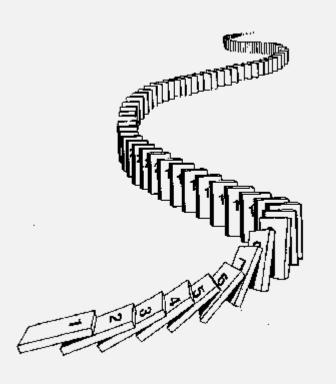
CS 420 / CS 620

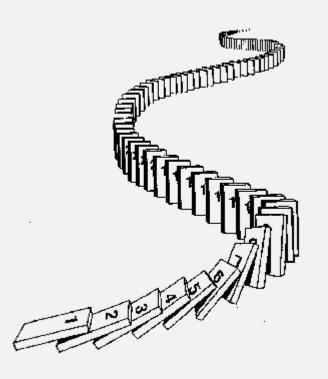
Inductive Proofs
(recursive)
Wednesday, October 8, 2025

UMass Boston Computer Science



Announcements

- HW 5
 - Out: Mon 10/6 12pm (noon)
 - Due (unofficial): Mon 10/13 12pm (noon) (stay on schedule!)
 - Due (up to): Wed 10/15 12pm (noon)
- HW 6 (most likely)
 - Out: Mon 10/13 12pm (noon)
 - Due: Wed 10/20 12pm (noon)
- No class: next Mon 10/13 (Indigenous Peoples)



Last Time

Regular Expressions = Regular Langs?

```
R is a regular expression if R is
```

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

We would like to say: a regular expression ... the set of all regular expressions ... equivalent a regular language the set of all regular languages the set of all regular languages

Thm: A Lang is Regular iff Some Reg Expr Describes It

⇒ If a language is regular, then it's described by a reg expression

- ← If a language is described by a reg expression, then it's regular

 (Easier)

 How to show that a
 - Key step: convert reg expr → equivalent NFA!
 - (Hint: we mostly did this already when discussing closed ops)

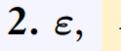
Construct a **DFA** or **NFA!**

language is regular?

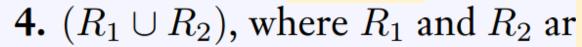
RegExpr→NFA

R is a **regular expression** if R is

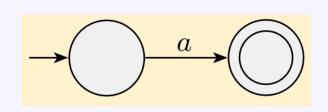
1. a for some a in the alphabet Σ ,

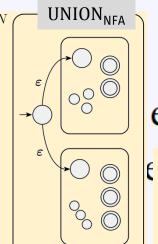


3. ∅,

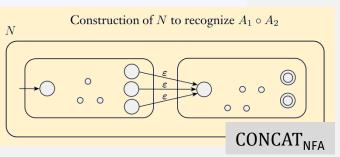


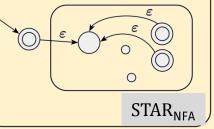
 $(R_1 \circ R_2)$, where R_1 and R_2 are (R_1^*) , where R_1 is a regular exp





expressions,

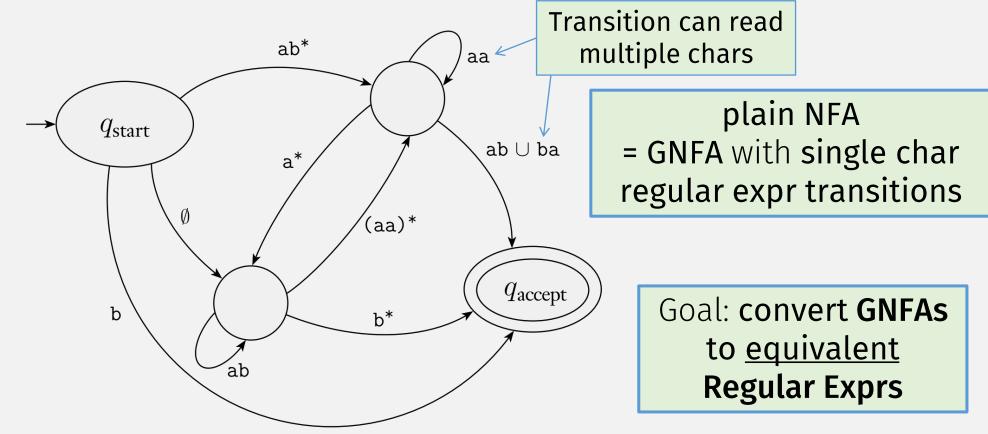




Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a reg expression (Harder)
 - Key step: Convert an DFA or NFA → equivalent Regular Expression
 - First, we need another kind of finite automata: a GNFA
- ← If a language is described by a reg expression, then it's regular (Easier)
- Key step: Convert the regular expression → an equivalent NFA!
 (full proof requires writing Statements and Justifications, and creating an "Equivalence" Table)

