CS 420 / CS 620

Regular Expressions
Monday, October 6, 2025
UMass Boston Computer Science

Expressions
Senall Reqular Large

Expression Expression Expression

o o U

$4.23 NS\ 2\d{2}/ $6.23

lecturel0

ﬁ/{/ma/wem/(zf‘s’

« HW 4
» Due: Mon 10/6 12pm {(noon)

e« HW 5
 Out: Mon 10/6 12pm (noon)
 Due (unofficial): Mon 10/13 12pm (noon) (stay on schedule)
 Due (up to): Wed 10/15 12pm (noon)

« HW 6 (most likely)

« Out: Mon 10/13 12pm (noon) Expressions
« Due: Wed 10/20 12pm (noon) Small Regular Large
Expression Expression Expression
* No class: next Mon 10/13 @
(Indigenous Peoples) U U
$4.23 A$\dA\\d{2}/ $623

In-class question (in gsradescope) preview

J L , When used as an input to an NFA's single-step 0
When used as a string, the epsilon symbol (¢) is L _ , ,
, , L function, the epsilon symbol (£) is which of the
equivalent to which of the following? _
following?

When used as the empty transition, the epsilon .

symbol () is equivalent to which of the following? When used as an input to an NFA's multi-step 0
function, the epsilon symbol (£) is which of the
following?

When used as a regular expression, the epsilon

symbol () is equivalent to which of the following?

When used as a transition label in a GNFA, the epsilon
symbol (£) is which of the following?

Last [ine

List of Closed Ops for Reg Langs (so far)

V]« Union

V1« Concatentation

- Kleene Star (repetition) ?

Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Example

Let the alphabet 3 be the standard 26 letters {a, b, ..., z}.
If A = {good,bad}

“repeat” zero
A — {E, good, bad, goodgood, goodbad, badgood, badbad,
~ goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }

Note: repeat strings in A
zero or more times

(this is an infinite language!)

Star: A* = {x122...21| k > 0 and each z; € A}

Kleene Star Is Closed for Regular Langs?

N N

Ny~ N

©
() O@ j>

\ O New start (and accept) st
~| e-transitions to old start state UlU atlept states

\ e-transition to

Needs to accept old start state
empty string!

Note: repeats strings in A
zero or more times

lh=ctass exercrse

Kleene Star 1s Closed for Regular Langs

/

THEOREM

The class of regular languages is closed under the star operation.

Key step: S

£
O+

O

€

]

/

STAR, : NFA — NFA

Where:
N = STARyga(N)

L(N) = L(N,)"

lu-class sobulion

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let N1 = (Q1,%,01,q1, 1) recognize Aj. M

N = STARy, (N,) = (Q,%,0,qo, F) to recognize A7. @

1. Q= {q} U

2. The state qq is the new start state.
3. F = {Q()} U F1

Kleene star of a language must accept the empty string!

/

/

~N

N

_

=

o

=

O
O

O
O

lu-class sobulion

Sipser Thm 1.49

Kleene Star 1s Closed for Regular Langs

(part of)

PROOF Let Ny = (Q1,%, 01,41, F1) recognize A;.
N = STARys, (N,) = (Q,%,0,qo, F) to recognize A7.

1. Q = {q} U@
2. The state g 1s the new start state.

3. F ={q}UF
4. Define § so that for any g € @ and any a € X,

d(q.a) = <

F, states might
previously have
empty transitions!

L~

.

Ny

g€ @Qrand g & Fy

g€ Fianda # ¢

gc€ Fianda=c¢
g=¢qoanda=¢€

F, states might
previously have
empty transitions!

Old accept states e-transition to

New start state e-transitions to

N N N N N

¢ = qo and a # €.

New start state has only e-transitions

]

Must add transitions for any added states

Why These (Closed) Operations?

e Union AUB={x|xz € Aorx € B}

« Concatenation AoB={zy|z € Aand y € B}

* Kleene star (repetition) A* = {z122... 25| k > 0and each z; € A}
All regular languages can be constructed from:

A
- (language of) single-char strings (from some alphabet), ...

- And these three closed operations! eg,lang{a’}, lang {5, ..

$o Far: Regular Language Representations

State diagram
(NFA/DFA)

1.

Formal

description

2.

