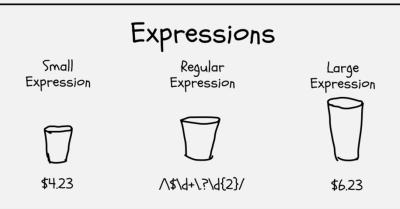
CS 420 / CS 620 Regular Expressions

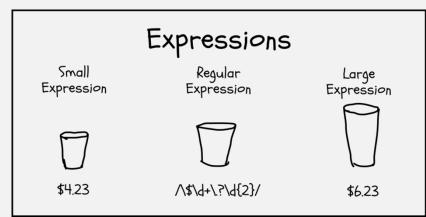
Monday, October 6, 2025

UMass Boston Computer Science



Announcements

- HW 4
 - Due: Mon 10/6 12pm (noon)
- HW 5
 - Out: Mon 10/6 12pm (noon)
 - Due (unofficial): Mon 10/13 12pm (noon) (stay on schedule!)
 - Due (up to): Wed 10/15 12pm (noon)
- HW 6 (most likely)
 - Out: Mon 10/13 12pm (noon)
 - Due: Wed 10/20 12pm (noon)
- No class: next Mon 10/13 (Indigenous Peoples)



In-class question (in gradescope) preview

When used as a string, the epsilon symbol (ε) is equivalent to which of the following?

When used as the empty transition, the epsilon symbol (ε) is equivalent to which of the following?

When used as a regular expression, the epsilon symbol (ε) is equivalent to which of the following?

When used as an input to an NFA's single-step δ function, the epsilon symbol (ε) is which of the following?

When used as an input to an NFA's multi-step $\hat{\delta}$ function, the epsilon symbol (ε) is which of the following?

When used as a transition label in a GNFA, the epsilon symbol (ε) is which of the following?

List of Closed Ops for Reg Langs (so far)

- ✓ Union
- Concatentation
 - Kleene Star (repetition) ?

Kleene Star Example

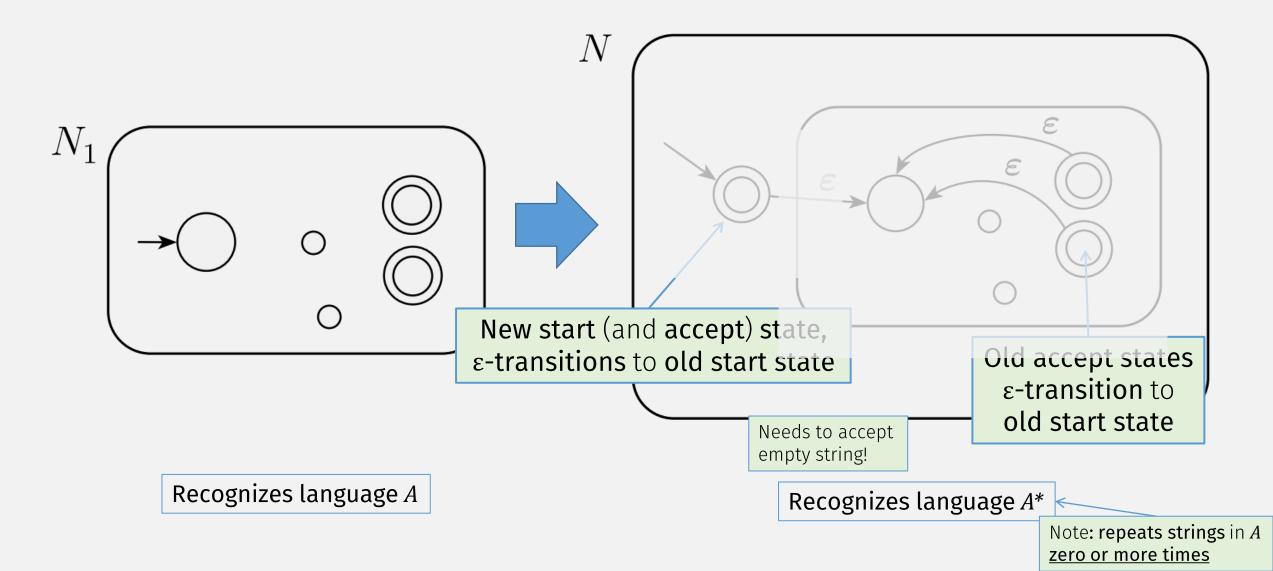
Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

```
If A = \{ \text{good}, \text{bad} \} "repeat" zero A^* = \begin{cases} \varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \\ \text{goodgoodgood}, \text{goodgoodbad}, \text{goodbadgood}, \text{goodbadbad}, \dots \} \end{cases}
```

Note: repeat strings in *A* zero or more times

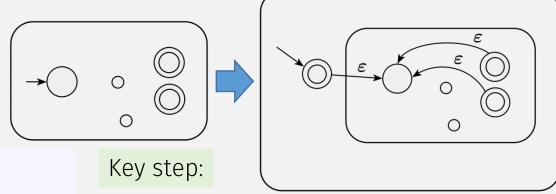
(this is an infinite language!)

Kleene Star is Closed for Regular Langs?



In-class exercise

Kleene Star is Closed for Regular Langs



THEOREM

The class of regular languages is closed under the star operation.

 $\mathsf{STAR}_{\mathsf{NFA}} : \mathsf{NFA} \to \mathsf{NFA}$

Where: $N = \text{STAR}_{NFA}(N_1)$ $L(N) = L(N_1)^*$

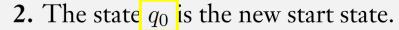
Kleene Star is Closed for Regular Langs

(part of)

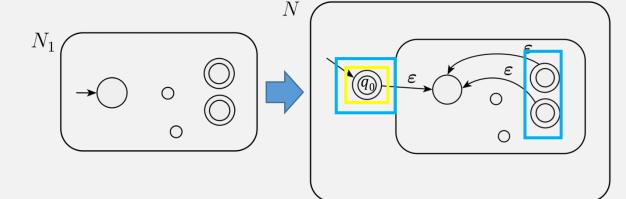
DOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{NFA}(N_1) = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$



3.
$$F = \{q_0\} \cup F_1$$



Kleene star of a language must accept the empty string!

