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In-class questions preview — Regular or not?

Q1.1 Regular Languages
1 Point

True or False. The Pumping Lemma can be used to prove that a
language is a regular language.

Q1.2 non-Regular Languages
1 Point

True or False. The Pumping Lemma can be used to prove that a
language is not a regular language.



A language is a set of strings.

$ fa: Regular or Not?

« Many ways to prove a language is regular:
 Construct a DFA recognizing it (defof Regular Language)
« Construct an NFA recognizing it (Sipser 1.40)
« Create a regular expression describing it (sipser1s4)

M recognizes language A
if A= {w| M accepts w}

« Bc we proved: Regular Expression <> NFA <> DFA <& Regular Language

» But not all languages are regular!
« E.g, programming language syntaxes are not regular
« language of all Python programs, or all HTML/XML pages, are not regular
e That means:

« There i1s no DFA or NFA that:
- accepts valid Python programs (and rejects invalid ones)
« And, there is no regular expression that:
- describes all valid Python or HTML programs (a common mistake)!




HTML is a language of sufficient complexity that it cannot be parsed by regular
expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every

S O m e O n e V\/ h O D i d n 't P a y Attetime you attt-ampt to parse HTML with regular expressions, the unholy child w:eeps

the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with

regex summons tainted souls into the realm of the living] HTML and regex go
| Reg EX matCh Open tag SI exce pt XH TM L Se|f-COI’ together like love, marriage, and ritual infanticide. The <center> cannot hold it is too

late. The force

) , . e conceptual space will
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giving in to TK 3 » % doom us all to inhuman toil for
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omes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
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<@ href="foo" the trangession of a childlensures regex will consume all living tissue|(except for
HTML which it cannot, as previously prophesied) dear lord help us how can anyone
But not these: survive this scourge using regex to pars| ve ry wel rd anity to an eternity
of dread torture and security holes using—~egerosctooroprocess HTML
establishes a breach between this world and the dread realm of corrupt entities (like

S - : SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for
| You can't parse [X]HTML with regex. Because HTML can't be parse - Pl J ,p : 01 regex p
HTML will instantly transport a programmer’'s consciousness into a world of

Regex is not a tool that can be used to correctly parse HTML. As | h ceaseless screamina ha comas tha nactilent slithy regex-infection will devour your

4414 HTML-and-regex questions here so many times before, the use of reHTML parser, aj 22727 all time like Visual Basic only worse he
allow you to consume HTML. Regular expressions are a tool that is

e nfi?ghtenment, HTML tags leaking fegm your eye_s/’.'?ke liquid pain, the song of
sophisticated to understand the constructs employed by HTML.I HTN
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used by Perl are not up to the task of parsing HTML. You will never LT A

IHave you tried using an XML parser

Someone who paid attention in 620/420 ...
NV hmm ... what’s this?




thstback: Designing DFAS or NFAS 5

« Each state “remembers” information about input @-.

* E8, q.., = "S€en even # of 1s”
q.qq = Seen odd # of 1s”

« But finite states = finite amount of info storage (and must decide in advance)

« SO DFAs can't remember an arbitrary count!
« would require infinite states




A Non-Regular Language

An arbitrary count

L={0"1"|n%0)

*|A DFA recognizing L would require infinite states! (impossible)
 States representing zero 0s seen,
e ..0Nne 0 seen,
* ..two Os seen ...

« This language represents the essence of many PLs, e.g., HTML!

« Replace:
. UO" Wlth U<tag>ll Or U(U
° 111" Wlth U</tag>" Or “)M But' hOW Can We

prove non-regularness?

« The Problem: remembering nestedness

« Need to count arbitrary nesting depths

c Eg, ( ( () )) |
« Thus: most programming language syntax is not regular!
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Prove: Demons do not exist 299

Proving something not

true is different (and

usually harder) than
proving it true

B |t's sometimes possible,
but often needs
new proof techniques!