Generalized NFAs (GNFAs)



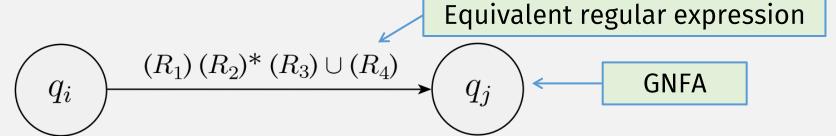
• GNFA = NFA with regular expression transitions

GNFA→RegExpr function:

On **GNFA** input *G*:

• If *G* has 2 states, return the regular expression (on the transition), e.g.:

Equivalent regular expression



Could there be less than 2 states?

GNFA→RegExpr Preprocessing

Modify input machine to have:

• New start state:

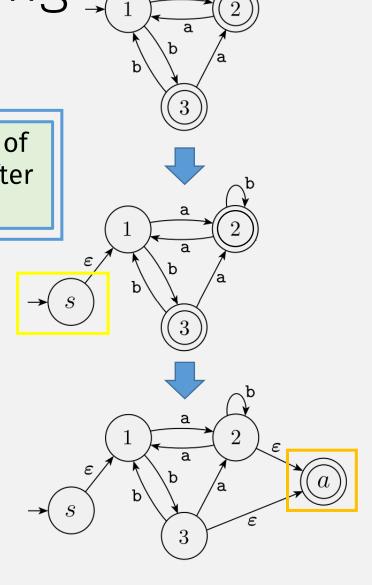
Does this change the language of the machine? i.e., are before/after machines <u>equivalent</u>?

- No incoming transitions
- ε transition to old start state

- New, single accept state:
 - With ε transitions from old accept states

Modified machine always has 2+ states:

- New start state
- New accept state



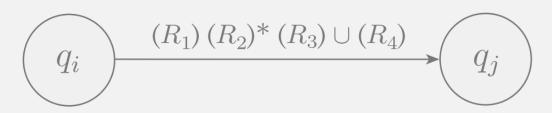
GNFA→RegExpr function (recursive)

On **GNFA** input *G*:

Base Case

• If *G* has 2 states, return the regular expression (from transition), e.g.:

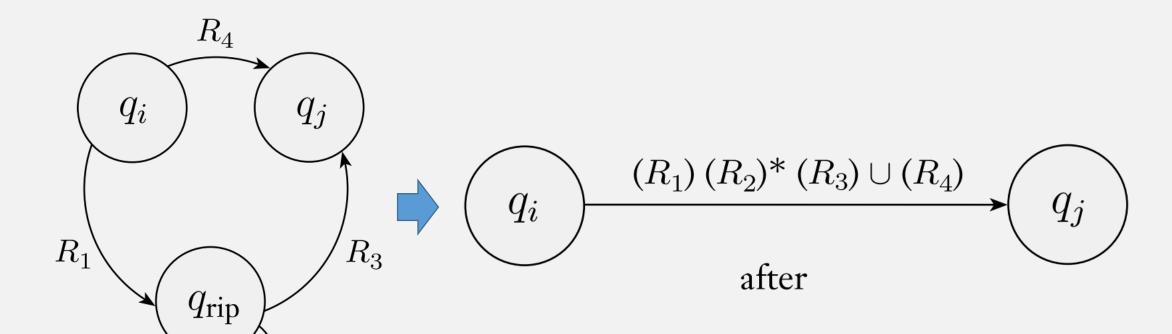
Recursive Case



- Else:
 - "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G'
 - Recursively call GNFA→RegExpr(G')

Recursive definitions have:

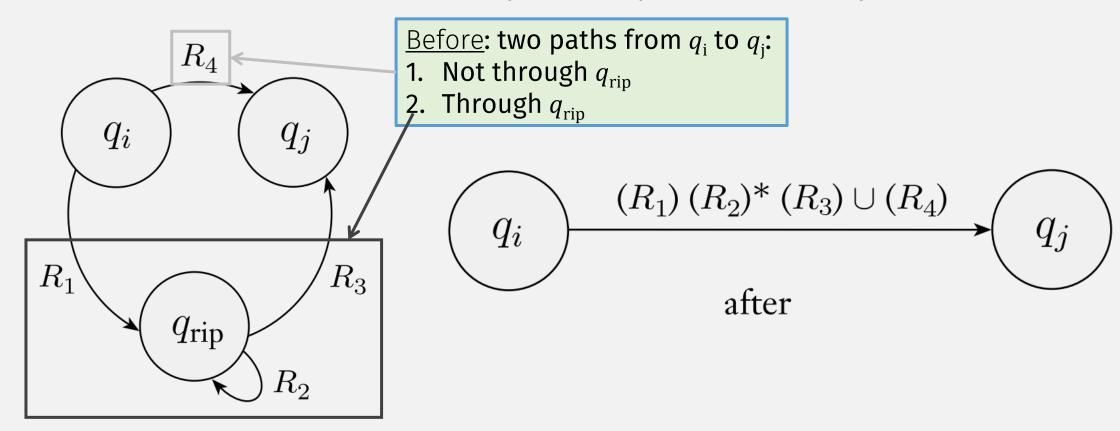
- base case and
- recursive case (with "smaller" self-reference)



before

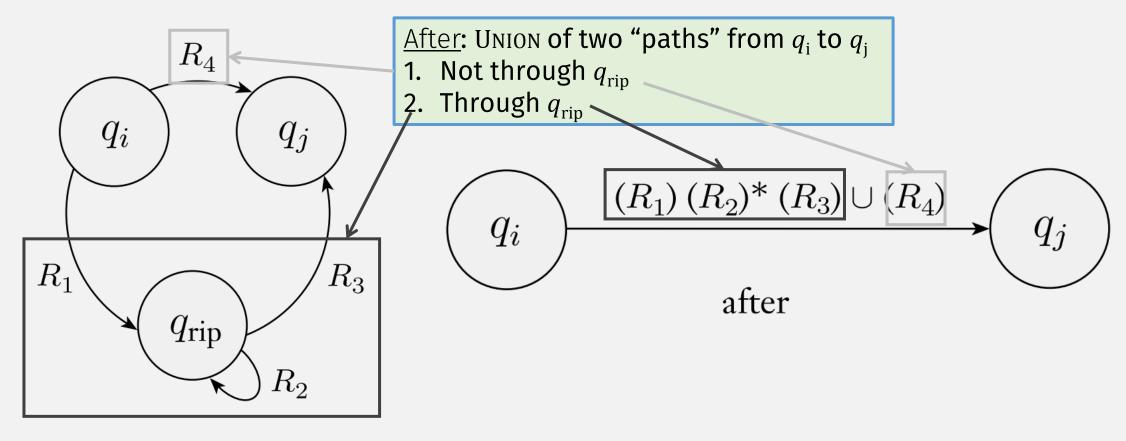
To <u>convert</u> GNFA -> regular expression:

- 1. "rip out" a state,
- 2. "repair" so machine is equivalent
- 3. repeat until only 2 states remain