Kleene Star is Closed for Regular Langs

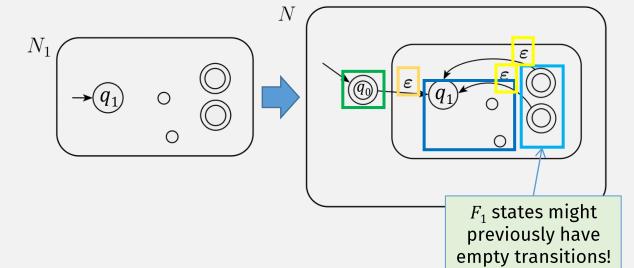
(part of)

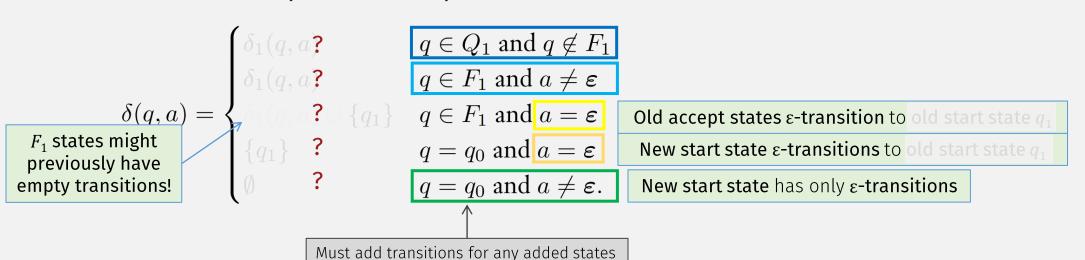
PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .

 $N = \text{STAR}_{NFA}(N_1) = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$

- 2. The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,





Why These (Closed) Operations?

- Union
- Concatenation
- Kleene star (repetition)

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

$$A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$$

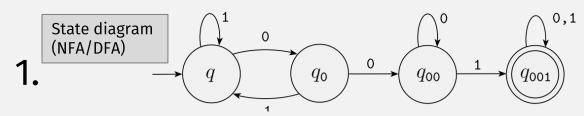
All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), ...
- And these three closed operations!

```
e.g., lang {"a"} , lang {"b"} , ...
```

So Far: Regular Language Representations

(hard to write)



Formal description

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \end{array}$$

2.

3. δ is described as

$$\begin{array}{c|cccc} q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

4. q_1 is the start state

5.
$$F = \{q_2\}$$

Our Running Analogy:

- <u>Set</u> of all **regular languages** ~ a "programming language"
- One regular language (or any equiv representation) ~ a "program"
- ?3. $\Sigma^* 001\Sigma^*$

Need a more concise (textual) notation??

Actually, it's a real programming language, for text search / string matching computations



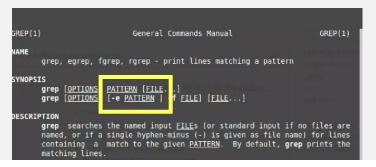
Regular Expressions: A Widely Used Programming Language (usually within tools / languages)

- Unix / Linux
- Java
- Python
- Web APIs

java.util.regex

Class Pattern

java.lang.Object
 java.util.regex.Pattern



About regular expressions (regex)

Analytics supports regular expressions so you can create more flexible definitions for things like view filters, goals, segments, audiences, content groups, and channel groupings.

This article covers regular expressions in both Universal Analytics and Google Analytics 4.

In the context of Analytics, regular expressions are specific sequences of characters that broadly or narrowly match patterns in your Analytics data.

For example, if you wanted to create a view filter to exclude site data generated by your own employees, you could use a regular expression to exclude any data from the entire range of IP addresses that serve your employees. Let's say those IP addresses range from 198.51.100.1 - 198.51.100.25. Rather than enter 25 different IP addresses, you could create a regular expression like 198\.51\.100\.\d* that matches the entire range of addresses.

Regular expression operations

ce code: Lib/re.py

module provides regular expression matching operations similar to those found in Perl.

Why These (Closed) Operations?

- Union
- Concatenation
- Kleene star (repetition)

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

$$A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$$

All regular languages can be constructed from:

- (language of) single-char strings (from some alphabet), and
- these three closed operations!

They are used to define regular expressions!

Regular Expressions: Formal Definition

R is a **regular expression** if R is

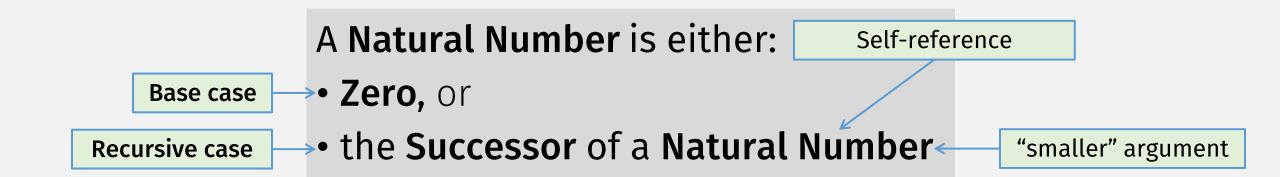
- 1. a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

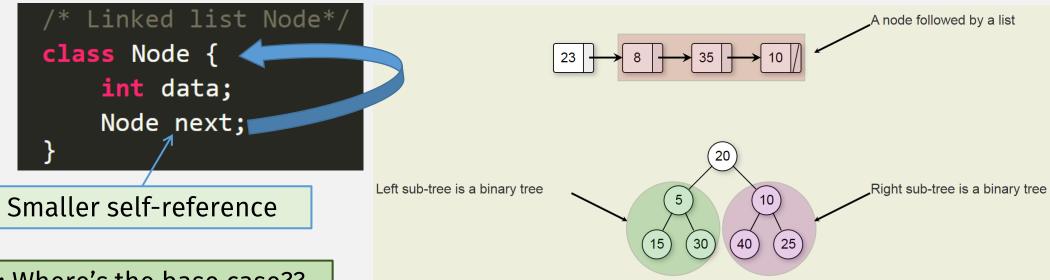
This is a <u>recursive</u> definition

Recursive definitions are definitions with a <u>self-reference</u>

A <u>valid</u> <u>recursive definition</u> must have:

- base case and
- recursive case (with a "smaller" self-reference)





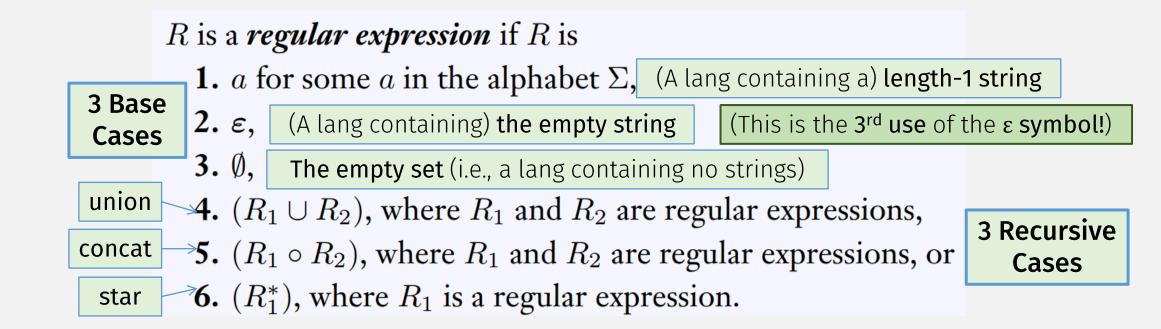
Q: Where's the base case??

I call it my billion-dollar mistake. It was the invention of the null reference in 1965.

— Tony Hoare —

<u>Data structures</u> are commonly defined <u>recursively</u>

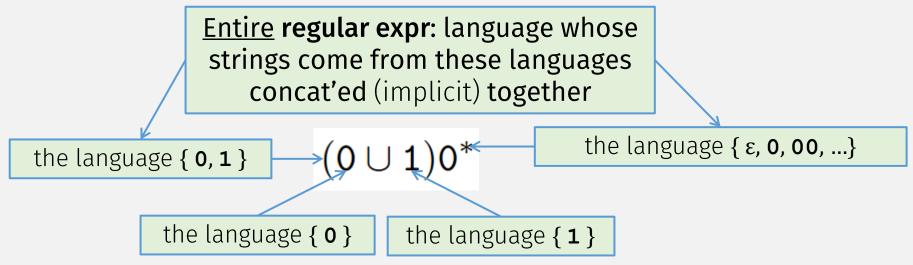
Regular Expressions: Formal Definition



Note:

- A regular expression represents a language
- The set of all regular expressions represents a set of languages

Regular Expression: Concrete Example



• Operator <u>Precedence</u>:

- Parentheses
- Kleene Star
- Concat (sometimes use o, sometimes implicit)
- Union

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- 3. \emptyset ,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expression: More Examples

$$0*10* = \{w | w \text{ contains a single 1}\}$$

$$\Sigma^* \mathbf{1} \Sigma^* = \{w \mid w \text{ has at least one 1}\}$$
 Σ in regular expression = "any char"

$$1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}$$
 let R^* be shorthand for RR^*

$$(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}$$
 $0 \cup \varepsilon$ describes the language $\{0, \varepsilon\}$

$$\mathbf{1}^*\emptyset = \emptyset \qquad A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

nothing in $B = \text{nothing in } A \circ B$

$$\emptyset^* = \{ oldsymbol{arepsilon} \}$$
 Star of any lang has $arepsilon$

R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \varepsilon,$
- $3. \emptyset$
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expressions = Regular Langs?

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- $3. \emptyset,$
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

We would like to say:

- A regular expression represents a regular language
- The set of all regular expressions represents the set of all regular languages

(But we have to prove it)

Thm: A Lang is Regular iff Some Reg Expr Describes It

⇒ If a language is regular, then it's described by a reg expression

- ← If a language is described by a reg expression, then it's regular

 (Easier)

 How to show that a
 - Key step: convert reg expr → equivalent NFA!
 - (Hint: we mostly did this already when discussing closed ops)

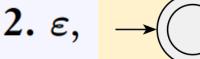
Construct a **DFA** or **NFA!**

language is regular?

