CS 420 / CS 620
NFA < DFA

Wednesday, October 1, 2025
UMass Boston Computer Science

A nondeterministic finite automaton

A fini is a 5-tupl Y F), wh
is a 5-tuple (Q,, 6, qo, F), where finite automaton is a 5-tuple (Q, X, 4, qo, F'), where

). 3 Ay il ellfivle 2. Y is a finite set (fa ed the al?ﬂ-mbet, .
3. 0: @ x ¥.—P(Q) is the transition function, - 3.0: QX 2= Qs the transition function,
4. qo € Q is the start state, and

4. qo € Q is the start state, and

5. F C Q is the set of accept states. 5. F'C Qs the set of accept states.

lecture09



%/{/{0&(/{06/%@/{56’

« HW 4
« Out: Mon 9/29 12pm (noon)
 Due: Mon 10/6 12pm (noon)

A nondeterministic finite automaton
is a S-tuple (@, X, 0, qo, '), where

1. © is a finite set of states, » 1. Q .1s a ﬁnllte set called the states,
5, B oy s allulbaliets 2. ¥ is a finite set called the alphabet,

A finite automaton is a 5-tuple (Q, X, §, qo, F'), where

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and
5. F C Q is the set of accept states.

3. §: Q@ x £.—P(Q) is the transition function,
4. ¢y € Q is the start state, and
5. F' C @ is the set of accept states.



Previnusty Concatenation: Ao B = {xy|x € Aand y € B}

s Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof requires: Constructing new machine

Key step: When to switch machines? (can only read input once)



Concatentation

_ oo©/\ ° © ©/

N is an NFA! It can:
- Keep checking 15t part with M,

: : and
Want: Construction of N to recognize A1 © Aa|_ pmove to M. to check 21
2

Let M, recognize A;, and M, recognize As.

N part
e = “empty transition” = reads no input
( N can be in both machines simultaneously! I
4 4 N

O L
O ° OfH30 oo
O~ o




Concatenation Is Closed for Regular Langs

PROOF (part of)
Let DFA Ml = [Qli Z; 61; CI1, Fl) recognize Al
DFA MZ = [QZ’ Z; 52; qz, Fz) reCOgniZG AZ

Construct N = (Q, X, 9, q1, F») to recognize A; o A
L|QI= Q1 UQ>

2. The state ¢; is the same as the start state of M,

3. The accept states|F; jare the same as the accept states of M,

4. Define § so that for any ¢ € @ and any a € X,

M, DFA M, DFA
- ©
-@ @J [»O ©J
o © o ©
N l NFA
p
—
Ofe L. ©)
__,@ : 5@ @




Concatenation Is Closed for Regular Langs

PROOF (part of) 0

Let DFA Ml = (Q1' Z, 51, ql, Fl) recognize Al Wa|t, IS this true?
DFA MZ = (QZJ Z, 52; qz; Fz) recognlze AZ

Define the function:

CONCAT, e (M,M;) =N= (@), X, 6, q1, F) to recognize A; o A M, DFA M, DFA
1. @ =Q1UQ2 O 8 O o
o O
2. The state ¢; is the same as the start state of M, °° 1O oo ©
3. The accept states F5 are the same as the accept states of M, l
4. Define § so that for any g € Q and any a € X N NFA
p
(61(® a)} - ]( 5
{01(® a)} EON BO oo 1
R "o [SHfR. o
) NFA def says:
(no other { ?a)} § must map every state 299
\ : e o o
trairsnifigns) And: 8(g, €) =@, for g€ Q,q & F, and ¢ to set of states -




2 /‘w/'a«@é

s Union Closed For Regular Langs?