We know how to: prove a language is regular

Can we: prove a language is not regular?




Quantified Logical Statements

« “Exists” (Existential) JzP(z) is true when P(z)is  “There exists a natural
e “Easier” to prove TRUE true for at least one value of z. number n such that, n-n = 25"

 Just need one example! -
n=

" ” : VzP(z) istrue when P(z)is  “For all natural numbers n,
* "For all (Umversal) true for all values of x. 2n=n+n"

« “Harder” to prove TRUE
* Need to prove true for all examples Proof by induction, on natural numbern ...!




Quantified Logical Statements (this course)

Language L ={..}Is regular Language L is not regular?

« “Exists” (Existential)
e “Easier” to prove TRUE — There exists one DFA I
+ Just need one example! that recognizes L
m) * “Harder” to prove FALSE There are no possible
* Need to prove false for all examples DFAs that recognizes L

For all regular

« “For all” (Universal)

languages L,
* “Harder” to prove TRUE L* is a regular
» Need to prove true for all examples '2n8uage
m) « “Easier” to prove FALSE For all strings
« Just need one (counter)example! In a regular
language ...

Key is finding such a statement about regular languages!




A Fact (Lemma) About Regular Languages

True for all regular languages!

\
Pumping lemma If A is a regular language, then

pumping length) where if s is any string in A of length :

here is a number p (the
least p, then s may be

divided into three pieces, s = xyz, satistying the following \conditions:

1. foreach i > 0, zy'z € A,
2. |y| > 0, and
3. |zy| < p.

This Is an

1. prove X Is true,
2. conclude that Y Is true

Remember: To use an “If X then Y” statement,

“If Xthen Y’
statement




thsitck- The Modus Ponens Inference Rule

If we know these statements are true ...
 [f Pthen Q

P

Then we also know this statement is true ...

Y



A Lemma About Regular Languages

Pumping lemma If A is a regular language, then

... then we can conclude ...

} Uh ... whatever this says ...

To use The Pumping lemma for a language A4 ...

... first prove that A is a regular language ...

(but maybe it can be
used to prove that a

Q: Can we use The Pumping lemma to prove that a language is regular? language is not regular!)

NO (but we already know many other ways to do that!)




Equivalence of Conditional Statements

* Yes or No? “If Xthen Y” Is equivalent to:

* “If Y then X" (converse) | Ser Areviusty
* No!

e “Ifnot X then not Y” (inverse)
 NO!

e “If not Y then not X” (contrapositive)
e Yes!



f-then statement ... then the language is not regular!

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |lzy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"




Logical Inference Rules

Modus Ponens
Premises (known facts)

* [f Pthen Q

* PIs true
Conclusion (new fact)
* QIS true

Modus Tollens (contrapositive)
Premises (known facts)

Step 1: find a fact that is true
° hc P theﬂ Q for all regular languages ...

o Q iS not true Step 2: where the fact can be

proven not true!

Conclusion (new fact)

How to: prove a language

*PIs n—Ot true IS not regular?



Fact About Regular Languages: Detalls

Pumping lemma If A is a regular language, then there is a number ﬂ(the
pumping length) where if s is any string in A of length at
divided into three pieces, s = zyz, satistying-the tollowin

1. foreach i > 0, zy'z € A,
2. |y| > 0, and

Conditions are on: strings in
the language with length > p“

least p, then s may be
?ﬂéyitions:

Any regular language satisfies

3. |xy| < p. these three conditions!

NOTE:

- Lemma doesn’t give an exact p!
- Only that there is some string length p ...

The exact value of p differs
for every regular language
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The Pumping Lemma: Finite

Lemma doesn’t say what p is! Just that “thereisap..”

™~

Pumping lemma If A is a regular language, then
pumping length) where if s is any string in A of lengtl

Conclusion: pumping
lemma is only interesting
for infinite langs!

