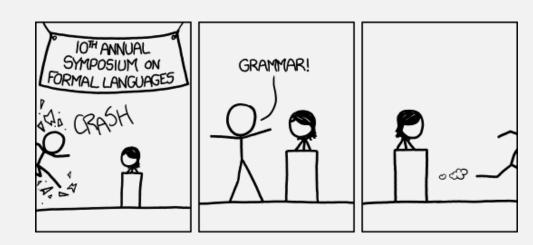
CS 420 / CS 620 Pushdown Automata (PDAs)

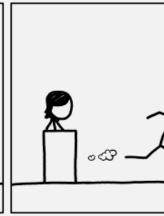
Wednesday October 22, 2025

UMass Boston Computer Science



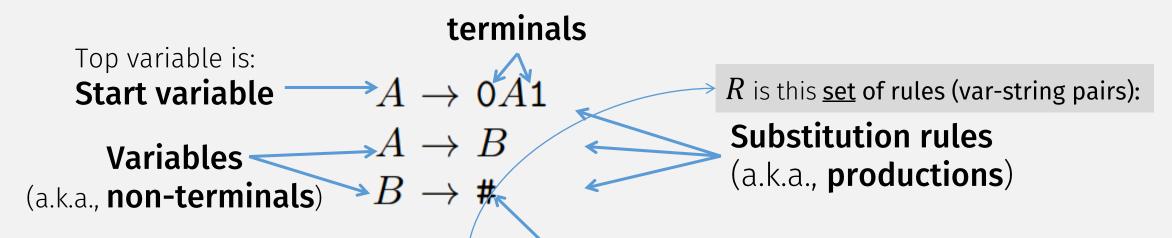
Announcements

- HW 7
 - Out: Mon 10/20 12pm (noon)
 - Due: Mon 10/27 12pm (noon)



Context-Free Grammar (CFG)

Grammar $G_1 = (V, \Sigma, R, S)$



A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables,
- 2. Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$\rightarrow V = \langle$$

$$\Sigma = \{0, 1, 1, \dots, n\}$$

terminals (analogous to DFA's alphabet)

$$S = 1$$

Generating Strings with a CFG

Grammar $G_1 = (V, \Sigma, R, S)$

$$A \rightarrow 0A1$$
 $A \rightarrow B$
 $B \rightarrow \#$

Strings in CFG's language = all possible **generated** / **derived** strings

$$L(G_1)$$
 is $\{0^n \# 1^n | n \ge 0\}$

A CFG generates a string, by repeatedly applying substitution rules:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

This sequence of steps is called a **derivation**

Derivations: Formally

Let
$$G = (V, \Sigma, R, S)$$

Single-step

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Where:

$$(A,B) \in (V \cup X)^*$$
 sequence of terminals or variables $A \in V \leftarrow V$ ariable

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Derivations: Formally

Let $G = (V, \Sigma, R, S)$ Single-step

$$\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$$

Where:

$$\alpha,\beta\in (V\cup\Sigma)^* - \text{sequence of terminals or variables}$$

$$A\in V - \text{Variable}$$

$$A\to\gamma\in R - \text{Rule}$$

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

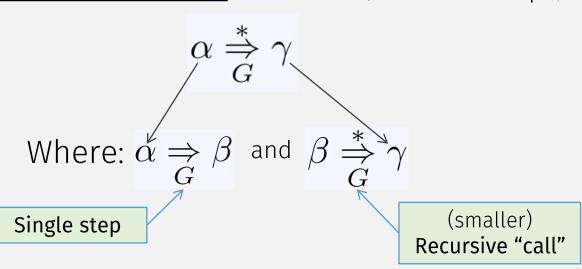
- 1. V is a finite set called the variables,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Multi-step (recursively defined)

Base case: $\alpha \stackrel{*}{\Rightarrow} \alpha$ (0 steps)

Recursive case:

(1 or more steps)



Formal Definition of a CFL

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- **1.** V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$G = (V, \Sigma, R, S)$$

"all possible sequences of terminal symbols ..."