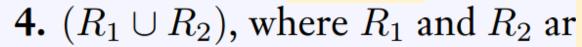
RegExpr→NFA

R is a *regular expression* if R is

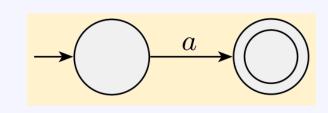
1. a for some a in the alphabet Σ ,

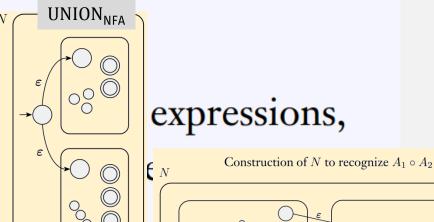


3. ∅,

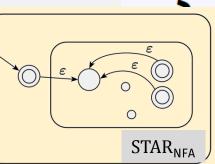


 $(R_1 \circ R_2)$, where R_1 and R_2 are (R_1^*) , where R_1 is a regular exp



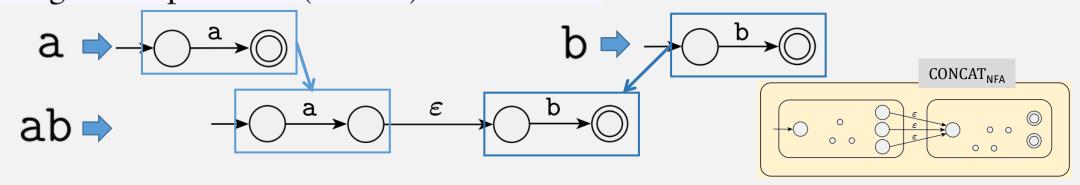


CONCATNEA



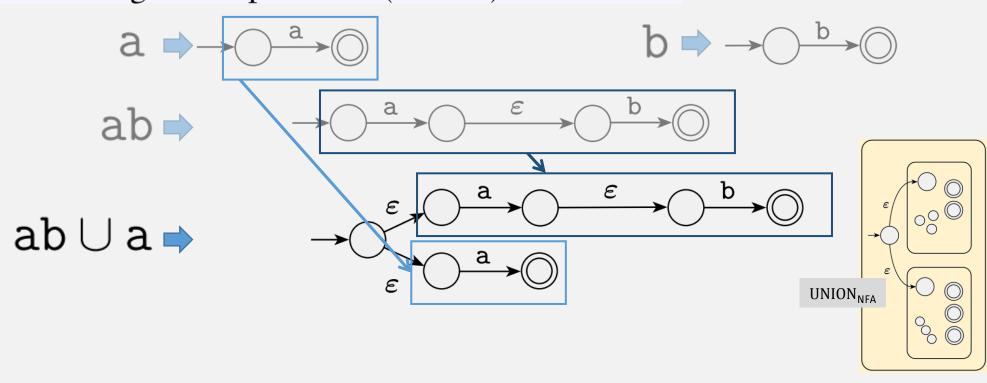
RegExpr→NFA: Example

convert the regular expression $(ab \cup a)^*$ to an NFA ... step by step



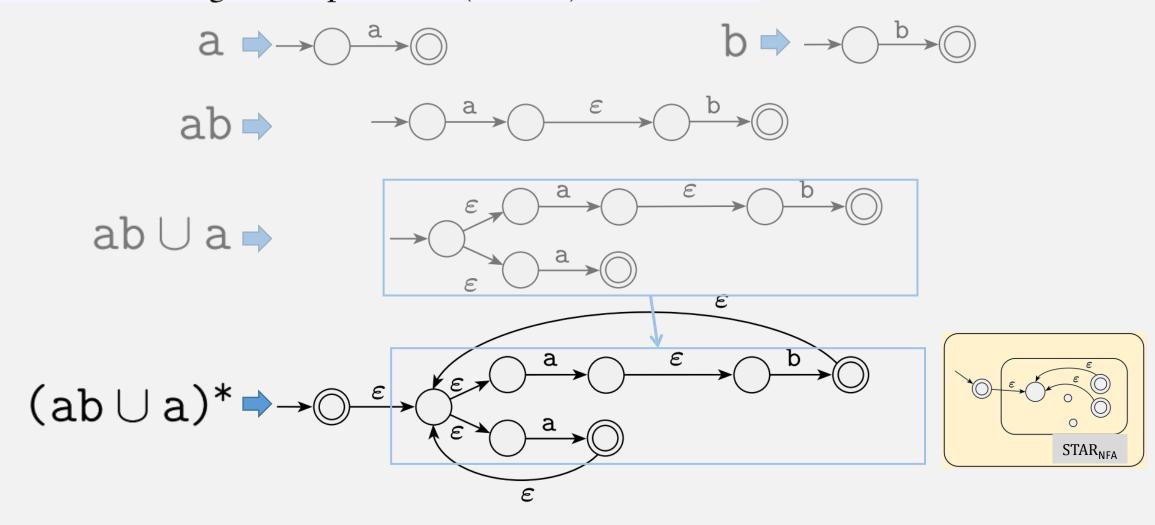
RegExpr>NFA: Example

convert the regular expression $(ab \cup a)^*$ to an NFA



RegExpr→NFA: Example

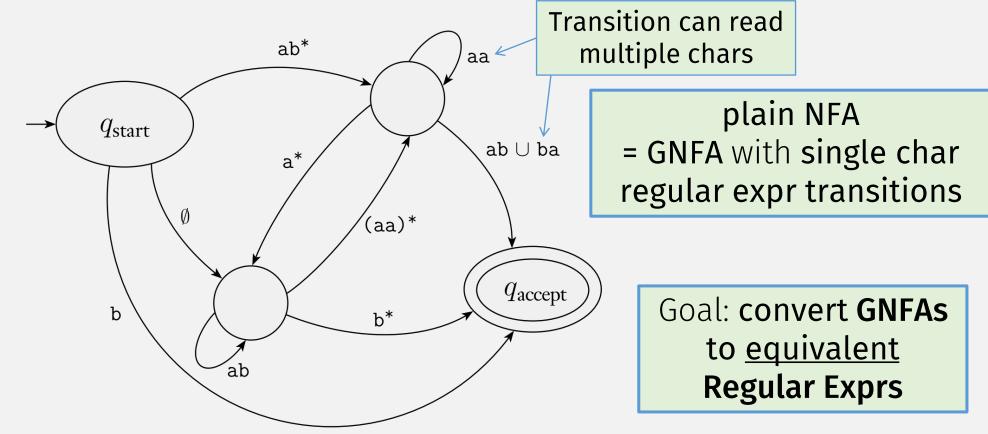
convert the regular expression $(ab \cup a)^*$ to an NFA



Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a reg expression (Harder)
 - Key step: Convert an DFA or NFA → equivalent Regular Expression
 - First, we need another kind of finite automata: a GNFA
- ← If a language is described by a reg expression, then it's regular (Easier)
- Key step: Convert the regular expression → an equivalent NFA!
 (full proof requires writing Statements and Justifications, and creating an "Equivalence" Table)

Generalized NFAs (GNFAs)



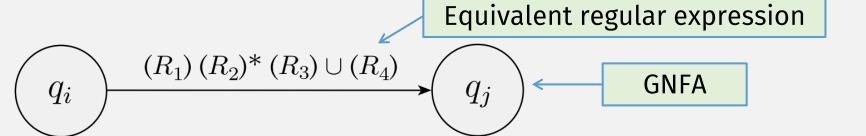
• GNFA = NFA with regular expression transitions

GNFA→RegExpr function:

On **GNFA** input *G*:

• If *G* has 2 states, return the regular expression (on the transition), e.g.:

Equivalent regular expression



Could there be less than 2 states?

GNFA→RegExpr Preprocessing

Modify input machine to have:

• New start state:

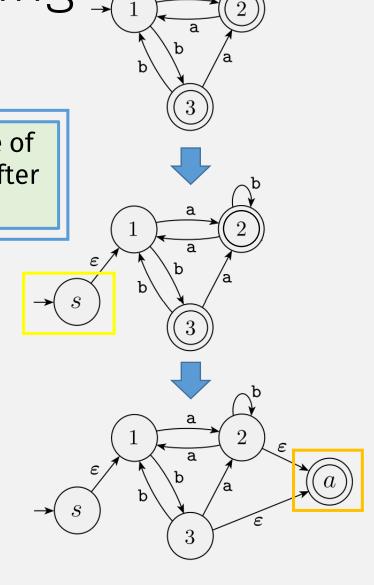
Does this change the language of the machine? i.e., are before/after machines equivalent?