_d n? (which contain strings

with repeating parts)

there is a number p (the
h at least p, then s may be

divided into three pieces, s = xyz, satistying|the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and . . .
So: finite langs (specifically, all strings
3. |zy| < p. in the language “of length at least p”)
must satisfy these conditions
(whatever they are)

Example: a finite language {“ab”, “cd”}— ab U ca
 All finite languages are regular!

Possible p for finite langs?

How about:
p = LENGTH(longest string) + 1

# strings in the language

with length > p? None!

length > p satisfy the pumping

Therefore, all strings with

lemma conditions! ©

e (can easily construct DFA/NFA/Regular Expression recognizing them)
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Langs With Strings With Repeatable Parts

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

. : Lemma requires: “pumped” v b
1. for each 7 > 0: iyzz < A? string still in language! y:\\ ;
2. |ly| > 0, and repeatable (“pumpable”) part ’ <
3. |2y| < p. (= repeatable state in DFA!) gt A
. . ° ° \ /
Strings with a repeatable part can be split into 3 parts:

« x = part before any repeating o DFAs ha\;]?,finitei statﬁS, |
. y = repeatable (or “pumpable”) part >0 for l°”fo‘:'eogtgate(r'ﬁeu’ste:'eg;eaip) Nputs,
» 7= part after any repeating

e.g, “long enough length” = p = # states +1 (The Pigeonhole Principle)




The Pigeonhole Principle

If # birds > # holes,
then there must be > 1
bird in some hole




The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. foreachi > 0, 2y*z € A,

p) y| ~ 0. and So a substring that: A
’ & - can repeat once, O

3. :r:y‘ < p. - can also be repeated multiple times ]

PRy SO
In essence, the Pumping h gr t'ﬁ s -
lemma is a theorem about ave (?(?;SN'E gtgf) €rns " Y,
repeating patterns in regular
languages “long enough length” = p = # states +1
(some state must repeat)




l-othss exercise; INTINITE LANgUAgeES

Split the string “010” into three parts xyz, e.g.
X = HO" y — “1" 7 = uOn

so that repeating (non-empty) y part any

number of times creates a new string still in A

Now do “0110”:
X: HO" y:{l]-" Z:MlO"

Example: infinite language 4 = {“00”,“010”,0110”,“01110", ...} Or..?

(there could be more than one possible splitting)



Types of Rogpullr Lagucges

The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,
2. |y| > 0, and “numpable” part of string E.g, “010” € A, so pumping

lemma says it's splittable

3. |$y\ < p. Note: “pumpable” part cannot be empty into three parts xyz, e.g.
x=0, y=1, z=0

Example: infinite language 4 = {“00”,“010”,“0110”,“01110", ...}
e |t's regular bc it has regular expression 0170

..and "pumping” (repeating) middle y part

Pum.Piﬂg. lemma summary: creates a string that is still in the language
“All infinite regular languages must - repeat once (i=1): “010",
have a star in its regular expression”! - repeat twice (i=2): “0110”,

- repeat three times (i = 3): “01110”



Summary: The Pumping Lemma ...

. ... states properties that are true for all regular languages
. ... specifically, properties about “long enough” strings in reg. langs
* In general, It describes repeating patterns in reg. langs

IMPORTANT:
« The Pumping lemma cannot prove that a language is regular!
« But ... we can use it to prove that a language is not regular

... by showing that the repeating
pattern is not expressible with a
star regular expression!

Pumping lemma summary:
“All infinite regular languages must
have a star in its regular expression”!




[TV — ... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |zy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"




Kinds of Mathematical Proof

e Deductive Proof

» Logically infer (i.e., with modus ponens) conclusion from
known definitions and assumptions

 Proof by induction
« Used to prove properties of recursive definitions or functions

* Proof by contradiction <=

* Proving the contrapositive



How To Do Proof By Contradiction

3 easy steps:
1. Assume: the opposite of the statement to prove

2. Show: the assumption leads to a contradiction

3. Conclude: the original statement must be true




Pumping Lemma: Non-Regularity Example

This repetition pattern cannot be expressed with a star regular expression?