... "that can be **generated** with **rules of grammar** *G*"

"the language of a grammar G is ..."

$$\neg L(G) = \left\{ w \in \Sigma^* \mid S \stackrel{*}{\underset{G}{\rightleftharpoons}} w \right\}$$

Any language that can be generated by some context-free grammar is called a *context-free language*

Alternatively (an easier form to use in a proof is):

IF a language can be generated by some CFG, THEN that language is a CFL

Or: IF a CFG describes a language, THEN that language is a CFL

Designing Grammars: Basics

- 1. Think about what you want to "link" together
- E.g., $0^n 1^n$
 - $A \rightarrow 0A1$
 - # 0s and # 1s are "linked"
- E.g., **HTML**
 - ELEMENT → <TAG>CONTENT</TAG>
 - Start and end tags are "linked"
- 2. Start with small grammars (computation) and then combine
 - just like with **DFA**s, **NFA**s, and **programming**!

Designing Grammars: Building Up

- Start with small grammars and then combine (just like programming)
 - To create a grammar for the language $\{0^n1^n | n \ge 0\} \cup \{1^n0^n | n \ge 0\}$
 - First create grammar for lang $\{ \mathtt{0}^n\mathtt{1}^n|\ n\geq 0 \}$: $S_1 \to \mathtt{0} S_1\mathtt{1} \mid oldsymbol{arepsilon}$
 - Then create grammar for lang $\{1^n0^n | n \ge 0\}$:

$$S_2 \rightarrow 1S_2$$
0 | ϵ

• Then combine: $S o S_1 \ S_2$

New start variable and rule combines two smaller grammars

$$S_1
ightarrow \mathtt{0} S_1 \mathtt{1} \mid \epsilon S_2
ightarrow \mathtt{1} S_2 \mathtt{0} \mid \epsilon S_2 \mathsf{0} \mid \epsilon S_$$

"|" = "or" = union (combines 2 rules with same left side)

(Closed) Operations for CFLs?

• Start with small grammars and then combine (just like programming)

$$S \to S_1 \mid S_2$$

• "Concatenate": $S oup S_1 S_2$

• "Star" (repetition): $S' o S' S_1 \mid oldsymbol{arepsilon}$

Status check:

Could you write out the precise Statement to Prove and the full proof?

"The set of CFLs are closed under ..."

"IF L_1 and L_2 are CFLs THEN ... is a CFL"

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
<u>describes</u> a Regular Lang	<u>describes</u> a CFL

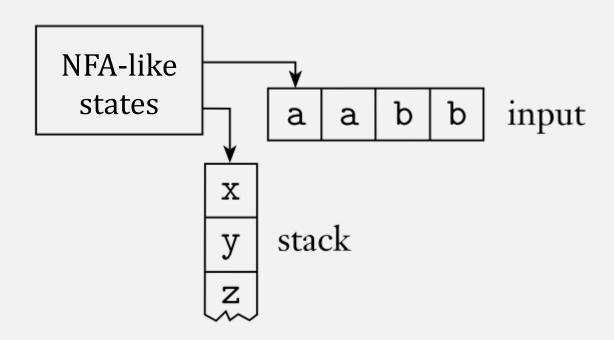
Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
<u>describes</u> a Regular Lang	<u>describes</u> a CFL
Finite State Automaton (FSM)	???
<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm
def	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	
	Proved:	Must Prove:	
	Regular Lang ⇔Regular Expr ☑	CFL ⇔ PDA ???	

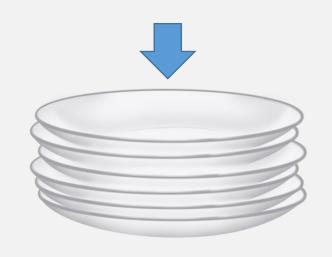
Pushdown Automata (PDA)

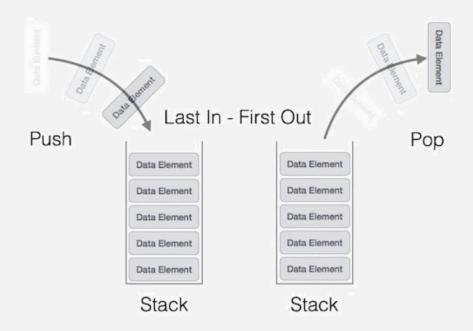
PDA = NFA + a stack



What is a Stack?