Proof

Statements Justifications

1. A,and A, are regular languages 1. Assumptionof if part of If-Then
2. A DFA M, recognizes A, 2. Def of Reg Lang (Coro)

3. ADFA M, recognizes A, 3. Def of Reg Lang (Coro)

4. Construct DFA M = UNIONpg, (M, M,) 4. Def of DFA and UNIONyg,
5. Mrecognizes A, U A, 5. See Examples Table

6. A, UA, Is aregular language 6. Def of Regular Language
7. The class of regular languages is closed under the union operation. 7 From stmt #1 and #6

In other words, if A; and As are regular languages, so is A; U As.

0ED. IR



|s Concat Closed For Regular Langs?

Proof?

Statements Justifications
1. A,and A, are regular languages Assumptionof if part of If-Then

1.
2. A DFA M, recognizes A, 2. Def of Reg Lang (Coro)
. A DFA M, recogrizes A, 3. Def of Reg Lang (Coro)
A
5

3

4. Construct|NFA | N=CONCAT,, .. (M,M,) /] Def of [ NFA |aNnd CONCAT,, e
5. N recognizes A,-JA, Ao A, . See Examples Table
6
/.

141—9742 A1 o AZ IS a regular language 0. m Does NFA recognize reg langs?
The class of regular languages is closed under| concatenation operation. 7 From stmt H#1 and H6

In other words, if A; and As are regular languages then so is A; o As.

Q.E.D.?



Definition of Regular Language

2 /‘w/'a«@é

If a DFA recognizes a language L,

A DFA’s Language then L is a regular language

« For DFAM = (Q, %, 0, qo, F)

» M accepts wif 6(gy,w) € F

« M recognizes language {w| M accepts w}

Definition: A DFA’s language Is a regular language



An NFA's Language?

- For NFA N = (Q, %, 6, qo, F)

Intersection ... .. with accept states ...

« N accepts w it 6((]07 ’LU) NF 7& @ ... is not empty set
* |.e,, accept if final states contains at least one accept state

« Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: What kind of languages do NFAs recognize?



Concatenation Closed for Reg Langs?

« Combining DFAs to recognize concatenation of languages ...

... produces an NFA

« SO to prove regular languages closed under concatenation ...

... must prove that NFAs also recognize regular languages.

Specifically, we will prove:
NFAs < regular languages



‘If and only If” Statements

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Represents two statements:

1. =>ifX, thenY
« “forward” direction

2. <ifY, thenX
* “reverse” direction



How to Prove an “Iff" Statement

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y

Proof has two (If-Then proof) parts:

1. =>ifX,thenY
e “forward” direction
« assume X, then use it to prove Y

2. <iIfY, thenX

e “reverse” direction
« assume Y, then use it to prove X



Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Full Statements

Proof: 2 parts Assume Prove 2
= If L 1s regular, then some NFA N recognizes it Justifications?
(Easier)

.- We know: If L is regular, then a DFA exists that recognizes it.
« So to prove this part: Convert that DFA — an equivalent NFA (see HW 4)

& If an NFA N recognizes L, then L is regular. “equivalent” =
“recognizes the same language”




= If L 1S regular, then some NFA N recognizes it

Statements Justifications

1. Lis aregular language 1. Assumption fra s
2. A DFA M recognizes L 2. Def of Regular lang (Coro)
3. Construct NFA N = CONVERTys (M) 3. See hw 4!

4. DFA M is equivalentto NFAN 4. See Equiv. table! <mmm
5. An NFA N recognizes L 5. 277 B e
6. If Lis a regular language, 6. By Stmts #1and #5

then|some NFA N recognizes it




“Proving” Machine Equivalence (Table)

Let: DFA M = (Q, %, 4, qo, F)
NFA' N = CONVERT,s nea(M)

A

5(q0,w) c I’ for some string w Note:

extra column

/

If M acceptsw ...
Then we know ...

There I1s some sequence of states: r, ...r, wherer,€ Q and

1= 4o and " EF Exercise left for HW

Then N accepts?/rejects? w because ... Show that you know how an NFA computes

Justification #1?
There is an accepting sequence of (set of) states in N .. for string w




“Proving” Machine Equivalence (Table)

Let: DFA M = (Q,%,6, qo, F)
NFA' N = CONVERTz yea(M)

(qo,w) € F for some string w

0
0(go, w) & F for some string)/v’

M accepts? N accepts? Justification

w Yes See justification #1
If M rejectsw’ .5 W No 7?77 See justification #2?

