ecturell

CS 420 / CS 620
Induptlve Proofs

recu rSIVE

Wednesday, October 8, 2025
UMass Boston Computer Science

ﬁ/{/ma/wem/ﬂf‘s’

« HW 5
« Out: Mon 10/6 12pm (noon)
» Due (unofficial): Mon 10/13 12pm (noon) (stay on schedule!)
* Due (up to): Wed 10/15 12pm (noon)

* HW 6 (most likely)
 Out: Mon 10/13 12pm (noon)
« Due: Wed 10/20 12pm (noon)

 No class: next Mon 10/13
(Indigenous Peoples)

Last [ine

Regular Expressions = Regular Langs?

R is a regular expression if R is
1. a for some a in the alphabet ¥,

2. €,
3. 0,
4. (R1 U Ry), where R; and R are regular expressions,
5. (R1 o Ra), where Ry and Ry are regular expressions, or
6. (R7), where R; is a regular expression.
we would like to say: (But we have to prove it)
a regular expression ... the set of all regular expressions ...
l equivalent l equivalent

a regular language the set of all regular languages

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression

&< If a language Is described by a reg expression, then it’'s regular

(Easier) How to show that a
- Key step: convert reg expr — equivalent NFA! language Is regular?

* (Hint: we mostly did this already when discussing closed ops)

Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

1. a for some a in the alphabet ¥,

2. e, @ @

. 0,

NV Y § S S S

STARya

(
N
(

Ry U Ry), where Ry and R» ar
R1 o R3), where Ry and Ro art
RY), where R; is a regular exp

-0

N — UNIONygs ~

A

expressions,

Construction of N to recognize 4; o A
O (o] E 5 @ @
o o o o O

CONCAT ;4

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression
(Harder) GNFA

- Key step: Convert an DFA. or NFA= equivalent|Regular Expression
 First, we need another kind of finite automata: a GNFA

< If a language Is described by a reg expression, then it's regular
(Easier)
- Key step: Convert the regular expression — an equivalent NFA!

(full proof requires writing Statements and Justifications, and creating an “Equivalence” Table)

Generalized NFAs (GNFAs)
Transition can read

as multiple chars

plain NFA
ab U ba = GNFA with single char

regular expr transitions

Goal: convert GNFAs
to equivalent
Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function :

On GNFA input G:

e If G has 2 states, return the regular expression (on the transition),
€.8. Equivalent regular expression

@ (R) (R)* (B9 U (Ry) GNFA

Could there be
less than 2 states?

GNFA->RegEXxpr Preprocessing

« Modify input machine to have:

Does this change the language of
the machine? i.e, are before/after
machines equivalent?

e New start state:
« No incoming transitions
e ctransition to old start state

« New, single accept state:
« With e transitions from old accept states
Modified machine always has 2+ states:

- New start state
- New accept state

GNFA->RegExpr function (recursive)

On GNFA input G:

oo |+ If G has 2 states, return the regular expression (from transition),
X
N\ BB BHURY [
Recursive qi > 4
Case
e Else;

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’ | Recursive definitions have:
- Recursively call GNFA®RegEXpr(G) ; Dasecase and

- recursive case
(with “smaller” self-reference)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (Rs) U (Ry)
R

after

Ry
To convert GNFA -> regular expression:
1. “rip out” a state,
before 2. “repair” so machine is equivalent

3. repeat until only 2 states remain

GNFAéRegExpr' “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,
Through rip

Q (Ry) (Ro)* (R3) U (Ry)

after

before

GNFAéRegExpr: “Rip/Repair” step

After: UNIoN of two “paths” from g, to q;

?/

before

1. Not through q,,

Through q,;, \

(121) (Ro)™ (123)

O

after

U (12y)

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through q,;, has 3 transitions

- One s self-loop

GNFAéRegExpr: “Rip/Repair” step

After:
- Self loop becomes STAR operation
o o - CoNcAT with removed transitions
() (Ro)™ (Ra)|U (12y)
qi
Ry R
@ CONCAT after
R STAR operation
before Before:

- path through q,;, has 3 transitions
- One s self-loop

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

« Use GNFA>RegExpr to convert GNFA — equiv regular expression!
M ?2?2?

e s o | Thistime, let's really prove
equivalence!
(we previously “proved” it
with an Examples Table)

< If a language Is described by a regular expr, then it's regular
« Convert regular expression — equiv NFA!