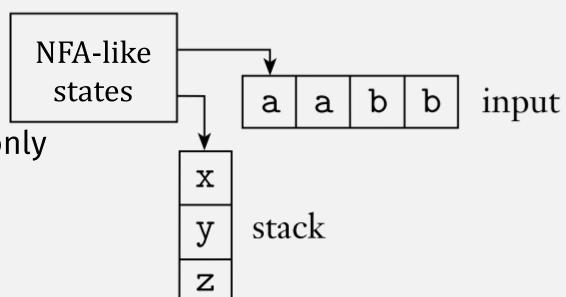
- A <u>restricted</u> kind of (infinite!) memory
- Access to top element only
- 2 Operations only: push, pop





Pushdown Automata (PDA)

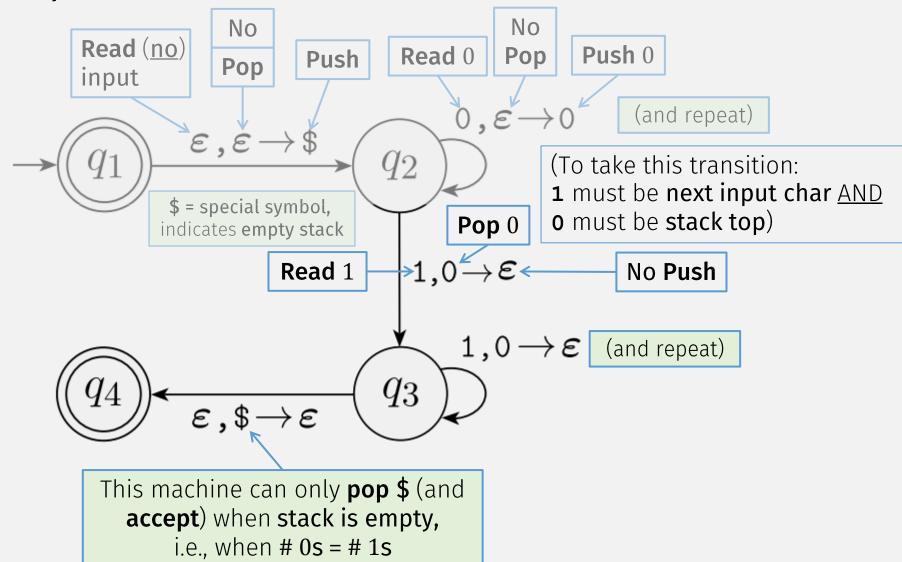
- PDA = NFA + a stack
 - Infinite memory!
 - But ... read/write top location only
 - Push/pop



An Example PDA

A **PDA transition** has **3 parts:**

- Read (input)
- **Pop** (stack)
- **Push** (stack)



Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet has special stack symbols, e.g., \$

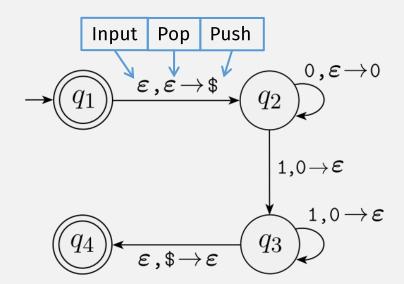
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in C$ Input 1 Pop art state, and Push
- **6.** $F \subseteq Q$ is the set of accept states.