2. % = {01},

3.) is described as

1. Q — {QIJ q2, QB}a

o) 1
d1 | 91 g2
q2 | 43 g2
43 | 92 g2

4. ¢ is the start state

5. F ={q2}

Our Running Analogy:

- Set of all regular languages

?3

2500127

~a “programming language”
- One regular language (or any equiv representation)

(hard to write)

~a “program”

Need a more concise
(textual) notation??

/

Actually, it's a
real programming language, for
text search / string matching
computations

Find and Replace
_T& Quick Find ~

Finé\what:

A@ Quick Replace ~

— (Qa Ea 57 q0,

Replace with:
Z=\1;

F) 777

Look in:

A string matching
computation goes here!

v

2

l Current Project

IZ} Find options
Match case
|| Match whole word
Search up

| use:

L—> ’ Regular expressions

Find Next J l Replace

1 Replace All

2]

z)

|
|

Regular Expressions:
A Widely Used Programming Language

(usually within tools / languages)

ja\fa . thl | . regex General Commands Manual GREP(1)

, egrep, fgrep, rgrep - print lines matching a pattern

* Unix / Linux Class Pattern
e Java [o i e e e

DESCRIPTION

Java |ang Object searches the named input EILEs (or standard input if no files are
: - named, or if a single hyphen-minus (-) is given as file name) for lines
: H containing a match to the given PATTERN. By default, grep prints the

o Pyth on java.util.regex.Pattern containing o

@, Python » | English v|[3.86rc1 v|Documentation » The Python Standard Library » Text Processing Services » Qui

« Web APIs |

About regular expressions (regex) — Regular expression operations

Analytics supports regular expressions so you can create more flexible definitions for things like
view filters, goals, segments, audiences, content groups, and channel groupings. ce code: Liba‘re.py

This article covers regular expressions in both Universal Analytics and Google Analytics 4.
module provides regular expression matching operations similar to those found in Perl.
In the context of Analytics, regular expressions are specific sequences of characters that
broadly or narrowly match patterns in your Analytics data.

For example, if you wanted to create a view filter to exclude site data generated by your own
employees, you could use a regular expression to exclude any data from the entire range of IP
addresses that serve your employees. Let’s say those IP addresses range from 198.51.100.1 -
198.51.100.25. Rather than enter 25 different IP addresses, you could create a regular
expression like 198\.51\.100\.\d* that matches the entire range of addresses.

Why These (Closed) Operations?

e Union AUB={x|xz € Aorx € B}
« Concatenation AoB={zy|z € Aand y € B}
* Kleene star (repetition) A* = {z122.. .25 k > 0and each z; € A}

All regular languages can be constructed from:
- (language of) single-char strings (from some alphabet), and
- these three closed operations!

They are used to define regular expressions!

Regular Expressions: Formal Definition

R is a regular expression if R is — :
&% P This IS a recursive

definition

1. a for some a in the alphabet 3,

2. €,

(R1 U Ry), where Ry and R are regular expressions,
. (R1 0 R2), where R and R» are regular expressions, or
. (R}), where R; is a regular expression.

flasntack: Recursive Definitions

Recursive definitions are
definitions with a self-reference

A valid recursive definition must have:
- base case and
- recursive case (with a “smaller” self-reference)

flasntack: Recursive Definitions

function factorial(n)

{

Base case if () Self-reference
return 1;

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

flasntack: Recursive Definitions

A Natural Number is either: Self-reference
Base case e Zero, or
Recursive case * the Successor of a Natural Number “smaller” argument

flasntack: Recursive Definitions

A node followed by a list

Node { H ‘23H8 H% Hmﬂ/
data; ’
Node next;

Left sub-tree is a binary tree

Smaller self-reference ~— (s (10) -
0 O\0 ©

Right sub-tree is a binary tree

Q: Where’'s the base case??

| call it my billion-dollar mistake. It Data structures are
was the invention of the null .
commonly defined

reference in 1965. i
recursively

— Jony ffoare —

Regular Expressions: Formal Definition

R is a regular expression if R is

1. a for some a in the alphabet 3, (A lang containing a) length-1 string
3 Base

- 2. &, | (Alang containing) the empty string (This is the 3" use of the € symbol!)

