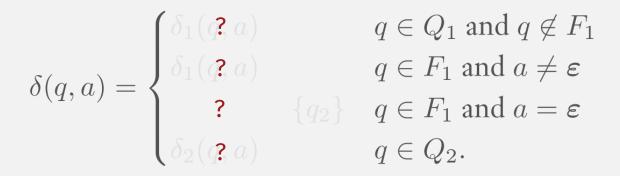
Concat Closed for Reg Langs: Use NFAs O

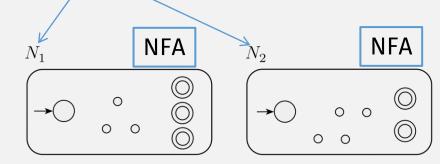
PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , and NFAS $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize $A_2 \not\sim$

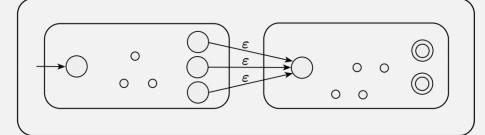
If language is regular, then it has an NFA recognizing it ...

- CONCAT_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$
 - 1. $Q = Q_1 \cup Q_2$
 - 2. The state q_1 is the same as the start state of N_1
 - 3. The accept states F_2 are the same as the accept states of N_2
 - **4.** Define δ so that for any $q \in \mathbb{Q}$ and any $a \in \Sigma_{\varepsilon}$,





NFA



Concat Closed for Reg Langs: Use NFAs

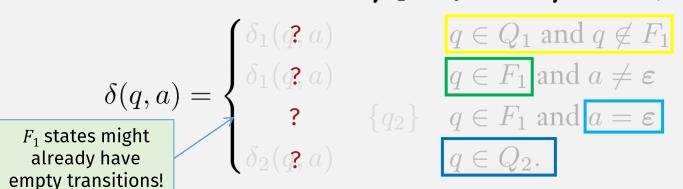
NFA

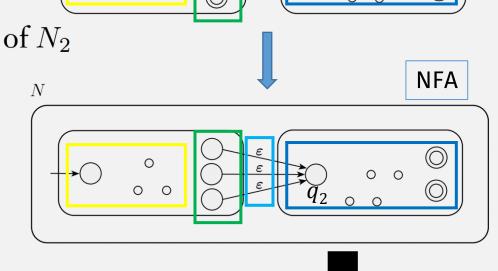
PROOF

Let
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 recognize A_1 , and NFAs $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize A_2 .

CONCAT_{NFA}
$$(N_1, N_2) = N = (Q, \Sigma, \delta, q_1, F_2)$$
 to recognize $A_1 \circ A_2$

- 1. $Q = Q_1 \cup Q_2$
- **2.** The state q_1 is the same as the start state of N_1
- 3. The accept states F_2 are the same as the accept states of N_2
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,





NFA

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Flashback: Union is Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof:

- How do we prove that a language is regular?
 - Create a DFA or NFA recognizing it!
- Combine the machines recognizing A_1 and A_2
 - Should we create a <u>DFA or NFA</u>?

Flashback: Union is Closed For Regular Langs

Proof

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: UNION_{DFA} $(M_1,M_2) = M = (Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

State in $M = M_1$ state + M_2 state

• *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

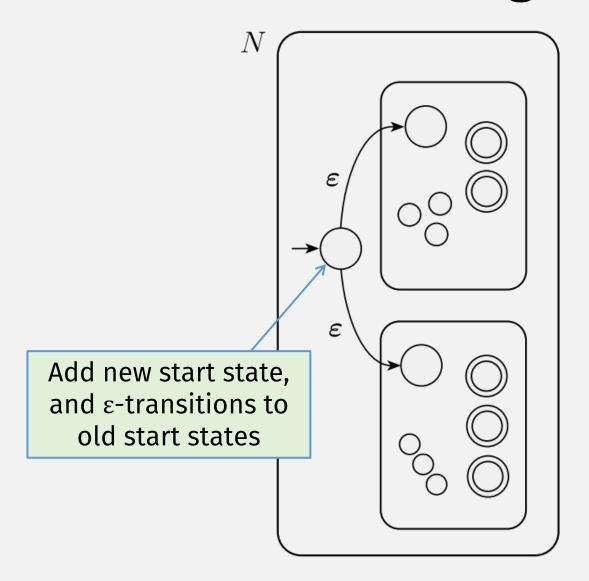
M step = a step in M_1 + a step in M_2

• M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Union is Closed for Regular Languages



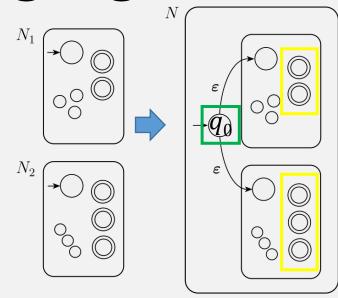
Union is Closed for Regular Languages

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

UNION_{NFA} $(N_1, N_2) = N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.