Then we know ...

Exercise left for HW
Then N accepts?/rejects? w' because ... Show that you know how an NFA computes

Justification #27? / /




Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Proof:

M = If L is regular, then some NFA N recognizes it.
(Easier)
. We know: If L Is regular, then a DFA exists that recognizes it.
» So to prove this p Assume /ert that DFA — Prove [uivalent NFA! (see HW 4)

& If an NFA N recognizes L, then L is regular. “equivalent” =
(Harder) “recognizes the same language”

. We know: for L to be regular, there must be a DFA recognizing it
« Proof Idea for this part: Convert given NFA N — an equivalent DFA




How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, : ]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

. 1. @ is a finite set of states,
Proof 1dea: > T is a finite alphabet
Let each “state” of the DFA T TS TR i o .
= set of states in the NFA 3.0: Q x ¥.—>P(Q) is the transition function,
4. gy € () 1s the start state, and
5. F C @ is the set of accept states.



Symbol read @ Start

T
@ NFA computation can
{ e be in multiple states
\ DFA computation can
0 - only be in one state
TR So encode:
@ @ @ @ a set of NFA states
as one DFA state
T
This is similar to the proof strategy from
@ @ @ @ @ “Closure of union” where:
(GEETEEEE ‘ a state = a pair of states
(2) (2



Convert NFA-DFA, Formally

+LetNFAN = (Q, 22, 3, qo, F')
 An equivalent DFA M has states Q' = P(Q) (power set of Q)



Example:

+ Let NFA N, =(Q), X2, 9, qo, F')
« An equivalent DFA D has states

P(Q) (power set of Q)

The NFA N4

A DFA D that is equivalent to the NFA N,



NFA-DFA

Have: NFA N = (Qura 2, Onrar Gonrar Frira)
Want: DFA D = (Qpra 2, Sprar Gonrar Fora)

iy U= P Ohes) A DFA state = a set of NFA states

gs = DFA state = set of NFA states
2. Forgse€eQppuanda€l

No empty transitions

* Opralgs, a)= A DFA step = an NFA step for all states in the set

3. qopra = 190nFA)

4. Fpea=1{gs € Qpea | gs contains accept state of N}




thshback: ADdINg Empty Transitions

- Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

« Base case: ¢ € e-REACHABLE(q)

e Recursive case:

A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set



With empty transitions

NFA-DFA

Have: NFA N = (Qura 2, Onrar Gonrar Frira)

Almost the same, except ...

Want: DFA D = (Qpra 2, Sprar Gonrar Fora)
L Qoea= P (Quen)

2. ForqS pmanda€X

E-REACHABLE(S
) SDFA(q“’ “J)— UqEqs UNFAW U ( )

ses

_ |
3. Qopra = %g_REACHABLE(qom FA )

4. Fpea=1{gs € Qpea | gs contains accept state of N}



Sipser Theorem (Corollary) 1.40

Proving NFAs Recognize Regular Langs

Theorem:
A language L is regular if and only if some NFA N recognizes L.

Statements
Proof: 2
= If L Is regular, then some NFA N recognizes It. Justifications?
(Easier)

. We know: If L Is regular, then a DFA exists that recognizes it.
» So to prove this part: Convert that DFA — an equivalent NFA! (see HW 4)

& If an NFA N recognizes L, then L is regular. Examoles table?
(Harder) P :
. We know: for L to be regular, there must be a DFA recognizing it
:> « Proof Idea for this part: Convert given NFA N — an equivalent DFA ...
... using our NFA to DFA algorithm!




Concatenation iIs Closed for Regular Langs &

PROOF — .
Walt, is this true?