Non-deterministic!
Result of a step is **set** of (STATE, STACK CHAR) pairs

Let M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where $Q = \{q_1, q_2, q_3, q_4\}$,

PDA Format 0, \$ efinition Example Stack alphabet has special stack symbol \$

$$F = \{q_1, q_4\},\$$



A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

Push

1. Q is the set of states,

2. Σ is the input alphabet, Input

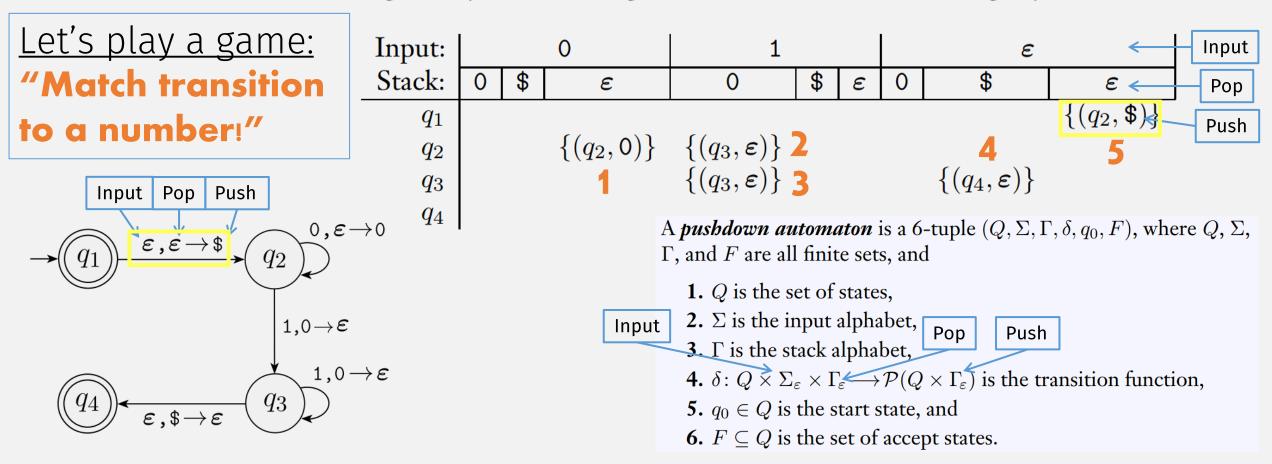
3. Γ is the stack alphabet,

4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,

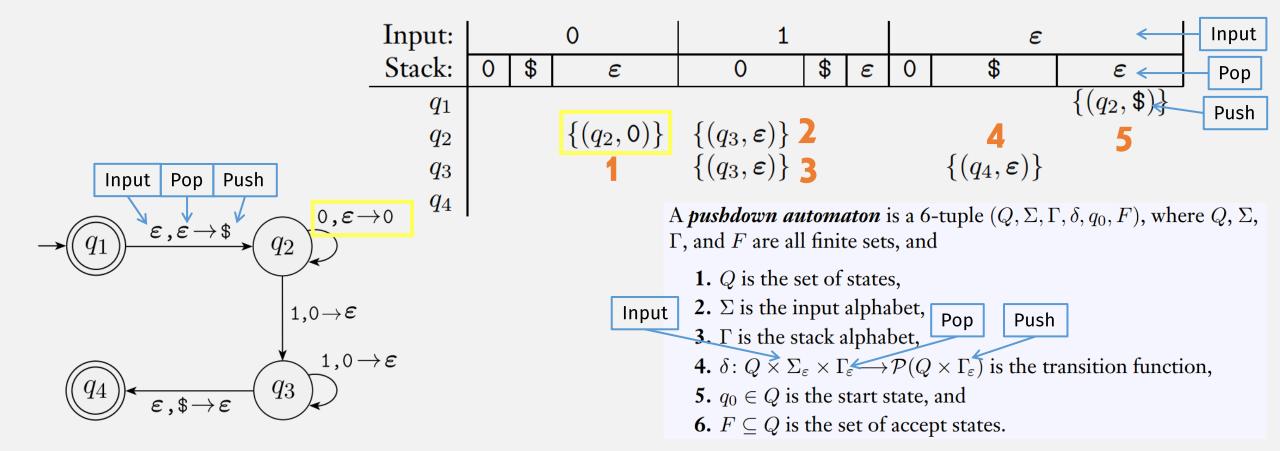
5. $q_0 \in Q$ is the start state, and

6. $F \subseteq Q$ is the set of accept states.