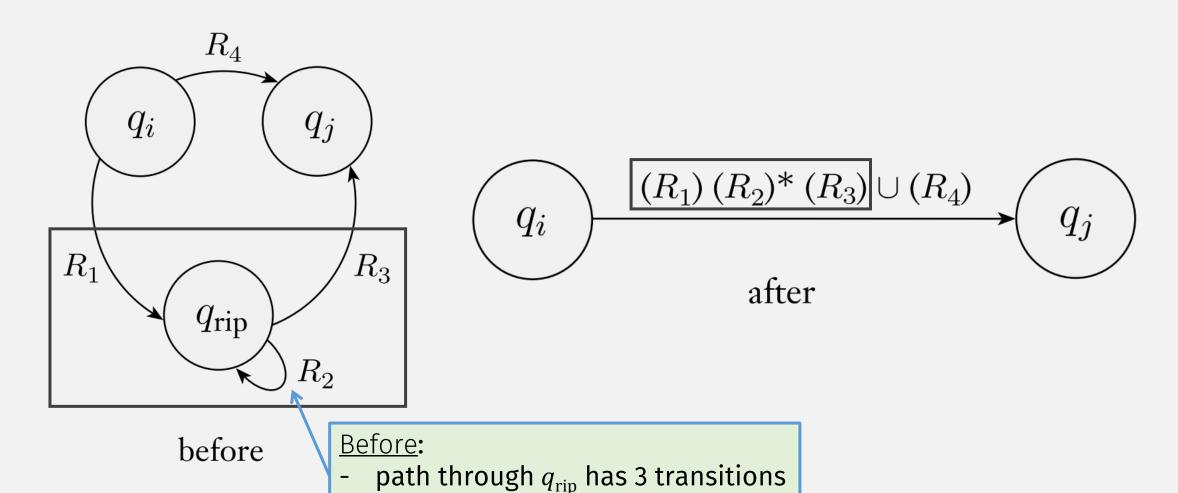


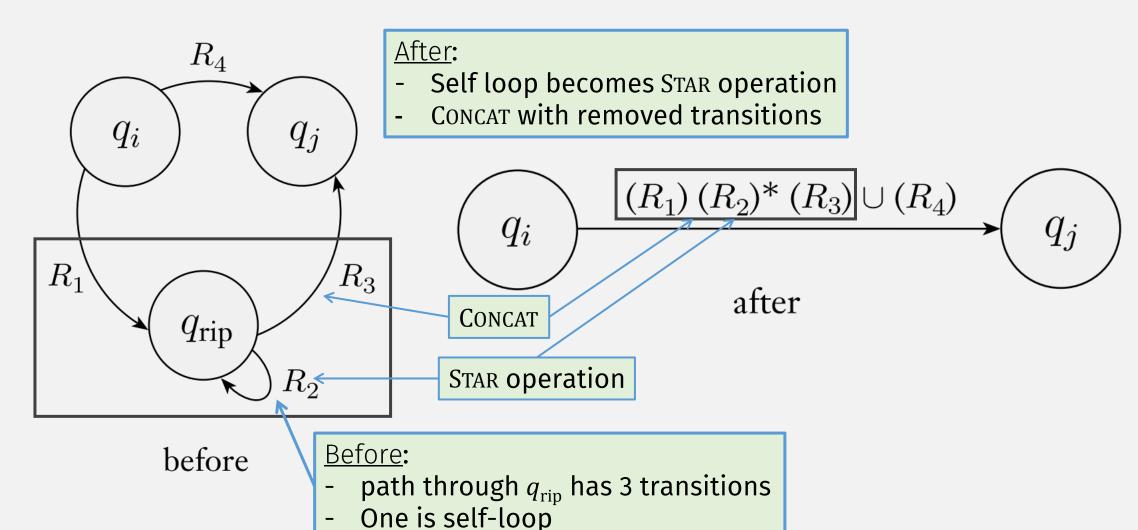
before

before



One is self-loop





Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a regular expr Need to convert DFA or NFA to Regular Expression ...
 - Use GNFA→RegExpr to convert GNFA → equiv regular expression!

???

This time, let's <u>really prove</u>
equivalence!
(we previously "proved" it
with an Examples Table)

← If a language is described by a regular expr, then it's regular

✓ • Convert regular expression → equiv NFA!

GNFA→RegExpr Correctness

- Correct = input and output are equivalent
- Equivalent = the language does not change (same strings)!

Statement to Prove:

???

