cturel3

CS 420 / CS 620
Context-Free Grammars (CFGs) and

Context-Free Languages (CFLs)
Monday October 20, 2025
UMass Boston Computer Science

ﬁ/{/ma/wem/(zf‘s’

« HW 6
+ Pre-Mon-16420-1R2pm-(neen)

e HW 7
 Out: Mon 10/20 12pm (noon)
 Due: Mon 10/27 12pm (noon)

Turing-recognizable

decidable

) context-free

Last [ine;

Non-Regular Languages

Example: An arbitrary count

L =

{0"1" | n=0}

*|A DFA recognizing L would require infinite states! (impossible)

* This language Is the same as many PLs, e.g., HTML!

 States representing: zero 0s seen, one 0 seen, two 0s, ...

« To better see this replace:
° HO" Wlth “<tag>ll Or H(H
° “1" Wlth “</tag>" OI’ H)"

« The Problem: remembering nestedness

« Need to count arbitrary nesting depths
- Eg{{{.}1}}

« Thus: most programming language syntax is not regular!

We can
prove non-regularness ...
with the Pumping Lemma
(and proof by contradiction)

But ... what kind of
language is it then?

A Context-Free Grammar (CFG)

terminals
Top variable is: A rule maps:
Start variable A — 0A1 Variable to String (of Variables and/or Terminals)
Variables A— B Substitution rules
(aka, non-terminals) =5 — # (ak.a. productions)

on RHS of rules
terminals (analogous to DFA’s alphabet)

Context-Free Grammar (CFG): Formally

Grammar G, = (V, %, R, S) CFG Practical Application:
Used to describe

R is this set of rules: var->String (of vars+terminals) mappings:

Top variable is: - '/"\‘"““' programming language
Start variable — A4 — 0A1 SN
A > B - Substitution rules

Variables
(a.ka. non-terminals) >5 — #\

terminals (analogous to DFA’s alphabet)

(a.k.a., productions)

A context-free grammar is a 4-tuple (V, X, R, S) where

1. V| is a finite set called the variables, V =

Sica fing e 1l :
2. % 1'5 a m.te set, disjoint (?m V, called thei termzm.zls,\ >
3. R is a finite set of 7ules, with each rule being a variable and a

string of variables and terminals, and S —

4. S € V is the start variable.

Java Syntax: Described with CFGs

ORACLE Definition:

;a:\VSE > Java SE Specifications > Java Language Specification Chapter 2 A CFG d eSC ri b es a
context-free language!

Chapter 2. Grammars
(Could you write it in our typical IF-THEN form?)

This chapter describes the context-free grammars used in this specification !

2.1. Context-Free Grammars “productions” = rules “nonterminal” = variable

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its lef
hand side, and a sequence of one or more nonterminal anc terminal symbols as its right-hand side. For each grammar, the terminal

symbols are drawn from a specified alphabet. “goal symbol” = Start variable
A CFG spe cifies Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given|context-free grammar,
I >ispecifies a Ianguage,|namely, the| set of possible sequences of terminal symbols| that can result from repeatedly replacing any
d language- nonterminal In the sequence with a right-hand side of anroduction for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar (definition of a language: set of sequences of symbols)

A lexical grammar for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of th
Unicode character set. It defines a set of productions, starting from the goal symbol Input (§3.5), that describe how sequences of

l lninAadA nlharantAare (82 A\ ara tranclatad inta a camanna Af inrniit Alarmantes (282 R

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html

Analogies

Regular Language Context-Free Language (CFL)

Regular Expression

thm

A Reg Expr describes a Regular lang

Context-Free Grammar (CFG)
A CFG describes a CFL

def

(partially)

Python Syntax: Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps listed at
https://devguide.python.orqg/qgrammar/

#
#

(indentation checking not
expressible with CFG?)

Start symbols for the grammar:
single_input i1s a single interactive statement;

eval 1input is the input for the eval() functions.

NB: compound stmt in single input is followed by extra NEWLINE!

HOoH K W W R

single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

https://docs.python.org/3/reference/grammar.html

file input 1s a module or sequence of commands read from an input file;
func _type input is a PEP 484 Python 2 function type comment

NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE

Many Other Language (partially) |
Python Syntax: Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps Llisted at
https://devguide.python.org/qgrammar/

Start symbols for the grammar:
single_input i1s a single interactive statement;
file input 1s a module or sequence of commands read from an input file;
eval 1input is the input for the eval() functions.
func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input is followed by extra NEWLINE!
NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

&
#
#
#
#
#

https://docs.python.org/3/reference/grammar.html

Java Syntax: Described with CFGS

ORACLE Definition:

Java SE > Java SE Specifications > Java Language Specification A CFG d esC I’i beS d CO ntext-fl’ee languagE!
Prev but what strings are in the language?