- No incoming transitions
- ε transition to old start state

- New, single accept state:
 - With ε transitions from old accept states

Modified machine always has 2+ states:

- New start state
- New accept state



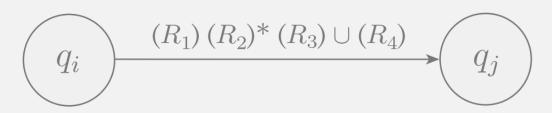
GNFA→RegExpr function (recursive)

On **GNFA** input *G*:

Base Case

• If *G* has 2 states, return the regular expression (from transition), e.g.:

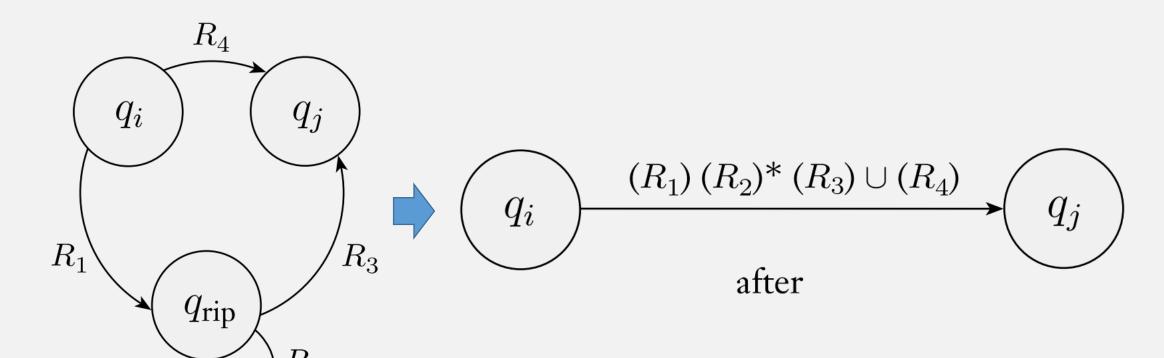
Recursive Case



- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

Recursive definitions have:

- base case and
- recursive case (with "smaller" self-reference)

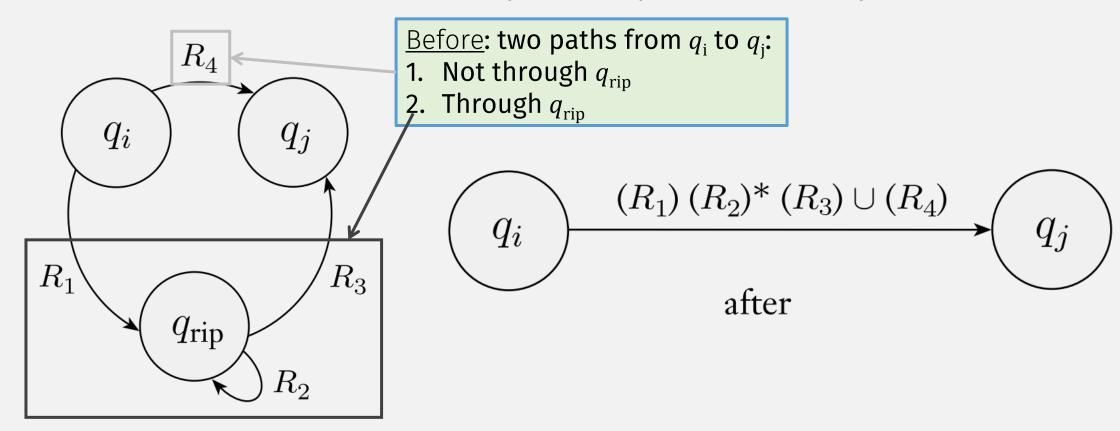


before

To <u>convert</u> a GNFA to a <u>regular expression</u>:

"rip out" state, then "repair",

and <u>repeat until only 2 states remain</u>

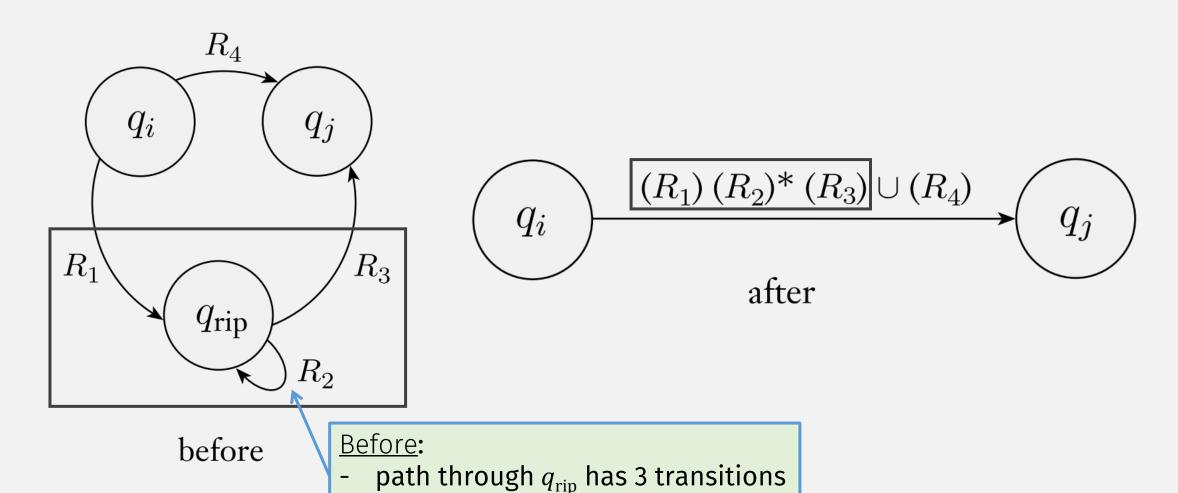


before

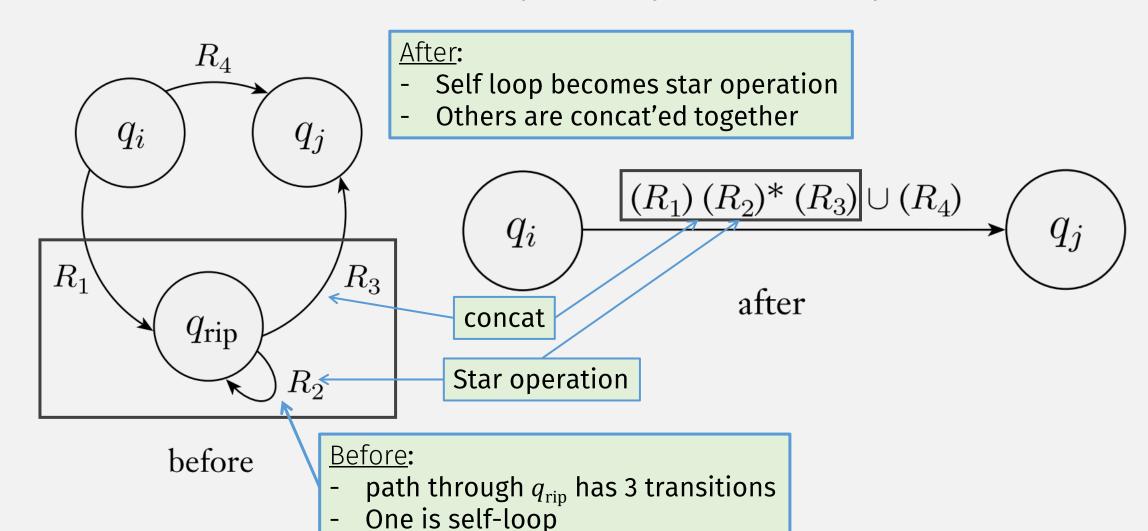


before

One is self-loop



GNFA→RegExpr: "Rip/Repair" step



Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a regular expr Need to convert DFA or NFA to Regular Expression ...
 - Use GNFA→RegExpr to convert GNFA → equiv regular expression!

???

This time, let's <u>really prove</u>
equivalence!
(we previously "proved" it
with an Examples Table)

← If a language is described by a regular expr, then it's regular
✓ • Convert regular expression → equiv NFA!

GNFA→RegExpr Correctness

- Correct = input and output are equivalent
- Equivalent = the language does not change (same strings)!

Statement to Prove:

???

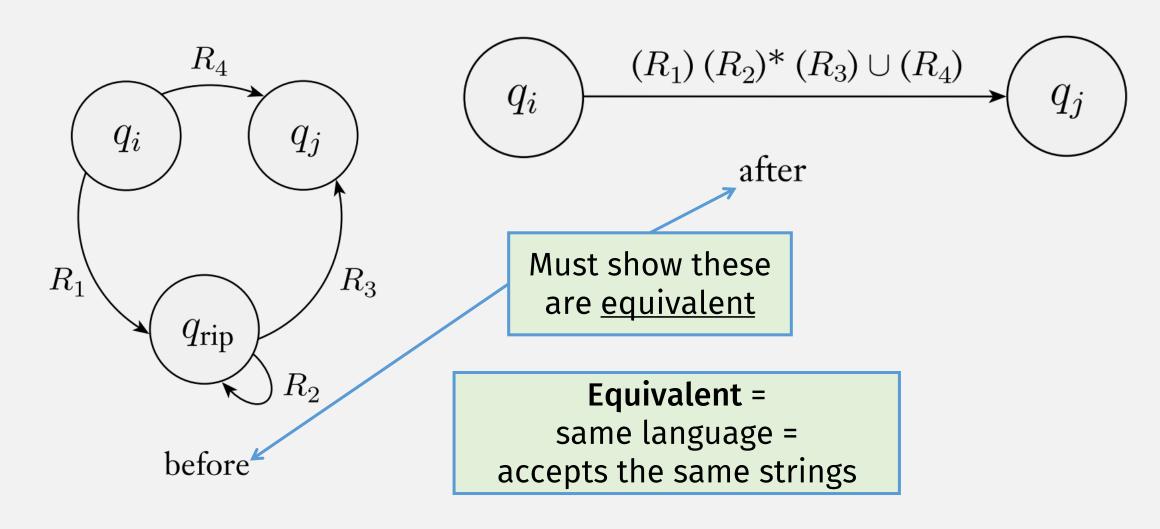
LangOf (G) = LangOf (R)

We are ready to <u>really</u>
<u>prove equivalence!</u>
(we previously "proved" it
with some examples)

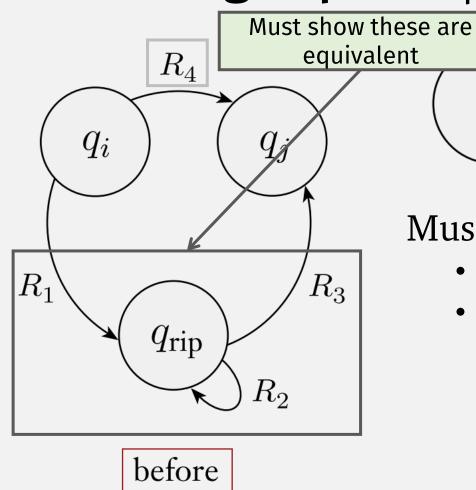
- where:
 - *G* = a GNFA
 - $R = a Regular Expression = GNFA \rightarrow RegExpr(G)$

Key step: the rip/repair step

GNFA→RegExpr: Rip/Repair Correctness



GNFA→RegExpr: Rip/Repair Correctness



Must prove:

 q_i

• Every string accepted before, is accepted after

 $(R_1) (R_2)^* (R_3) \cup (R_4)$

after

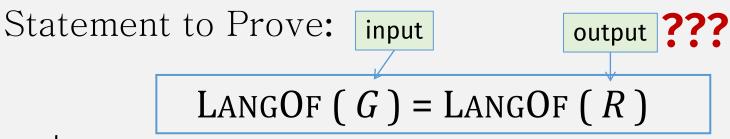
- <u>2 cases:</u>
 - 1. Let w_1 = str accepted before, doesnt go through q_{rip} after still accepts w_1 bc: both use R_4 transition

 q_j

- 2. Let w_2 = str accepted before, goes through q_{rip}
 - w₂ accepted by after?
 - Yes, via our previous reasoning

GNFA>RegExpr Equivalence

• Equivalent = the language does not change (i.e., same set of strings)!