3.0, Theempty set (ie, a lang containing no strings)
union —4, (R; U R»), where R; and R are regular expressions, 3 Recursive
concat 5, (R; o R2), where Ry and R are regular expressions, or | cases
star 6. (R}), where R, is a regular expression.
Note:

- A regular expression represents a language
- The set of all regular expressions represents a set of languages

Regular Expression: Concrete Example

Entire regular expr: language whose
strings come from these languages
concat’ed (implicit) together

the language { 0,1} (0 U 1)0’*‘ the language {¢, 0, 00, ...}

the language {0} the language {1}

» Operator Precedence:
* Parentheses
« Kleene Star
» Concat (sometimes use o, sometimes iMPLICit) " |, for some a in the alphabec 5.

e Union 2. >

R is a regular expression if R is

3.
4. (R1 U Ry), where Ry and R; are regular expressions,

5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.

alphabet > is {0,1}
Regular Expression: More Examples

010" = {w|w contains a single 1}

3*1¥* = {w|whasatleastone 1} Zinregular expression = “any char”

1* (01?) * — {w|every 0 in w is followed by at least one 1} let R* be shorthand for RR*

(0 L g)(l L g) {€,0,1,01} 0 U e describes the language {0, €}

1%() = 0 AoB={xy|xr € Aand y € B}

R is a regular expression if R is

nothing in B = nothing in AoB ; Z‘for some ain the alphabet 2,
3.
0* = {E?} Star of any lang has € I

4. (R1 U Ry), where Ry and R; are regular expressions,
5. (R1 0 R2), where Ry and R» are regular expressions, or
6. (R7), where R; is a regular expression.

Regular Expressions = Regular Langs?

R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. €,

@7

3.
4. (R1 U Ry), where R; and R are regular expressions,

5. (R1 o Ra), where Ry and Ry are regular expressions, or
6. (R}), where R; is a regular expression.

We would like to say:
- Aregular expression represents a regular language
- The set of all regular expressions represents the set of all regular languages

(But we have to prove it)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression

&< If a language Is described by a reg expression, then it’'s regular

(Easier) How to show that a
- Key step: convert reg expr — equivalent NFA! language Is regular?

* (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

1. a for some a in the alphabet ¥,

2. e, @ @

. 0,

NV Y § S S S

STARya

(
N
(

Ry U Ry), where Ry and R» ar
R1 o R3), where Ry and Ro art
RY), where R; is a regular exp

-0

N — UNIONygs ~

A

expressions,

Construction of N to recognize 4; o A
O (o] E 5 @ @
o o o o O

CONCAT ;4

RegExpr->NFA: Example

convert the regular expression (ab U a)* to an NFA .. step by step

a »—+O20 b= 00
ab=» —O>0O——0—0 {{O s S gj}

RegExpr->NFA: Example

convert the regular expression (ab U a)* to an NFA

-~
E
—>
£

UNION ¢4

b =» -0

RegExpr->NFA: Example

convert the regular expression (ab U a)* to an NFA

a B0 b= -~0O=-0

ab -O>O0——0>0

ab U a Y —~O—0—0
Kooﬁ -0
.
>O—>©

ési >>:a O
(abUa)*=»—-0—=~ X
E_/Q

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression
(Harder) GNFA

- Key step: Convert an DFA or NFA=equivalent|Regular Expression
 First, we need another kind of finite automata: a GNFA

< If a language Is described by a reg expression, then it's regular
(Easier)
- Key step: Convert the regular expression — an equivalent NFA!

(full proof requires writing Statements and Justifications, and creating an “Equivalence” Table)

Generalized NFAs (GNFAs)
Transition can read

as multiple chars

plain NFA
ab U ba = GNFA with single char

regular expr transitions

Goal: convert GNFAs
to equivalent
Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function :

On GNFA input G:

e If G has 2 states, return the regular expression (on the transition),
€.8. Equivalent regular expression

@ (R) (R)* (B9 U (Ry) GNFA

Could there be
less than 2 states?