Chapter 2. Grammars
This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a progran
2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its lef
hand side, and a sequence of one or more nonterminal and terminal symbols as its right-hand side. For each grammar, the terminal
symbols are drawn from a specified alphabet.

specifies a language,inamely, thelset of possible sequences of terminal symbols|that can result from repeatedly replaci-ng any |
nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given|context-free grammar

A lexical grammar for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of th
Unicode character set. It defines a set of productions, starting from the goal symbol Input (§3.5), that describe how sequences of

l lninAadA nlharantAare (82 A\ ara tranclatad inta a camanna Af inrniit Alarmantes (282 R

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html

Called “context free” because: we replace
vars with RHS of rule, without looking at
surrounding chars, i.e., context

Generating Strings with a CFG

(-othss exercse: Definition:
Write 3 more strings that can A CFG describes a context-free language!
be generated by this grammar but what strings are in the language?

15t rule A — 0A1
2nd ryle A —> B

Last rule B — #
“Applying a rule” At each step, arbitrarily choose
= replace LHS variable any variable to replace, and
with RHS sequence any rule to apply Stop when: string is all terminals
A CFG generates a string, by repeatedly applying substitution rules: /
Example: A -
s
Start with:

Start variable | | Apply 15t rule 15t rule again 15t rule again Apply 2" rule Apply last rule

Generating Strings with a CFG

Definition:
A CFG describes a context-free language!
but what strings are in the language?

Gl —_
Strings in CFG's language
A — 0A1 = all possible generated / derived strings
A— B
B — #

L(Gy) 1s {0"#1"|n > 0}

A CFG generates a string, by repeatedly applying substitution rules:
Example: A = 0A1 = 00A11 = 000A111 = 0008111 = 000#111

This sequence of steps is called a derivation

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V, called the terminals,
3. R is a finite set of rules, with each rule being a variable and a

D e rlvatl O n S F O rm a t ty string of variables and terminals, and

4. S € V is the start variable.

Let G = (V.X, R, S)
Single-step
aApB = oaﬂ@

G

sequence of:

W h @[@: | variables or terminals

Variable

Rule

Derivations: Formally

Let G = (V.X, R, S)
Single-step

aAB ?g oy 3

Where:
a, € (VUX)

A € V < variable

A—)’}“’ER Rule

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of 7ules, with each rule being a variable and a
string of variables and terminals, and

4. S € V is the start variable.

Multi-step (recursively defined, on # steps)
Base case: a = a (0 steps)

G

Recursive case: (1 or more steps)
Single step ler)

re “call”
* If: « ? 3

* Then: az:*,\»'}/
G

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V, called the terminals,

. . . 3. R is a finite set of rules, with each rule being a variable and a
O r I I I a e | n I t I O n O a string of variables and terminals, and

4. S € V is the start variable.

G=(V,X,R,S)

“all possible sequences of

: , ... that can be generated
terminal symbols ...

with rules of grammar G”

“the language of a L(G) — {w c Z* ‘ S :*> ’LU}

grammar G is ..." e

Any language that can be generated by some
context-free grammar is called a context-free language

Alternatively (an easier form to use in a proof is),
IF a language can be generated by some CFG,
THEN that language Is a CFL

Or IF a CFG describes a language, THEN that language is a CFL

Flashback; {0™1™ | n > 0}

« Pumping Lemma says: not a regular language

* |[t's a context-free language!
* Proof?
« Key step: Come up with CFG describing it ...
e Hint: It's similar to:

A — 0A1
A— B L(Gy)is {0™#1"| n > 0}
B —% €

Statements and Justifications?

/D/wf; L={0"1"|n > 0} isa CFL

Statements Justifications

1. If a CFG describes a language, 1. Definition of CFL
then it is a CFL

Must be the same “P” to use modus ponens

. A — 0A1 . ,
2. CFG G, describesL 4 . g 2. (Did you come up with examples???)

B — ¢

3. L={0"1"|n >0} isa CFL 3. By Statements #1 and #2

“|" symbol = Shorthand for multiple rules with same LHS variable

A String Can Have Multiple Derivations

(EXPR) — (EXPR)+(TERM) | (TERM)|
(TERM) — (TERM)X(FACTOR)|| (FACTOR)
(FACTOR) — ((EXPR)) |/a
Want to generate this string:a + a X a