Union is Closed for Regular Languages

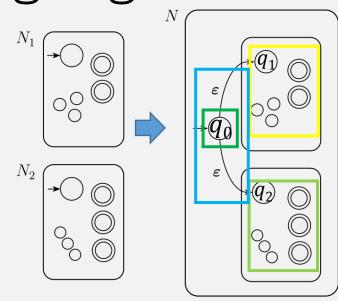
PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

UNION_{NFA}
$$(N_1, N_2) = N = (Q, \Sigma, \delta, q_0, F)$$
 to recognize $A_1 \cup A_2$.

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \\ \delta_2(?, a) & q \in Q_2 \\ \{q_1?q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & ? & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$



Don't forget **Statements** and Justifications!

List of Closed Ops for Reg Langs (so far)

✓ • Union

• Concatentation

Kleene Star (repetition) ?

Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Kleene Star Example

```
Let the alphabet \Sigma be the standard 26 letters \{a, b, \ldots, z\}.
```

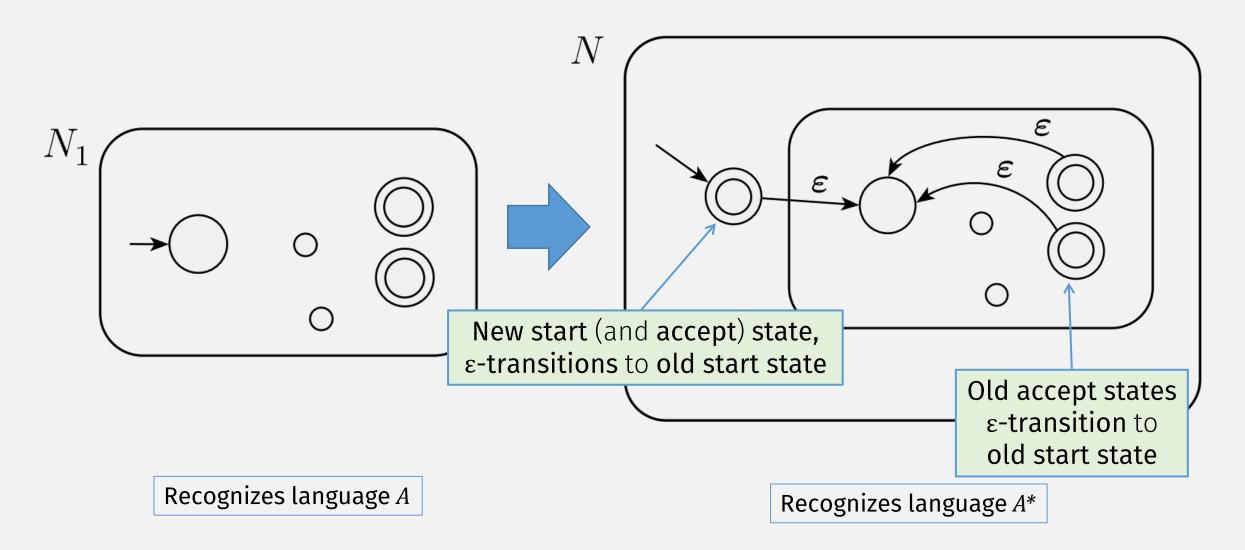
```
If A = \{ good, bad \}
```

```
A^* = \begin{cases} \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \ldots \end{cases}
```

Note: repeat zero or more times

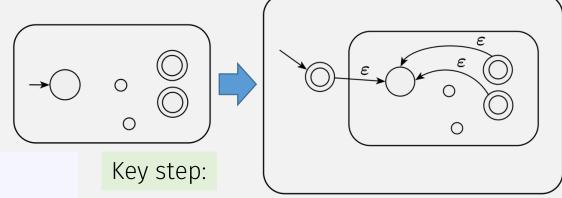
(this is an infinite language!)

Kleene Star is Closed for Regular Langs?



In-class exercise

Kleene Star is Closed for Regular Langs



THEOREM

The class of regular languages is closed under the star operation.

 $STAR_{NFA}: NFA \rightarrow NFA$

where $L(STAR_{NFA}(N_1)) = L(N_1)^*$

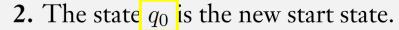
Kleene Star is Closed for Regular Langs

(part of)

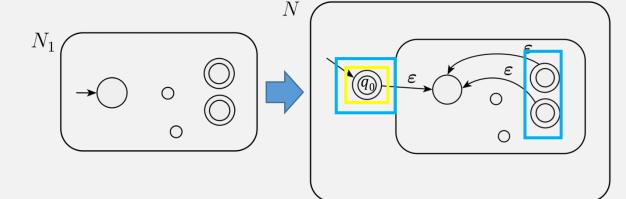
DOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{NFA}(N_1) = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$



3.
$$F = \{q_0\} \cup F_1$$



Kleene star of a language must accept the empty string!