GNFA->RegEXxpr Preprocessing

« Modify input machine to have:

Does this change the language of
the machine? i.e, are before/after
machines equivalent?

e New start state:
« No incoming transitions
e ctransition to old start state

« New, single accept state:
« With e transitions from old accept states
Modified machine always has 2+ states:

- New start state
- New accept state

GNFA->RegExpr function (recursive)

On GNFA input G:

oo |+ If G has 2 states, return the regular expression (from transition),
X
N\ BB BHURY [
Recursive qi > 4
Case
e Else;

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’ | Recursive definitions have:
- Recursively call GNFA®RegEXpr(G) ; Dasecase and

- recursive case
(with “smaller” self-reference)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (R3) U (Ry)
RS

after

To convert a GNFA to a regular expression:
“rip out” state, then “repair”,
before and repeat until only 2 states remain

GNFAéRegExpr' “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,
Through rip

Q (Ry) (Ro)* (R3) U (Ry)

after

before

GNFA->RegExpr: “Rip/Repair” step

It

1y
Ry @ R

before

(121) (Ro)™ (123)

After: union of two “paths” from g; to g;
1. Not through q,,

. Through q,;, \

O

after

U (12y)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through q,;, has 3 transitions

- One s self-loop

GNFAéRegExpr: “Rip/Repair” step

After:
- Self loop becomes star operation
o o - Others are concat’ed together
(1) (R)* (Ra)|U (Ry)
q;
Ry Rs
@ concat after
R Star operation
before Before:

- path through q,;, has 3 transitions
- One s self-loop

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

« Use GNFA>RegExpr to convert GNFA — equiv regular expression!
M ?2?2?

e s o | Thistime, let's really prove
equivalence!
(we previously “proved” it
with an Examples Table)

< If a language Is described by a regular expr, then it's regular
« Convert regular expression — equiv NFA!

GNFA->RegExpr Correctness

- Correct = input and output are equivalent
* Equivalent = the language does not change (same strings)!

Statement to Proves ??? | \We are ready to really
prove equivalence!
_ we previously “proved” it
LANGOF (G) = LANGOF (R) (vvi?h some Zxapmples)
* where:
« G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

 Key step: the rip/repair step

GNFA->RegExpr: Rip/Repair Correctness

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

Equivalent =
same language =
before accepts the same strings

GNFA->RegExpr: Rip/Repair Correctness

Must show these are
equivalent
R, 9

@(Ro (Ro)* (R3)|UI(R)
(v

after

Must prove:
R, R, * Every string accepted|before, is accepted after

e 2 cases:
1. Let w, = str accepted before, doesnt go through g,

B - |after|still accepts w, bc: both use R, transition

2. Letw, = str accepted before,|goes through q,,,

* w, accepted by |after]
I+ Yes, via our previous reasoning

N

before

GNFA>RegExpr Equivalence

- Equivalent = the language does not change (i.e., same set of strings)!

Statement to Prove: input output ??? This time, let’s
really prove equivalence!
_ (we previously “proved” it
LANGOF (G) = LANGOF (R) vvi?h some Zxapmples)
* where:
« G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

Language could be infinite set of strings!

(how can we show equivalence for a possibly infinite set of strings?)

Recursion!

Next Tine

Inductive Proofs

(recursive)

Proof by Induction

/D/‘w/mf{y,'
Recursive function
« Use it when: writing a function involving a recursive definition

|

Now: The recursive definition
is (always) the key!

Proof by induction (recursion) = “a recursive proof”
« Use it when: proving something involving a recursive definftion

A valid recursive definition has: ¢
- base case(s) and
- recursive case(s) (with “smaller” self-reference)

Pro Of by N d U Ct| on (A proof for each case

of some recursive definition)

To Prove: Statement for recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for |recursive case of x:

. Assume: induction hypothesis (IH)

|.e., Statement is true for/some X maller (This is just the recursive part from the recursive definition!)
« E.g,if xis number, then “smaller” = lesser number

. Prove: Statement for x, using IH (and known definitions, theorems ...)
« Typically: show that going from x,_,.. to larger x is true! .e, a normal proof

A valid recursive definition has:
- base case(s) and

|— recursive case(s) |(vvith| “smaller” |self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case | o O Self-reference

Recursive

e *Ork+1, wherekis aNatural Number

Recursive definition is valid because self-reference is “smaller”

So, proving things about:
recursive Natural Numbers requires
recursive proof,

.e., proof by induction!