* EXPR = * EXPR =

* EXPR + TERM = * EXPR + TERM =

* EXPR + TERM x FACTOR|= * TERM + TERM =

* EXPR + TERM x a|= * FACTOR + TERM =

* a + TERM

RIGHTMOST DERIVATION

LEFTMOST DERIVATION

Derivations and Parse Trees

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

A derivation may also be represented as a parse tree

A

|
A

|
A

o

O 0 0 # 1 1 1

Multiple Derivations, Single Parse Tree

Leftmost deriviation Rightmost deriviation
* EXPR => * EXPR =>
e EXPR + TERM => (EXPR) * EXPR 4+ TERM =>
* TERM + TERM => s « EXPR 4+ TERM x FACTOR =>
+ FACTOR + TERM => @XP R) / }m@ + EXPR + TERM x a=>
+ a+ TERM (TERM) / \
(FACTéR) @ERM) (FACTOR) |APa r:/z;l‘ree
A parse tree represents (FACTOR) / “mianin g’
a CFG computation ... like (to a string

a sequence of states represents
a DFA computation a i a X a

Same parse tree

Ambiguity

grammar G’:
(EXPR) — (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

Same string,
different derivation,
and different parse tree!

So this string has
two meanings!

(EXPR) (EXPR)
/ N\ /
(EXPR) (EXPR) (EXPR) (EXPR)

e N)
(EXPR) | (EXPR) (EXPR) | (EXPR)
(\ / \

a + a X a a + a X a

Ambiguity

A string w is derived ambiguously in context-free grammar G if
it has two or more different leftmost derivations. Grammar G is
ambiguous if it generates some string ambiguously.

An ambiguous grammar can give a
string multiple meanings, ie represent
two different computations!
(why is this bad?)

Real-life Ambiguity (“Dangling” else)

« What is the result of this C program? .
This string has 2

if (1) if (0) printf("a"); else printf("2"); parsings, and
$ thus 2 meanings!
if (1) if (1)
if (0) if (0)
printf("a" VS printf("a"
else else
printf("2"); printf("2");
Ambiguous grammars are Thus in practice, we Problem is, there’s no easy
confusing. A computation typically focus on the way to create an
(represented by a string) unambiguous subset of “"ﬁﬂﬂﬁ“@“@ﬁ;ﬁ%@ar
should ideally have only CFGs (CFLS) (more on this later) designers to “be careful”)

one possible result.

Subclasses of CFLS

DCFLs

f!:ambiguous Grammars
5 LR\ LRK)

Programming
language parsers
[compilers are
ideally in here

{ —>

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

2) choose “look ahead” amount

%

2 parser design decisions:
1) Parse from left (L),
or from right (R)

All CFLS

Designing Grammars : Basics

1. Think about what you want to “link” together

N
. E.g. 0717
e A 0A1

e #0s and # 1s are “linked”

 E.g, HTML —
« ELEMENT = <TAG>CONTENT</TAG>
« Start and end tags are “linked”

2. Start with small srammars (computation) and then combine
* just like with DFAs, NFAs, and programming!

In-class exercise: Creating CFG

alphabet > 1s {0,1}

L={w| w starts and ends with the same symbol}

1) come up with examples: In the language: 010, 101, 11011 1,07 o

Not in the language: 10, 01, 110 e?

2) Create CFG:
Needed Rules:

S—>O0MO|1M1|0|1 -start/endsymbolare “linked” (ie, same); middle can be anything”
M— MT | €
T—-0]|1

“middle: all possible terminals, repeated (ie, all possible strings)”

“all possible terminals”

. . Examples Table!
3) Check CFG: generates examples in the language; doesn’t generate examples not in language| (justifies that the

“CFG describes L")

Designing Grammars: Building Up

e Start with small grammars and then combine (just like programming)

- To create a grammar for the language {0™1"|n>0}U{1"0"|n >0}

* First create grammar for lang {Oﬂ'ln\ n = 0}3

Sl — 0511 ‘ &
» Then create grammar for lang {10™| n > 0}:
So — 1550 ‘ g
: New start variable and rule
« Then combine: S — Sl | 82 combines two smaller T
grammars "= Tl = winier
S1 — 0571 | = (combines 2 rules

with same left side)

SQ — 1SQO|€

(Closed) Operations for CFLs?

e Start with small grammars and then combine (just like programming)

. “Or”: S — S| S

Could you write out

e “Concatenate”: S s 5152 the full proof?

o “Star” (repetition): S —> S’Sl ‘)

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL
Finite State Automaton (FSM) 2?7

recognizes a Regular Lang recognizes a CFL

Regular Language vs CFL Comparison

Regular Languages

thm

Regular Expression

describes a Regular Lang

Finite State Automaton (FSM)

def

recognizes a Regular Lang

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

def

thm

Regular Language vs CFL Comparison

Regular Languages

thm Regular Expression
describes a Regular Lang
Finite State Automaton (FSM)
def .
: recognizes a Regular Lang
Proved:

Regular Lang <>Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

Push-down Automata (PDA)

T0 prove:

describes a CFL

recognizes a CFL

CFL < PDA

def

thm