Kleene Star is Closed for Regular Langs

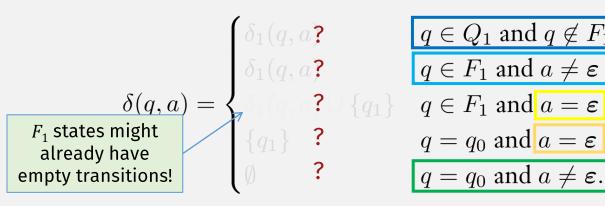
(part of)

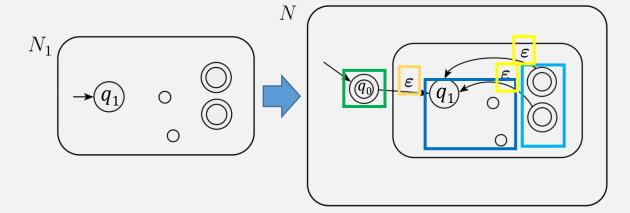
Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{\text{NFA}}(N_1) = (Q, \Sigma, \delta, q_0, F) \text{ to recognize } A_1^*.$

1.
$$Q = \{q_0\} \cup Q_1$$

- 2. The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,





 $q \in Q_1$ and $q \not\in F_1$ $q \in F_1$ and $a \neq \varepsilon$

 $q = q_0$ and $a = \varepsilon$

 $q=q_0$ and $a\neq \varepsilon$.

Old accept states ε-transition to old start state

New start state ε-transitions to old start state

New start state has only ε-transitions

Why These (Closed) Operations?

- Union
- Concatenation
- Kleene star (repetition)

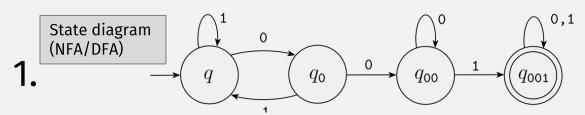
- $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!

So Far: Regular Language Representations

(hard to write)



Formal description

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \end{array}$$

2.

3. δ is described as

$$\begin{array}{c|cccc} q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

4. q_1 is the start state

5.
$$F = \{q_2\}$$

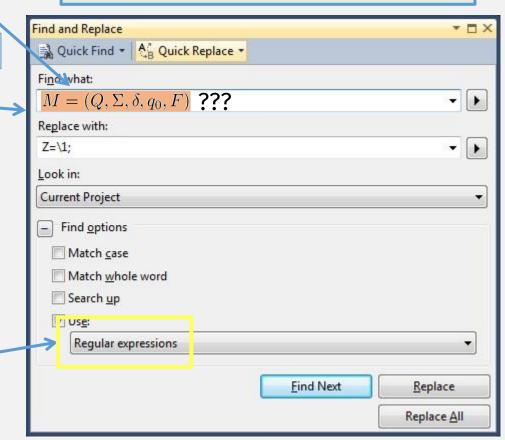
Our Running Analogy:

- <u>Set</u> of all **regular languages** ~ a "programming language"
- <u>One</u> **regular language** ~ a "program"

?3. $\Sigma^* 001\Sigma^*$

Need a more concise (textual) notation??

Actually, it's a <u>real</u>
programming language, for
text search / string matching
computations



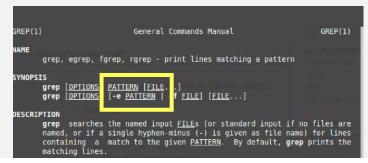
Regular Expressions: A Widely Used Programming Language (in other tools / languages)

- Unix / Linux
- Java
- Python
- Web APIs

java.util.regex

Class Pattern

java.lang.Object
 java.util.regex.Pattern



Python » English

3.8.6rc1

Documentation » The Python Standard Library » Text Processing Services »

About regular expressions (regex)

Analytics supports regular expressions so you can create more flexible definitions for things like view filters, goals, segments, audiences, content groups, and channel groupings.

This article covers regular expressions in both Universal Analytics and Google Analytics 4.

In the context of Analytics, regular expressions are specific sequences of characters that broadly or narrowly match patterns in your Analytics data.

For example, if you wanted to create a view filter to exclude site data generated by your own employees, you could use a regular expression to exclude any data from the entire range of IP addresses that serve your employees. Let's say those IP addresses range from 198.51.100.1 - 198.51.100.25. Rather than enter 25 different IP addresses, you could create a regular expression like 198\.51\.100\.\d* that matches the entire range of addresses.

Regular expression operations

ce code: Lib/re.py

module provides regular expression matching operations similar to those found in Perl.

Why These (Closed) Operations?

- Union
- Concatenation
- Kleene star (repetition)

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

$$A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$$

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!

They are used to define regular expressions!

Regular Expressions: Formal Definition

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

This is a <u>recursive</u> definition