A valid recursive definition has:
- base case(s) and

- recursive case(s) (with “smaller” self-reference)

Proof By Induction Example (sipser ch o)

M —1

= loan balance after t months
* t = # months
« P = principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

t__
Prove true: P, = PM' —Y (M 1)

(Details of these variables not too important here)

Proof By Induction Example (sipser ch o)

MU —1
M —1

Prove true: P, = PM* —Y

A proof by induction follows the
cases of the recursive definition
(here, natural numbers) that
the induction is “on”

Proof: by induction on natural number ¢

Base Case, t = 0: A Natural Number is:
-0
« Ork+1,wherekisa
0 MY —1 natural number
FPo=PM"-Y = P
M —1

P, = P is a true statement!
(amount owed at start =
loan amount)

Plugint=0
Simplify

Proof By Induction Example (sipser ch o)

A proof by induction follows cases of

Mt —1

recursive definition (here, natural

numbers) that the induction is “on”

Prove true: P, = PM' —Y

M —1
write = k+1 | Goal statement to prove, for t = k+1:

case in terms .
Plug in IH for P
of “smaller” k g i

* Proof of Goal;
Pk:-{-l — PAAT - Y

Definition of Loan:
amt owed in month k+1 =
amt owed in month k* interest M - amt paid Y

ugs in Mk — 1
vl P, = PMF—-Y ()

M —1

Inductive Case: t =k + 1, for some natural num k
- Inductive Hypothesis (IH), assume statement is true

A Natural Number is:

- 0M

some t = (smaller) k

m)+ k+1, for some nat numk

Py =

PM“*-Y(

Simplify, to get to goal statement

MHEHL -1

M -1

)

In-class Exercise: Proof By Induction

A proof by induction follows cases of
recursive definition (here, natural

Prove: (Z o 1) 1] numbers) that the induction is “on”
— 2

m
: A Natural Number is:
p— . 0
Z | :

. k+ 1, for some nat num k
1=0

Use Proof by Induction.

Make sure to: clearly state what the induction is “on”

i.e., which recursively defined value (and its type) will the proof focus on

Proof by Induction: CS 420 Example

Statement 10 prove:

e Where:
« G=a GNFA

LANGOF (G) = LANGOF (R=GNFA>RegExpr(G))

* R =a Regular Expression GNFA®>RegEXpr(G)

* .e.,, GNFA»RegEXxpr must not change the language!

This time, let’s
really prove equivalence!
(we previously “proved” it

with some examples)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Recursively defined “thing”

Proof: by Induction on # of states in G T Er——
1. Prove Statement is true for base case |¢ has 2 states base case
(instead of zero)?

(Modified) Recursive definition:

A “NatNumber > 1" is:;
e 2

« Ork+1,wherekisa
“NatNumber > 1"

Last [rine

GNFA->RegEXxpr (recursive) function

On GNFA input G:
oo |+ If G has 2 states, return the regular expression (from the transition),

e.g.. Equivalent regular expression
7 (Ry) (Ry)™ (R3) U (Ry)
z GNFA

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states in G PIE T

V] 1. Prove Statementis true for base case |¢ has 2 states .— -

Statements _—— — Justifications
1. LANGOF ((«)"~()) = LANGOF (R 1. Definition of GNFA

Plugin R . ..
2. GNFA>RegExpr((+) <)) =R “em 2. Definition of GNFASRegEXpr (base case)

Goal LANGOF ((«)"“~(s)) = LANGOF (GNFA>RegExpr((» -“~++))) | 3. From (1) and (2)

Don’t forget the
Statements / Justifications !

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case | has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states

Last [ine

GNFA->RegEXpr (recursive) function

On GNFA Input G:
Base

case |* IT G has 2 states, return the regular expression (from the transition),

e.g.:
(Ry) (Ro)* (R3) U (Ry) Q
q; S WY

e Else:

Recursive [+ “Rip out” one state
tase L, “Repair” the machine to get an equivalent GNFA G’

 Recursively call GNFA®RegEXxpr(G’)<—_| Recursive call
(with a “smaller” &)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case | has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states

 Assume the induction hypothesis (IH):
e Statement is true for smaller ¢’ _

« Use it to prove Statement is true for G > 2 states | LANGOF (GNFA®RegExpr(G’))

[H Assumption

LANGOF (G')

« Show that going from G to smaller G’ is true! (Where @’ has less states than G)
Don't fo rget the » @ (Ry) (Ry)* (Ry) U (Ry) @ Show that “rip/repair".step |
' " converts G to smaller, equivalent ¢’

Statements / Justifications ! e
TG smaller ¢’

before

Proof by Induction: CS 420 Example

Statement 10 prove:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case | has 2 states @)L