GNFA->RegExpr Correctness

- Correct = input and output are equivalent
* Equivalent = the language does not change (same strings)!

Statement to Proves ??? | \We are ready to really
prove equivalence!
_ we previously “proved” it
LANGOF (G) = LANGOF (R) (vvi?h some Zxapmples)
* where:
« G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

 Key step: the rip/repair step

GNFA->RegExpr: Rip/Repair Correctness

@ (Ry) (Ro)* (R3) U (Ry)

after

Must show these
are equivalent

Equivalent =
same language =
before accepts the same strings

GNFA->RegExpr: Rip/Repair Correctness

Must show these are
equivalent
R, 9

@(Ro (Ro)* (R3)|UI(R)
(v

after

Must prove:
R, R, * Every string accepted|before, is accepted after

e 2 cases:
1. Let w, = str accepted before, doesnt go through g,

B - |after|still accepts w, bc: both use R, transition

2. Letw, = str accepted before,|goes through q,,,

* w, accepted by |after]
I+ Yes, via our previous reasoning

N

before

(Similar to Equivalence Table!)

GNFA>RegExpr Equivalence

- Equivalent = the language does not change (i.e., same set of strings)!

Statement to Prove: input output ??? This time, let’s
really prove equivalence!
_ (we previously “proved” it
LANGOF (G) = LANGOF (R) vvi?h some Zxapmples)
* where:
« G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

Language could be infinite set of strings!

(how can we show equivalence for a possibly infinite set of strings?)

Recursion!

Proof by Induction

/D/‘w/mf{y,'
Recursive function
« Use it when: writing a function involving a recursive definition

|

Now: The recursive definition
is (always) the key!

Proof by induction (recursion) = “a recursive proof”
« Use it when: proving something involving a recursive definition

A valid recursive definition has: ¢
- base case(s) and
- recursive case(s) (with “smaller” self-reference)

Pro Of by N d U Ct| on (A proof for each case

of some recursive definition)

To Prove: Statement for recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for |recursive case of x:

. Assume: induction hypothesis (IH)

|.e., Statement is true for/some X maller (This is just the recursive part from the recursive definition!)
« E.g,if xis number, then “smaller” = lesser number

. Prove: Statement for x, using IH (and known definitions, theorems ...)
« Typically: show that going from x,_,.. to larger x is true! .e, a normal proof

A valid recursive definition has:
- base case(s) and

|— recursive case(s) |(vvith| “smaller” |self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case | o O Self-reference

Recursive

e *Ork+1, wherekis aNatural Number

Recursive definition is valid because self-reference is “smaller”

So, proving things about:
recursive Natural Numbers requires
recursive proof,

.e., proof by induction!

A valid recursive definition has:
- base case(s) and

- recursive case(s) (with “smaller” self-reference)

Proof By Induction Example (sipser ch o)

M —1

= loan balance after t months
* t = # months
« P = principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

t__
Prove true: P, = PM' —Y (M 1)

(Details of these variables not too important here)

Proof By Induction Example (sipser ch o)
Mt —1

M —1 —
A proof by induction follows the

. : - cases of the recursive definition
Proof: by iInduction on natural number t (here natural numbers) that

the induction is “on”

Prove true: P, = PM* —Y

Base Case, t = 0: A Natural Number is:
-0 M
Goal statement to prove (for t = 0): S O ke i e ks @
0 MP —1 natural number
Py=PM" —-Y =P
M —1

P, = P is a true statement!
(amount owed at start =
loan amount)

Plugint=0
Simplify
(Justification)

Proof By Induction Example (sipser ch o)

A proof by induction follows cases of

Mt —1

recursive definition (here, natural

numbers) that the induction is “on”

Prove true: P, = PM' —Y

M —1
write = k+1 | Goal statement to prove, for t = k+1:

case in terms .
Plug in IH for P
of “smaller” k g i

* Proof of Goal;
Pk:-{-l — PAAT - Y

Definition of Loan:
amt owed in month k+1 =
amt owed in month k* interest M - amt paid Y

ugs in Mk — 1
vl P, = PMF—-Y ()