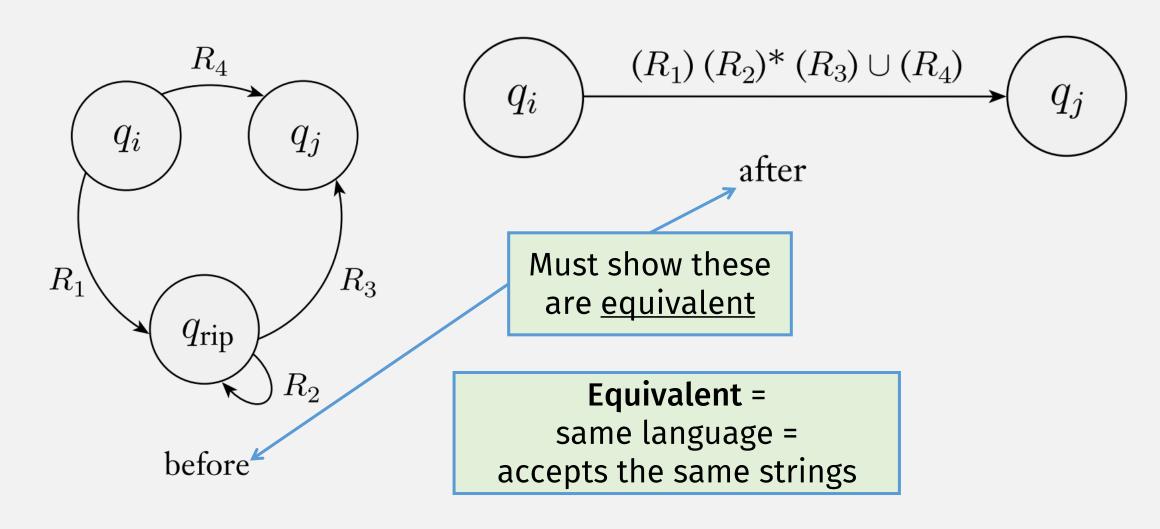
LangOf (G) = LangOf (R)

We are ready to <u>really</u>
<u>prove equivalence!</u>
(we previously "proved" it
with some examples)

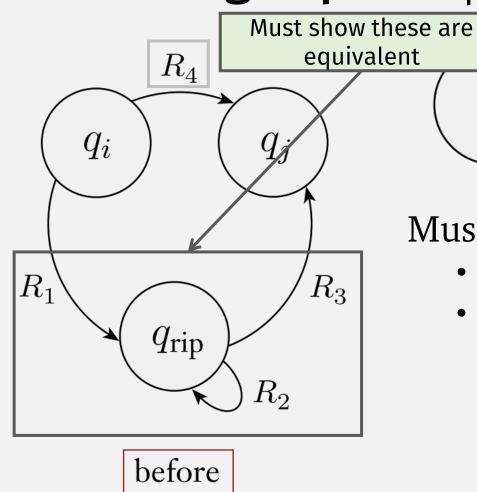
- where:
 - *G* = a GNFA
 - $R = a Regular Expression = GNFA \rightarrow RegExpr(G)$

Key step: the rip/repair step

GNFA→RegExpr: Rip/Repair Correctness



GNFA→RegExpr: Rip/Repair Correctness



Must prove:

 q_i

• Every string accepted before, is accepted after

 $(R_1)(R_2)^*(R_3) \cup (R_4)$

after

- <u>2 cases:</u>
 - 1. Let w_1 = str accepted before, doesnt go through q_{rip} after still accepts w_1 bc: both use R_4 transition

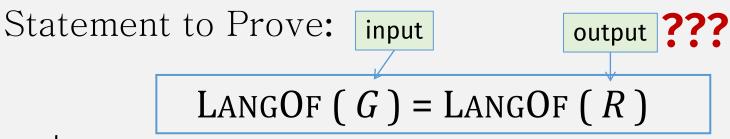
 q_j

- 2. Let w_2 = str accepted before, goes through q_{rip}
 - w₂ accepted by after?
 - Yes, via our previous reasoning

(Similar to Equivalence Table!)

GNFA>RegExpr Equivalence

• Equivalent = the language does not change (i.e., same set of strings)!



This time, let's

really prove equivalence!

(we previously "proved" it
 with some examples)

- where:
 - *G* = a GNFA
 - $R = a Regular Expression = GNFA \rightarrow RegExpr(G)$

Language could be infinite set of strings!

(how can we show **equivalence** for a possibly **infinite set of strings**?)

Proof by Induction

Previously:

Recursive function

• Use it when: writing a function involving a recursive definition

Now:

Proof by induction (recursion) = "a recursive proof"

Use it when: proving something involving a recursive definition

The recursive definition

is (always) the key!