If a language has an NFA recognizing it,
then it is a regular language

Let DFA Ml = (Qli Z; 51; CI1, Fl) recognize Al
DFA MZ = (QZ) Z; 52; Clz, Fz) I’eCognlze A2

CONCAT s (M,M,) =N = (Q), 3,0, q1, F») to recognize A; o Ay M, DFA M, DFA
1. Q =Q1UQ:> ., ©
. ~O | [0 ¢o @
2. The state q; is the same as the start state of M; °° O oo ©
3. The accept states F5 are the same as the accept states of M, ﬂ
4. Define ¢ so that for any ¢ € () and any a € X, N NFA
s R
(01(q, a)} g€ Qrand g ¢ I, @\ -
SRS o
{(51(9,&)} qg € F; anda;és o o [ (O oo o
5(q?a) = < o o o
{¢2} g€ Fanda=¢ N )
{d2(q, a)} q € Q2. And: 6(q, €) =0, forqu,qefFl‘y? H




|s Concat Closed For Regular Langs?

Proof?

Statements Justifications

1. A,and A, are regular languages 1. Assumptionof if part of If-Then

2. A DFA M, recognizes A, 2. Def of Reg Lang (Coro)

3. ADFA M, recognizes A, 3. Def of Reg Lang (Coro)

4. Construct NFA N = CONCAT,,,..., (M,M,) 4. Def of NFA and CONCAT,.

5. Nrecognizes A, o A, 5. See Examples Table. .
6. A1 o AZ IS a regular language .| If NFA recognizes lang, then it's Regular
]. 'Theclass of regular languages is closed under| concatenation joperation. /. From stmt #1 and H6

In other words, if A; and As are regular languages then sois A; o As.
qeny



New possible proof strategy! Use| NFAS On[y
|s Concat Closed For Regular Langs?

Proof?

Statements Justifications

1. A,and A, are regular languages 1. Assumptionof if part of If-Then
2. AINFA| N, recognizes A, If a lang is Regular, then it has%
3. AINFA| N, recognizes A, 292 If a lang is Regular, then it has an NFA
4. Construct NFA N = CONCAT,., (N,N,) 4, Def of NFA and concar,,
5. Nrecognizes A, oA, 5. See Examples Table

6. A1 o AZ IS a regular language 6. If NFA recognizes lang, then it's Regular
7. The class of regular languages is closed under| concatenation operation. 7. From stmt #1 and #6

In other words, if A; and As are regular languages then sois A; o As.



New possible proof strategy!

Concat Closed for Reg Langs: Use |NFAs| Only

PROOF

NFAs |Ny = (Q2, X, 62, g2, F>) recognize As. / \
CONCATg, (N,N,) =N = (Q, X, 9, q1, F>) to recognize A; o A N, NFA N, NFA
1. Q = Q1 UQ2 ., O
. -0 °. 0] |0 o
2. The state ¢; is the same as the start state of N; °° 9 o ©

3. The accept states ij@,tﬁefame as the accept states of N

If language is regular,
then it has an NFA recognizing it ...

Let Ny = (Q1,%, 61, q1, F1) recognize Al’ay

4. Define ¢ so that for #hy?¢% ¥ and any a € X,

0(q,a) =

’

2
2

?

g€ Qrandq g Fy
g€ Fianda # ¢
ge Fyanda =€

q € Q2.

All NFAs

N

NFA

)

[=




New possible proof strategy! Sipser Thm 1.47

Concat Closed for Reg Langs: Use |NFAs| Only

PROOF

Let Ny = (Q1, 3,61, q1, F1) recognize Ay, and
NFAs |Ny = (Q2, X, 02, g2, F) recognize As.