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B 1s not regular. The proof is by contradiction.
... by showing that the repeating

pattern is not expressible with a
star regular expression!

Pumping lemma summary:
“All infinite regular languages must
have a star in its regular expression”!




. Pumping lemma If A is a regular language, then there is a number p (the
V\/a nt tO D rove: On 1)1 IS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says:

1t . . —_— all strings 071" > length p are
Proof (by contrad ICtIOﬂ). Now we must find a contradiction ... S TTCE Y e v Ay G

» Assume: 0"1" is a regular language So FIND: string > length p that is not

. So it must satisfy the pumping lemma splittable into xyz where y is pumpable
 |.e, all strings > length p are pumpable

« Counterexample = 0717

(May take multiple We must show: there is no
trial-and-error possible way to split this
attempts to find this) string to satisfy the conditions

of the pumping lemmal!

(HW requires that this counterexample case analysis is
separate (but referred to) from the main proof)

(This should go in a Statements / Justification Table of course)



... then not true Pumping lemma - If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
Contrapositive: If not true ...

2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says:
all strings 071" > length p are

splittable into xyz where y is pumpable
So FIND: string > length p that is not
splittable into xyz where y is pumpable
p 1s BUT ... pumping
lemma requires

only one pumpable
splitting

Want to prove: 0"1” is not a regular language

Proof (by contradiction):

e Assume: 071" is a regular language

So It must satisfy the pumping lemma

l.e., all strings > length p are pumpable p 0s
\ l ,

So the proof is not

« Counterexample = 0717
done!

* Choose xyz split so y contains:
-[all 0s  ) \
X y Z
Is there another way
to split into xyz ?

« Pumping y: produces a string with more 0s than 1s

(0] g

e ...not in the language 071" !
* S0 0r1Pis not pumpable? (according to pumping lemma)

So 01" is a not regular language? (contrapositive
« Is this is a contradiction of the assumption???




Want to prove: 071" is not a regular language

Possible Split: y = all 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0717
00..011..1

* Choose xyz split so y contains: |

lall 1s — Is there another way
to split into xyz ?

—
X y Zz

* |s this string pumpable (repeating y produces string still in 0717)?
* No!
« By the same reasoning as in the previous slide




Want to prove: 071" is not a regular language

Possible Split: y= 0s and 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0,17
» Choose xyz split so y contains: 00 I 011‘ .1

| both 0s and 1s \ |
X Z

y

Did we examine
every possible
splitting?

Yes! QED

* No!
« Pumped string will have equal 0s and 1s....

* |s this string pumpable (repeating y produces string still in 0717)?

But maybe we
did’t have to ...

« But they will be in the wrong order: so there is still a contradiction!




The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. lzy| < p. p0s

The repeating party ... \OO Olll 1

must be in the first p characters! Y

y must be in here!




The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, 2y'z € A,

2. |y| > 0, and

3. |zy| < p.

Repeating part y must be non-empty ...
but can be repeated zero times!

Example: L = {0V | i > j}




Want to prove: L = {01/ | i >} is not a regular language
Pumping Down

Proof (by contradiction):
 Assume: L is a regular language
* S0 It must satisfy the pumping lemma
l.e., all strings > length p are pumpable p+1 0s p 1s

e Counterexample = 0P*11»
00..011..1

\_Y_l

C .

« Choose xyz split so y contains:
e all 0s
* (Only possibility, by condition 3)
X Yy

Z
 Repeat y zero times (pump down): produces string with # 0s < # 1s

« ... not in the language {0V | i >}
« S0 {0V | i>j}does not satisfy the pumping lemma

e So itis a not regular language
 This is a contradiction of the assumption!




Newt 7ine /a/(c/ rest af the Semester /

« If a language is not regular, then what is it?

* There are many more classes of languages!

Turing-recognizable

decidable

context-free