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Proof by Induction

(A proof for each case of some recursive definition)

- To Prove: *Statement* for <u>recursively defined</u> "thing" x:
- 1. Prove: Statement for base case of x
- 2. Prove: *Statement* for recursive case of *x*:
 - Assume: induction hypothesis (IH)
 - I.e., Statement is true for some $X_{smaller}$ (This is just the recursive part from the recursive definition!)
 - E.g., if x is number, then "smaller" = lesser number
 - Prove: Statement for x, using IH (and known definitions, theorems ...)
 - Typically: show that going from x_{smaller} to larger x is true!

i.e., a normal proof

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case •

Self-reference

Recursive Case • Or k + 1, where k is a Natural Number

Recursive definition is valid because self-reference is "smaller"

So, **proving** things about: **recursive Natural Numbers** <u>requires</u> **recursive proof**, i.e., **proof by induction!**

A valid recursive definition has:

- base case(s) and
- recursive case(s) (with "smaller" self-reference)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

- P_t = loan balance after t months
- *t* = # months
- *P* = principal = original amount of loan
- *M* = interest (multiplier)
- Y = monthly payment

(Details of these variables not too important here)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

Proof: by induction on natural number $t \leftarrow$

A proof by induction follows the <u>cases</u> of the <u>recursive definition</u> (here, <u>natural numbers</u>) that the induction is "on"

Base Case, t = 0:

Goal statement to prove (for t = 0):

$$P_0 = PM^0 - Y\left(\frac{M^0 - 1}{M - 1}\right) = P$$
Plug in $t = 0$ Simplify

(Justification)

A Natural Number is:

- **-**0 ✓
- Or k + 1, where k is a natural number

P₀ = P is a true statement!
(amount owed at start =
loan amount)

Proof By Induction Example (Sipser Ch 0)

Prove true:
$$P_t = PM^t - Y\left(\frac{M^t - 1}{M - 1}\right)$$

A proof by induction follows <u>cases</u> of recursive definition (here, natural numbers) that the induction is "on"

A Natural Number is:

• 0 🔽

k+1, for some nat num k

Inductive Case: t = k + 1, for some natural num k

• Inductive Hypothesis (IH), assume statement is true for some t = (smaller) k

TH plugs in "smaller"
$$k$$
 = $PM^k-Y\left(rac{M^k-1}{M-1}
ight)$

Write t = k+1of "smaller" kPlug in IH for P_k Proof of Goal: case in terms

$$P_{k+1} = P_k M - Y$$

Definition of Loan: amt owed in month k+1 =amt owed in month k * interest M – amt paid Y

$$P_k = PM^k - Y\left(\frac{M^k - 1}{M - 1}\right)$$

$$\text{Goal state ment to prove, for } t = k+1$$
:
$$P_{k+1} = PM^{k+1} - Y\left(\frac{M^{k+1} - 1}{M - 1}\right)$$

Simplify, to get to goal statement

In-class Exercise: Proof By Induction

Prove: $(z \neq 1)$

$$\sum_{i=0}^m z^i = rac{1-z^{m+1}}{1-z}$$

A proof by induction follows <u>cases</u> of recursive definition (here, natural numbers) that the induction is "on"

A Natural Number is:

- (
- k + 1, for some nat num k

Use Proof by Induction.

Make sure to clearly **state:** what the induction is "on"

i.e., which recursively defined value (and its type) will the proof focus on

And the **Goal statement to prove** (for each case)

Proof by Induction: CS 420 Example

Statement to prove:

```
LANGOF (G) = LANGOF (R = GNFA \rightarrow RegExpr(G))
```

- Where:
 - *G* = a GNFA
 - $R = a Regular Expression GNFA \rightarrow RegExpr(G)$
- i.e., GNFA→RegExpr must not change the language!

This time, let's really prove equivalence! (we previously "proved" it with some examples)

Proof by Induction: CS 420 Example

Statement to prove:

LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(G)$)

Recursively defined "thing"

Proof: by Induction on # of states in G

1. Prove *Statement* is true for base case

G has 2 states

Why is this an ok base case (instead of zero)?