M —1

Inductive Case: t =k + 1, for some natural num k
- Inductive Hypothesis (IH), assume statement is true

A Natural Number is:

- 0M

some t = (smaller) k

m)+ k+1, for some nat numk

Py =

PM“*-Y(

Simplify, to get to goal statement

MHEHL -1

M -1

)

In-class Exercise: Proof By Induction

A proof by induction follows cases of
recursive definition (here, natural

Prove: (Z o 1) 1] numbers) that the induction is “on”
— 2

m
: A Natural Number is:
p— . 0
Z | :

. k+ 1, for some nat num k
1=0

Use Proof by Induction.

Make sure to clearly state:
what the induction is “on”

i.e., which recursively defined value (and its type) will the proof focus on

And the Goal statement to prove (for each case)

Proof by Induction: CS 420 Example

Statement 10 prove:

e Where:
« G=a GNFA

LANGOF (G) = LANGOF (R=GNFA>RegExpr(G))

* R =a Regular Expression GNFA®>RegEXpr(G)

* .e.,, GNFA»RegEXxpr must not change the language!

This time, let’s
really prove equivalence!
(we previously “proved” it

with some examples)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Recursively defined “thing”

Proof: by Induction on # of states in G T Er——
1. Prove Statement is true for base case |¢ has 2 states base case
(instead of zero)?

(Modified) Recursive definition:

A “NatNumber > 1" is:;
e 2

« Ork+1,wherekisa
“NatNumber > 1"

Last [rine

GNFA->RegEXxpr (recursive) function

On GNFA input G:
oo |+ If G has 2 states, return the regular expression (from the transition),

e.g.. Equivalent regular expression
7 (Ry) (Ry)™ (R3) U (Ry)
z GNFA

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states in G PIE T

V] 1. Prove Statementis true for base case |¢ has 2 states .— -

Statements _—— — Justifications
1. LANGOF ((«)"~()) = LANGOF (R 1. Definition of GNFA

Plugin R . ..
2. GNFA>RegExpr((+) <)) =R “em 2. Definition of GNFASRegEXpr (base case)

Goal LANGOF ((«)"“~(s)) = LANGOF (GNFA>RegExpr((» -“~++))) | 3. From (1) and (2)

Don’t forget the
Statements / Justifications !

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case | has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states

Last [ine

GNFA->RegEXpr (recursive) function

On GNFA Input G:
Base

case |* IT G has 2 states, return the regular expression (from the transition),

e.g.:
(Ry) (Ro)* (R3) U (Ry) Q
q; S WY

e Else:

Recursive [+ “Rip out” one state
tase L, “Repair” the machine to get an equivalent GNFA G’

 Recursively call GNFA®RegEXxpr(G’)<—_| Recursive call
(with a “smaller” &)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case | has 2 states QDL

2. Prove Statement is true for recursive case: | G has > 2 states
 Assume the induction hypothesis (IH):
e Statement is true for smaller ¢’ N

« Use it to prove Statement is true for G > 2 states LANGOF (GNFASRegEXxpr(G’))
« Need to show: going from G to smaller G’is true! (Where G’ has less states than G)

R,

Don’t forget the | @ (R (R)* (R U (R) @ Show that “rip/repair” step

Statements / Justifications | - converts G to smaller, equivalent G’
G smaller ¢’

IH Assumption

LANGOF (G')

before

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G

1. Prove Statementis true for base case |¢has 2 states| | —

V] 2. Prove Statement|s true for recursive case:

« Assume the il Known “facts” available to use:
e Statement| -MIH . . .
. Use it to proy -Equiv of Rip/Repair step i taq

« Need to sli'ZIfoOEGN.FA_fR?g.EXPr- ___ truet

G has > 2 states ,
[H Assumption

LANGOF (G')

\ LANGOF (GNFA>RegEXpr(G'))
(Where G’ has less states than G)

Statements

1. LANGOF (G’) = LANGOF (GNFA>RegEXpr(G’))

2. LANGOF (G) = LANGOF (G’)

3. GNFA->RegExpr(G)=GNFA>RegExpr(G)| Plugin
Goal |4. LANGOF (G) = LANGOF (GNFA>RegEXxpr(G))

Justifications

1. IH

2. Equivalence of Rip/Repair step (prev)
3. Def of GNFA>RegEXpr (recursive call)
4. From (1), (2), and (3)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr

[« Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

&< If a language Is described by a regular expr, then it's regular

] « Convert regular expression — equiv NFA! B

Now: we can use regular expressions to
e p rese nt regu la I la ngs! So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

S fa~ HoOw to Prove A Language |s Regular?