This time, let's

really prove equivalence!

(we previously "proved" it
 with some examples)

- where:
 - *G* = a GNFA
 - $R = a Regular Expression = GNFA \rightarrow RegExpr(G)$

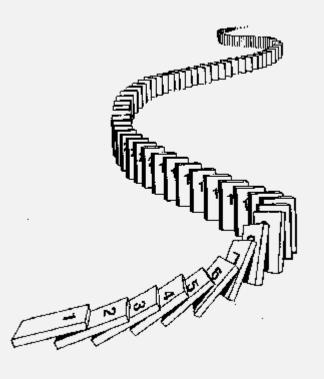
Language could be infinite set of strings!

(how can we show **equivalence** for a possibly **infinite set of strings**?)

Next Time

Inductive Proofs

(recursive)



Proof by Induction

Previously:

Recursive function

• Use it when: writing a function involving a recursive definition

Now:

Proof by induction (recursion) = "a recursive proof"

Use it when: proving something involving a recursive definition

The recursive definition is (always) the key!

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Proof by Induction

(A proof for each case of some recursive definition)

- To Prove: *Statement* for <u>recursively defined</u> "thing" x:
- 1. Prove: Statement for base case of x
- 2. Prove: *Statement* for recursive case of *x*:
 - Assume: induction hypothesis (IH)
 - I.e., Statement is true for some $X_{smaller}$ (This is just the recursive part from the recursive definition!)
 - E.g., if x is number, then "smaller" = lesser number
 - Prove: Statement for x, using IH (and known definitions, theorems ...)
 - Typically: show that going from x_{smaller} to larger x is true!

i.e., a normal proof

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case

Self-reference

Recursive Case

• Or k + 1, where k is a Natural Number

Recursive definition is valid because self-reference is "smaller"

So, proving things about: recursive Natural Numbers requires recursive proof,

i.e., proof by induction!

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

- P_t = loan balance after t months
- *t* = # months
- *P* = principal = original amount of loan
- *M* = interest (multiplier)
- Y = monthly payment

(Details of these variables not too important here)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

Proof: by induction on natural number $t \leftarrow$

A proof by induction follows the <u>cases</u> of the <u>recursive definition</u> (here, <u>natural numbers</u>) that the induction is "on"

Base Case, t = 0:

$$P_0 = PM^0 - Y\left(\frac{M^0 - 1}{M - 1}\right) = P$$
Plug in $t = 0$ Simplify

A Natural Number is:

- Or k + 1, where k is a natural number

 $P_0 = P$ is a true statement! (amount owed at start = loan amount)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

A proof by induction follows <u>cases</u> of recursive definition (here, natural numbers) that the induction is "on"

A Natural Number is:

k+1, for some nat num k

• 0 🔽

Inductive Case: t = k + 1, for some natural num k

• Inductive Hypothesis (IH), assume statement is true for some t = (smaller) k

TH plugs in "smaller"
$$k$$
 = $PM^k-Y\left(rac{M^k-1}{M-1}
ight)$

Write t = k+1of "smaller" kPlug in IH for P_k Proof of Goal: case in terms

$$P_{k+1} = P_k M - Y$$

Definition of Loan: amt owed in month k+1 =amt owed in month k * interest M – amt paid Y

$$P_k = PM^k - Y\left(\frac{M^k - 1}{M - 1}\right)$$
 Goal statement to prove, for $t = k+1$:
$$P_{k+1} = PM^{k+1} - Y\left(\frac{M^{k+1} - 1}{M - 1}\right)$$

Simplify, to get to goal statement

In-class Exercise: Proof By Induction

Prove: $(z \neq 1)$

$$\sum_{i=0}^m z^i = rac{1-z^{m+1}}{1-z}$$

A proof by induction follows <u>cases</u> of recursive definition (here, natural numbers) that the induction is "on"

A Natural Number is:

- (
- k + 1, for some nat num k

Use Proof by Induction.

Make sure to: clearly **state what the induction** is "on"

i.e., which recursively defined value (and its type) will the proof focus on

Proof by Induction: CS 420 Example

Statement to prove:

```
LANGOF (G) = LANGOF (R = GNFA \rightarrow RegExpr(G))
```

- Where:
 - *G* = a GNFA
 - $R = a Regular Expression GNFA \rightarrow RegExpr(G)$
- i.e., GNFA→RegExpr must not change the language!

This time, let's really prove equivalence! (we previously "proved" it with some examples)

Proof by Induction: CS 420 Example

Statement to prove:

LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(G)$)

Recursively defined "thing"

Proof: by Induction on # of states in G

1. Prove *Statement* is true for base case

G has 2 states

Why is this an ok base case (instead of zero)?

(Modified) Recursive definition:

A "NatNumber > 1" is:

- 2
- Or k + 1, where k is a
 "NatNumber > 1"

Last Time

GNFA→RegExpr (recursive) function

On **GNFA** input *G*:

 q_i

Base Case

• If G has 2 states, return the regular expression (from the transition),

e.g.:

 $(R_1) (R_2)^* (R_3) \cup (R_4) \longrightarrow q_j$

GNFA

Equivalent regular expression

Proof by Induction: CS 420 Example

Statement to prove:

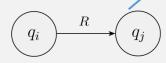
LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(<math>G$))

Proof: by Induction on # of states in *G*

Goal

✓ 1. Prove *Statement* is true for base case

G has 2 states



Statements

- $\rightarrow (q_j)$) = LANGOF (R) 1. LANGOF ($(q_i)^{-R}$
- Plug in R 2. $\mathsf{GNFA} \rightarrow \mathsf{RegExpr}((q_i) \xrightarrow{R} (q_j)) = R$ LANGOF $(q_i)^R \rightarrow (q_j)$ = LANGOF $(GNFA \rightarrow RegExpr(q_i)^R \rightarrow (q_j))$

Justifications

- **Definition of GNFA**
- 2. **Definition of GNFA→RegExpr** (base case)

Plug in

3. From (1) and (2)

Don't forget the Statements / Justifications!