(Modified) Recursive definition:

A "NatNumber > 1" is:

- 2
- Or k + 1, where k is a
 "NatNumber > 1"

Last Time

GNFA→RegExpr (recursive) function

On **GNFA** input *G*:

 q_i

Base Case

• If G has 2 states, return the regular expression (from the transition),

e.g.:

 $(R_1) (R_2)^* (R_3) \cup (R_4) \longrightarrow q_j$

GNFA

Equivalent regular expression

Proof by Induction: CS 420 Example

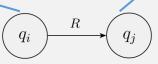
Statement to prove:

LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$)

Proof: by Induction on # of states in G

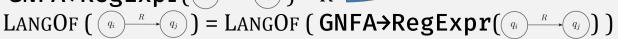
✓ 1. Prove *Statement* is true for <u>base case</u>

G has 2 states



Statements

- $\rightarrow (q_i)$) = LANGOF (R) 1. LANGOF ($(q_i)^{-R}$
- Plug in R
- 2. $\mathsf{GNFA} \rightarrow \mathsf{RegExpr}((q_i) \xrightarrow{R} (q_j)) = R$



Justifications

- **Definition of GNFA**
- 2. **Definition of GNFA→RegExpr** (base case)

Plug in

3. From (1) and (2)

Don't forget the Statements / Justifications!

Goal

Proof by Induction: CS 420 Example

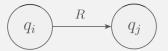
Statement to prove:

LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(G)$)

Proof: by Induction on # of states in G

✓ 1. Prove Statement is true for base case

G has 2 states



2. Prove Statement is true for recursive case: G has > 2 states

GNFA→RegExpr (recursive) function

On **GNFA** input *G*:

Base Case

• If G has 2 states, return the regular expression (from the transition),

e.g.:

• Else:

Case

- Recursive "Rip out" one state
 - "Repair" the machine to get an equivalent GNFA G
 - Recursively call GNFA→RegExpr(G') < Recursive call (with a "smaller" G')

Proof by Induction: CS 420 Example

Statement to prove:

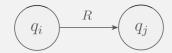
LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$)

Proof: by Induction on # of states in G

✓ 1. Prove Statement is true for base case

G has 2 states

G has > 2 states



- 2. Prove *Statement* is true for <u>recursive case</u>:
 - Assume the induction hypothesis (IH):
 - Statement is true for smaller G'

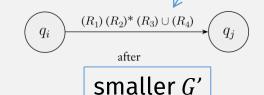
before

- <u>Use</u> it to prove *Statement* is true for *G* > 2 states
 - Need to show: going from G to smaller G' is true!

LANGOF (G')

LANGOF ($GNFA \rightarrow RegExpr(G')$) (Where G' has less states than G)

Don't forget the Statements / Justifications!



Show that "rip/repair" step \square converts G to smaller, equivalent G'

Proof by Induction: CS 420 Example

Statement to prove:

LANGOF (G) = LANGOF ($GNFA \rightarrow RegExpr(<math>G$))

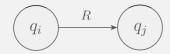
Proof: by Induction on # of states in G

✓ 1. Prove *Statement* is true for base case

G has 2 states

tates

true!



- 2. Prove *Statement* is true for <u>recursive case</u>:
 - Assume the il Known "facts" available to use:
 - Statement -☑IH
 - Use it to prov
 Need to s

 -✓Equiv of Rip/Repair step
 -✓Def of GNFA->RegExpr

G has > 2 states

IH Assumption

LANGOF (G')

LANGOF (GNFA→RegExpr(G')) (Where G' has less states than G)

Statements

- LANGOF (G') = LANGOF ($GNFA \rightarrow RegExpr(<math>G'$))
- LANGOF (G) = LANGOF (G')
- $GNFA \rightarrow RegExpr(G) = GNFA \rightarrow RegExpr(G')$ Plug in
- Goal 4. LangOf (G) = LangOf ($GNFA \rightarrow RegExpr(G)$)

Justifications

- 2. Equivalence of Rip/Repair step (prev)
- 3. **Def of GNFA→RegExpr** (recursive call)
- 4. From (1), (2), and (3)

Thm: A Lang is Regular iff Some Reg Expr Describes It

- ⇒ If a language is regular, then it's described by a regular expr
- Use GNFA→RegExpr to convert GNFA → equiv regular expression!
- ← If a language is described by a regular expr, then it's regular
- ✓ Convert regular expression → equiv NFA!

Now: we can use regular expressions to represent regular langs!

So a regular langs!