CONCAT s (N,N,) =N = (Q), 3,9, q1, F>) to recognize A; o A N, NFA N, NFA
1. Q — Ql U Q2 o ©
| -0 o [Fo oo ©
2. The state ¢ is the same as the start state of [V; °° 1o c o ©

3. The accept states F; are the same as the accept states of N ﬂ

4. Define § so that for any ¢ € @ and any a € X,

~N ~N
.4
©
@)
O
)
/_‘_T
503
©)
o ©
O
—— 7

0(q,a) =

F, states might N

already hg\!e X ? -
empty transitions!




Union: AUB ={z|z € Aorz € B}

thstback: UNioN 1S Closed For Regular Langs

THEOREM

The class of regular languages is closed under the union operation.

In other words, it A; and As are regular languages, so is A; U As.

Proof:

« How do we prove that a language is regular?
« Create a DFA or| NFA recognizing it!

« Combine the machines recognizing A, and A4,
* Should we create a DFA o1 NFA P




Proof, with DFA

thstback: UNioN 1S Closed For Regular Langs

Proof
Gi . My = (Q1,%,01,4q1, F1), recognize Ay,
e Ulven:. .
My = (Q2, X, 02, q2, F2), recognize A,

 Construct: UNIONye, (M,M,) =M= (Q, %, 9, qo, F') using M, and M,

* states of M: Q= {(r1,r2)[r1 € Qrand rz € Q2} =0;x0Q; Sﬁtgt;ntéw
This set is the Cartesian product of sets Q1 and Q2 | "y state

« M transition fn: 5((?"1, r9), (L) — (51 (r1,a),d2(rs, (L)) M step =

a stepin M, + a step in M,

« M start state:  (q1,42)

Accept if either M, or M, accept
* M accept states: F = {(ry,r3)|r1 € Fy orry € Fy}




Alternate Proof, with NFAs

Union i1s Closed for Regular Languages

N

Add new start state,
and e-transitions to
old start states

L

~




Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

UNIONyp (N,N,)) =N= (Q,X,d,|q0,|F) to recognize A; U As.
1. Q =Hqo}jU Q1 U Q2.

2. The state|qp|is the start state of V.

3. The set of accept states F' = F} U F5.

Alternate Proof, with NFAs

Ny ) —
Vo -0 0
08© E/Oo©

> | @]
00 sONe
OO © O ©
> O b O




Sipser Thm 1.45

Union i1s Closed for Regular Languages

PROOF

Let Ny = (Q1,%,01,¢q1, F1) recognize Aq, and
N2 = (QQ, 2?52, q2, Fg) recognize AQ.

UNIONyp (N,N))=N= (Q,X, 0, qo, F') to recognize A; U As.
1. Q@ ={g0} U Q1 UQx.

2. The state gg 1s the start state of V.
3. The set of accept states F' = F} U F5.
4. Define ¢ so that for any ¢ € Q and any a € X,

(51(q q <€ Q1
? q € Q2

) —
(4:) ? g=¢qoand a = €

? q=qoanda # €

Alternate Proof, with NFAs

M

uOle D o
08© E/ Oo©
* @]t
00 Mo 6
OO © O ©
> O L O

Don't forget
Statements
and
Justifications!




List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

- Kleene Star (repetition) ?



Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad}

{e, good, bad, goodgood, goodbad, badgood, badbad,

A* = goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat zero or more times

(this is an infinite language!)



Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Is Closed for Regular Langs?

N N

Ny~ N 4 S )
5 c ©
j> \© (6 ®

O
N O [ K o
ew start (and accept) state,
~| e-transitions to old start state
\ Old accept states |/

e-transition to
old start state



lh=ctass exercrse

Kleene Star 1s Closed for Regular Langs

THEOREM

The class of regular languages is closed under the star operation.

Key step:

/

e

£
O+

O

€

©

]

\

/

STARy, : NFA - NFA
where L(STARyqA(N;)) = L(N,)*



lu-class sobulion

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let N1 = (Q1,%,01,q1, 1) recognize Aj. M

N = STARy, (N,) = (Q,%,0,qo, F) to recognize A7. @

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

_

=

o

=

O
O

O
O




lu-class sobulion

Sipser Thm 1.49

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let Ny = (Q1,%, 01,41, F1) recognize A;.
N = STARys, (N,) = (Q,%,0,qo, F) to recognize A7.