« Show that |

V] 2. Prove Statement|s true for recursive case: | ¢ has > 2 states

« Assume the Il Known “facts” available to use:
e Statement -MIH

. Use it to proy "¥Equiv of Rip/Repairstep tates | LancOF (GNFA>RegEXpr(G'))
-VIDef of GNFA->RegExpr

il]

LANGOF (G')

Al (Where G’ has less states than G)

— - . .- T

Statements

2. LANGOF (G) = LANGOF (G’)

3. GNFA>RegEXpr(G)=GNFA>RegExpr(G) Plgin

Justifications

1. LANGOF (G’) = LANGOF (GNFA>RegEXpr(G’)) 1. IH
2. Equivalence of Rip/Repair step (prev)
3. Def of GNFA>RegEXpr (recursive call)

Goal |4, LANGOF (G) = LANGOF (GNFASRegEXpr(G)) 4. From (1), (2), and (3)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr

[« Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

&< If a language Is described by a regular expr, then it's regular

] « Convert regular expression — equiv NFA! B

Now: we can use regular expressions to
e p rese nt regu la I la ngs! So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

S fa~ HoOw to Prove A Language |s Regular?

Kevy step, either:

e Construct DFA
e Construct NFA

» Create Regular Expression mmm 3/snt different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Proof by Induction

To Prove: a Statement about a recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for recursive case of x:
. Assume: induction hypothesis (IH)

.e., Statement is true for some X, jjer
« E.g,ifxis number, then “smaller” = lesser number
=)+ Eg, ifxisregular expression, then “smaller” = ...
. Prove: Statement for x, using IH (and known definitions, theorems ...)
 Usually, must show that going from x,,_ ;... to larger x is true!

for some a in the alphabet 3,

a
6, “smaller”

Whole reg expr
b)

1.
2.
3.
4. (R1 U Ry), where Ry and R, are regular expressions,

5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

Thm: Reverse Is Closed for Regular Langs

Example string: abe R — cba
R

For any string w = wiwsz - - - Wy, the reverse of w, written w'™, is the string w in reverse order, ws, - - - waws.

R _ [R
For any language A, let A™ = {w™|w € A} Example language:

. . . R { a, ab, abc }R — {a,ba, cba}
Theorem: if A is regular, so is A

Proof: by induction on the regular expression of A

Thm: Reverse Is Closed for Regular Langs

if A is regular, so is A™
Proof: by Induction on regular expression of A: (6 cases)

Base cases | 1. @ for some a in the alphabet 3, | same reg. expr. represents 4™ so it is regular

2. €, | same reg. expr. represents A® so it is regular

3. (ﬂ, same reg. expr. represents A® so it is regular

inductive |4. (127 U Ro), where R; and R, are regular expressions, =

cases

5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

Need to Prove: if A is a regular language, described by reg expr R, U R,, then A% is regular
|H1: if A, is a regular language, described by reg expr R,, then A;®is regular

|H1: if A, is a regular language, described by reg expr R,,\then A,% is regular

“smaller”

Thm: Reverse Is Closed for Regular Langs
if A is regular, so is A™

Proof: by Induction on regular expression of 4: (Case # 4)
Statements Justifications

Language A is regular, with reg expr R, U R, Assumption of IF in [F-THEN
R, and R, are regular expressions Def of Regular Expression
R, and R, describe regular langs A, and A4, Reg Expr < Reg Lang (Prev Thm)
If A, is a regular language, then A, R is regular IH
IH

A ®and A,% are regular
AR U A,Ris regular
ARUAR=(A, UA)R

By (3), (4), and (5)

Union Closed for Reg Langs
Reverse and Union Ops Commute
. A=A4,UA4, By (1), (2), and (3)

Goal | 10. AXisregular 10 By (7), (8), (9)

W oo N W=

1
2
3
A
5. [IfA,is aregular language, then A,% is regular
6
7
8
9

Thm: Reverse Is Closed for Regular Langs

if A is regular, so is A™®
Proof: by Induction on regular expression of A: (6 cases)

Base cases | [] 1. @ for some a in the alphabet 3,

Inductive ZI 4

Ry U Rs), where Ry and R are regular expressions,
cases

will use similar

5. (R1 o Ry), where Ry and Ry are regular expressions, or | Remaining cases
6. (R7), where R; is a regular expression. reasoning

Newt Tine

Non-Regular Languages?

 Are there languages that are not regular languages?

 How can we prove that a language I1s not a regular language?

Non-regular
language?

Regular I
language