So a regular langs!

So a regular language has these equivalent representations:

- DFA
- NFA
- Regular Expression

So we also have another way to prove things about regular languages!

So Far: How to Prove A Language Is Regular?

Key step, either:

Construct DFA

Construct NFA

Create Regular Expression

Slightly different because of recursive definition

R is a **regular expression** if R is

- **1.** a for some a in the alphabet Σ ,
- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Proof by Induction

To Prove: a *Statement* about a <u>recursively defined</u> "thing" x:

- 1. Prove: Statement for base case of x
- 2. Prove: *Statement* for recursive case of *x*:
 - Assume: induction hypothesis (IH)
 - l.e., Statement is true for some X_{smaller}
 - E.g., if x is number, then "smaller" = lesser number
 - \rightarrow E.g., if x is regular expression, then "smaller" = ...
 - Prove: Statement for x, using IH (and known definitions, theorems ...)
 - Usually, must show that going from x_{smaller} to larger x is true!

1. a for some a in the alphabet Σ ,

Whole reg expr

- $2. \ \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,

"smaller"

- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Example string: $abc^{\mathcal{R}} = cba$

For any string $w = w_1 w_2 \cdots w_n$, the **reverse** of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_n \cdots w_2 w_1$.

For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} | w \in A\}$

Example language:

Theorem: if A is regular, so is $A^{\mathcal{R}}$

 $\{\mathtt{a},\mathtt{ab},\mathtt{abc}\}^\mathcal{R}=\{\mathtt{a},\mathtt{ba},\mathtt{cba}\}$

IF-THEN Statement to prove:

If A is a regular language described by regular expression R, then $A^{\mathcal{R}}$ is regular

Proof: by induction on R, the regular expression of A

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on R, the regular expression of A: (6 cases)

- Base cases 1. a for some a in the alphabet Σ , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - **2.** ε , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - **3.** \emptyset , same reg. expr. represents $A^{\mathcal{R}}$ so it is regular
 - cases
 - Inductive 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.
 - <u>IH1</u>: if A_1 is a regular language, described by reg expr R_1 , then A_1 is regular
 - <u>IH1</u>: if A_2 is a regular language, described by reg expr R_2 , then $A_2^{\mathcal{R}}$ is regular
 - if A is a regular language, described by reg expr $R_1 \cup R_2$, then $A^{\mathcal{R}}$ is regular

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on R, the regular expression of A: (Case # 4)

Statements

- 1. Language A is regular, with reg expr $R_1 \cup R_2$
- 2. R_1 and R_2 are regular expressions
- 3. R_1 and R_2 describe regular langs A_1 and A_2
- 4. If A_1 is a regular language, then $A_1^{\mathcal{R}}$ is regular
- 5. If A_2 is a regular language, then $A_2^{\mathcal{R}}$ is regular
- 6. $A_1^{\mathcal{R}}$ and $A_2^{\mathcal{R}}$ are regular
- 7. $A_1^{\mathcal{R}} \cup A_2^{\mathcal{R}}$ is regular
- 8. $A_1^{\mathcal{R}} \cup A_2^{\mathcal{R}} = (A_1 \cup A_2)^{\mathcal{R}}$
- 9. $A = A_1 \cup A_2$
- 10. $A^{\mathcal{R}}$ is regular

Justifications

- 1. Assumption of IF in IF-THEN
- 2. Def of Regular Expression
- 3. Reg Expr ⇔ Reg Lang (Prev Thm)
- 4. IH
- 5. IH
- 6. By (3), (4), and (5)
- 7. Union Closed for Reg Langs
- 8. Reverse and Union Ops Commute
- 9. By (1), (2), and (3)
- 10. By (7), (8), (9)

if A is a regular language, described by reg expr $R_1 \cup R_2$, then $A^{\mathcal{R}}$ is regular

by Stmts #1 and #10

if A is regular, so is $A^{\mathcal{R}}$

Proof: by Induction on regular expression of A: (6 cases)

Base cases 1. a for some a in the alphabet Σ ,

Inductive cases

5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or

6. (R_1^*) , where R_1 is a regular expression.

Remaining cases will use similar reasoning

Non-Regular Languages?

• Are there languages that are not regular languages?

• How can we prove that a language is not a regular language?