1. Q ={q} U@

2. The state g 1s the new start state.

3. F ={q}UF
4. Define § so that for any g € @ and any a € X,

d(q.a) = <

F, states might
already have
empty transitions!

L~

.

N N N N N

Ny

g€ @Qrand g & Fy

g€ Fianda # ¢

gc€ Fianda=c¢
g=¢qoanda=¢€

Old accept states e-transition to

New start state e-transitions to

¢ = qo and a # €.

New start state has only e-transitions




Why These (Closed) Operations?

e Union AUB={x|x € Aorx € B}
« Concatenation AoB={zy|z € Aand y € B}
* Kleene star (repetition) A* = {z122... 25| k > 0and each z; € A}

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!




$o Far: Regular Language Representations

(NFA/DFA)

State diagram

1.

Formal
description

2.

1. Q ={q1, 92, g3},
2. ¥ ={0,1},
3. ) is described as

4. ¢ is the start state
5. F ={q2}

Our Running Analogy:

o) 1
d1 | 91 g2
q2 | 43 g2
43 | 92 g2

(hard to write)

- Set of all regular languages ~ a “programming language”

- One regular language

23,

2500127

~a “program”

Need a more concise
(textual) notation??

Actually, it's a real
programming language, for
text search / string matching
computations

Find and Replace
=} QuickFind ~ | A7

Finé\what:

Quick Replace ~

— (Qa Ea 57 q0,

Replace with:
Z=\1;

F) 777

Look in:

l Current Project

IZ} Find options
Match case
|| Match whole word
Search up

| use:

Regular expressions

Find Next | |

Replace

1 Replace All

|




Regular Expressions:
A Widely Used Programming Language

(in other tools / languages)

ja\fa . thl | . regex General Commands Manual GREP(1)

, egrep, fgrep, rgrep - print lines matching a pattern

* Unix / Linux Class Pattern
e Java [ o i e e e

DESCRIPTION

Java |ang Object searches the named input EILEs (or standard input if no files are
: - named, or if a single hyphen-minus (-) is given as file name) for lines
: H containing a match to the given PATTERN. By default, grep prints the

o Pyth on java.util.regex.Pattern containing o

@, Python » | English v|[3.86rc1 v|Documentation » The Python Standard Library » Text Processing Services » Qui

« Web APIs |

About regular expressions (regex) — Regular expression operations

Analytics supports regular expressions so you can create more flexible definitions for things like
view filters, goals, segments, audiences, content groups, and channel groupings. ce code: Liba‘re.py

This article covers regular expressions in both Universal Analytics and Google Analytics 4.
module provides regular expression matching operations similar to those found in Perl.
In the context of Analytics, regular expressions are specific sequences of characters that
broadly or narrowly match patterns in your Analytics data.

For example, if you wanted to create a view filter to exclude site data generated by your own
employees, you could use a regular expression to exclude any data from the entire range of IP
addresses that serve your employees. Let’s say those IP addresses range from 198.51.100.1 -
198.51.100.25. Rather than enter 25 different IP addresses, you could create a regular
expression like 198\.51\.100\.\d* that matches the entire range of addresses.



Why These (Closed) Operations?

e Union AUB={x|xz € Aorx € B}
« Concatenation AoB={zy|z € Aand y € B}
* Kleene star (repetition) A* = {z122.. .25 k > 0and each z; € A}

All regular languages can be constructed from:
- (language of) single-char strings (from some alphabet), and
- these three closed operations!

They are used to define regular expressions!




Regular Expressions: Formal Definition

R is a regular expression if R is — :
&% P This IS a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where Ry and R are regular expressions,
. (R1 0 R2), where R and R» are regular expressions, or
. (R}), where R; is a regular expression.