Proof by Induction: CS 420 Example

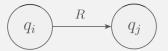
Statement to prove:

LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(G)$)

Proof: by Induction on # of states in G

✓ 1. Prove Statement is true for base case

G has 2 states



2. Prove Statement is true for recursive case: G has > 2 states

GNFA→RegExpr (recursive) function

On **GNFA** input *G*:

Base Case

• If G has 2 states, return the regular expression (from the transition),

e.g.:

• Else:

Case

- Recursive "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G
 - Recursively call GNFA→RegExpr(G') < Recursive call (with a "smaller" G')

Proof by Induction: CS 420 Example

Statement to prove:

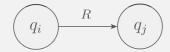
LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$)

Proof: by Induction on # of states in G

✓ 1. Prove Statement is true for base case

G has 2 states

G has > 2 states



- 2. <u>Prove</u> *Statement* is true for <u>recursive case</u>:
 - Assume the induction hypothesis (IH):
 - Statement is true for smaller G'

before

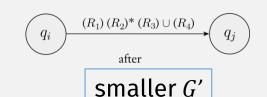
- <u>Use</u> it to prove *Statement* is true for *G* > 2 states
 - Show that going from G to smaller G' is true!

LANGOF (G')

IH Assumption

LANGOF ($GNFA \rightarrow RegExpr(G')$) (Where G' has less states than G)

Don't forget the Statements / Justifications!



Show that "rip/repair" step \square converts G to smaller, equivalent G'

Proof by Induction: CS 420 Example

Statement to prove:

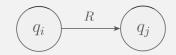
LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(<math>G$))

Proof: by Induction on # of states in G

✓ 1. Prove *Statement* is true for base case

G has 2 states

tates



- 2. Prove *Statement* is true for <u>recursive case</u>: G has > 2 states
 - Assume the it Known "facts" available to use:
 - Statement -☑IH
 - Use it to prov
 Show that

 -✓Equiv of Rip/Repair step
 -✓Def of GNFA->RegExpr

LANGOF (G')

LANGOF (GNFA→RegExpr(G')) (Where G' has less states than G)

Statements

- LANGOF (G') = LANGOF ($GNFA \rightarrow RegExpr(<math>G'$))
- LANGOF (G) = LANGOF (G')
- $GNFA \rightarrow RegExpr(G) = GNFA \rightarrow RegExpr(G')$ Plug in

Goal 4. LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$)

Justifications

- 2. Equivalence of Rip/Repair step (prev)
- 3. **Def of GNFA→RegExpr** (recursive call)
- 4. From (1), (2), and (3)

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a regular expr
- Use GNFA→RegExpr to convert GNFA → equiv regular expression!
- ← If a language is described by a regular expr, then it's regular
- ✓ Convert regular expression → equiv NFA!

Now: we can use regular expressions to represent regular langs!

So a regular langs!

So a regular langs!

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

So we also have another way to prove things about regular languages!

So Far: How to Prove A Language Is Regular?

Key step, either:

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Proof by Induction

To Prove: a *Statement* about a <u>recursively defined</u> "thing" x:

- 1. Prove: Statement for base case of x
- 2. Prove: *Statement* for recursive case of *x*:
 - Assume: induction hypothesis (IH)
 - l.e., Statement is true for some X_{smaller}
 - E.g., if x is number, then "smaller" = lesser number
 - \rightarrow E.g., if x is regular expression, then "smaller" = ...
 - Prove: Statement for x, using IH (and known definitions, theorems ...)
 - Usually, must show that going from x_{smaller} to larger x is true!

1. a for some a in the alphabet Σ ,

Whole reg expr

- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,

"smaller"

- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Example string: $abc^{\mathcal{R}} = cba$

For any string $w = w_1 w_2 \cdots w_n$, the **reverse** of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_n \cdots w_2 w_1$.

For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} | w \in A\}$

Example language:

Theorem: if A is regular, so is $A^{\mathcal{R}}$

 $\{\mathtt{a},\mathtt{ab},\mathtt{abc}\}^\mathcal{R}=\{\mathtt{a},\mathtt{ba},\mathtt{cba}\}$

<u>Proof</u>: by induction on the regular expression of A

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on regular expression of A: (6 cases)

- Base cases 1. a for some a in the alphabet Σ , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - 2. ε , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - **3.** \emptyset , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular

cases

- Inductive 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.

<u>Need to Prove</u>: if A is a regular language, described by reg expr $R_1 \cup R_2$, then $A^{\mathcal{R}}$ is regular <u>IH1</u>: if A_1 is a regular language, described by reg expr R_1 , then $A_1^{\mathcal{R}}$ is regular <u>IH1</u>: if A_2 is a regular language, described by reg expr R_2 , then $A_2^{\mathcal{R}}$ is regular

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on regular expression of A: (Case # 4)

Statements

- 1. Language A is regular, with reg expr $R_1 \cup R_2$
- 2. R_1 and R_2 are regular expressions
- 3. R_1 and R_2 describe regular langs A_1 and A_2
- 4. If A_1 is a regular language, then $A_1^{\mathcal{R}}$ is regular
- 5. If A_2 is a regular language, then $A_2^{\mathcal{R}}$ is regular
- 6. $A_1^{\mathcal{R}}$ and $A_2^{\mathcal{R}}$ are regular
- 7. $A_1^{\mathcal{R}} \cup A_2^{\mathcal{R}}$ is regular
- 8. $A_1^{\mathcal{R}} \cup A_2^{\mathcal{R}} = (A_1 \cup A_2)^{\mathcal{R}}$
- 9. $A = A_1 \cup A_2$
- 10. $A^{\mathcal{R}}$ is regular

Justifications

- 1. Assumption of IF in IF-THEN
- 2. Def of Regular Expression
- Reg Expr ⇔ Reg Lang (Prev Thm)
- 4. IH
- 5. IH
- 6. By (3), (4), and (5)
- 7. Union Closed for Reg Langs
- 8. Reverse and Union Ops Commute
- 9. By (1), (2), and (3)
- 10. By (7), (8), (9)

Goal

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on regular expression of A: (6 cases)

Base cases 1. a for some a in the alphabet Σ ,

Inductive cases

5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or

6. (R_1^*) , where R_1 is a regular expression.

Remaining cases will use similar reasoning

Non-Regular Languages?

• Are there languages that are not regular languages?

• How can we prove that a language is not a regular language?