Kevy step, either:

e Construct DFA
e Construct NFA

» Create Regular Expression mmm 3/snt different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Proof by Induction

To Prove: a Statement about a recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for recursive case of x:
. Assume: induction hypothesis (IH)

.e., Statement is true for some X, jjer
« E.g,ifxis number, then “smaller” = lesser number
=)+ Eg, ifxisregular expression, then “smaller” = ...
. Prove: Statement for x, using IH (and known definitions, theorems ...)
 Usually, must show that going from x,,_ ;... to larger x is true!

for some a in the alphabet 3,

a
6, “smaller”

Whole reg expr
b)

1.
2.
3.
4. (R1 U Ry), where Ry and R, are regular expressions,

5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

Using regular expressions and proof by induction

Thm: Reverse Is Closed for Regular Langs

Example string: abe R — cba

R

For any string w = wiwsz - - - Wy, the reverse of w, written w'™, is the string w in reverse order, ws, - - - waws.

R _ [R
For any language A, let A™ = {w™|w € A} Example language:

{ a, ab, abc }R — {a,ba, cba}

Theorem: if A is regular, so is A™

IF-THEN Statement to prove:
If A Is a regular language described by regular expression R, then A® is regular

Proof: by induction on R, the regular expression of A

Thm: Reverse Is Closed for Regular Langs

if A is regular, so is A™

Proof: by Induction on R, the regular expression of A: (6 cases)

Base cases

Inductive
cases

|H

—_

: o
1. a for some a in the alphabet Y], | same reg. expr. represents A so it is regular

2. €, same reg. expr. represents A® so it is regular

3. (Z), same reg. expr. represents A® so it is regular

4. (R1 U Ry), where Ry and R are regular expressions, ¢m
5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

“smaller”

. if A, is a regular language, described by reg expr R}, then A, % is regular

|H1: if A, is a regular language, described by reg expr R,, then A,% is regular

Needto it 4 js a regular language, described by reg expr R, U R,, then AR is regular

prove:

Thm: Reverse Is Closed for Regular Langs

if A is regular, so is A™

Proof: by Induction on R, the regular expression of A:(Case # 4)

Statements Justifications

1. Language A Is regular, with reg expr R, U R, 1. Assumption of IF in [F-THEN

2. R, and R,are regular expressions 2. Def of Regular Expression

3. R, and R,describe regular langs A, and 4, 3. RegExpr < Reg Lang (Prev Thm)

4. If A, is aregular language, then A, % is regular 4. |IH

5. [IfA,is aregular language, then A,% is regular 5. IH

6. A,®andA,Rare regular 6. By(3), (4), and (5)

7. ARUA,Risregular 7. Union Closed for Reg Langs

8. ARUAR=(4,UA)R 8. Reverse and Union Ops Commute

9. A=A, UA, 9. By (1), (2), and (3)

10. AXRisregular 10. By (7), (8), (9)

Need to

rove if A is a regular language, described by reg expr R, U R,, then AR is regular | by Stmts #1 and #10

Thm: Reverse Is Closed for Regular Langs

if A is regular, so is A™®
Proof: by Induction on regular expression of A: (6 cases)

Base cases | [] 1. @ for some a in the alphabet 3,

Inductive ZI 4

Ry U Rs), where Ry and R are regular expressions,
cases

will use similar

5. (R1 o Ry), where Ry and Ry are regular expressions, or | Remaining cases
6. (R7), where R; is a regular expression. reasoning

Newt Tine

Non-Regular Languages?

 Are there languages that are not regular languages?

 How can we prove that a language I1s not a regular language?

Non-regular
language?

Regular I
language