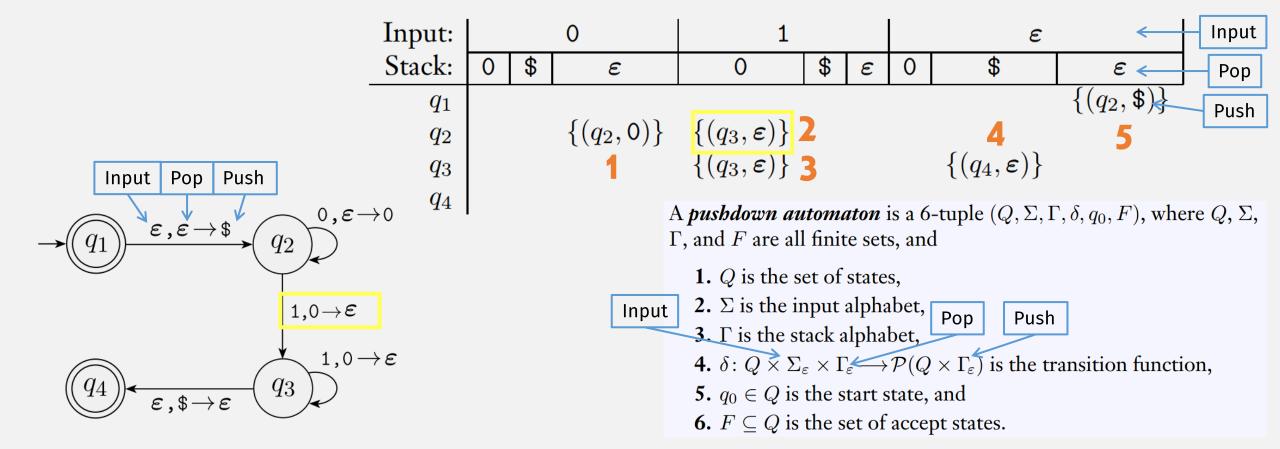
 $F = \{q_1, q_4\}, \text{ and }$



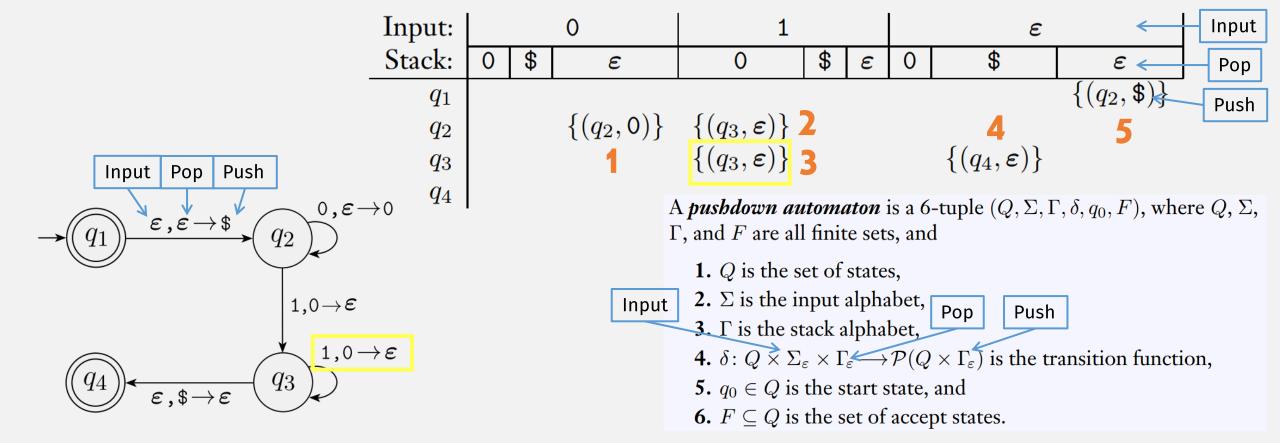
$$F = \{q_1, q_4\}, \text{ and }$$



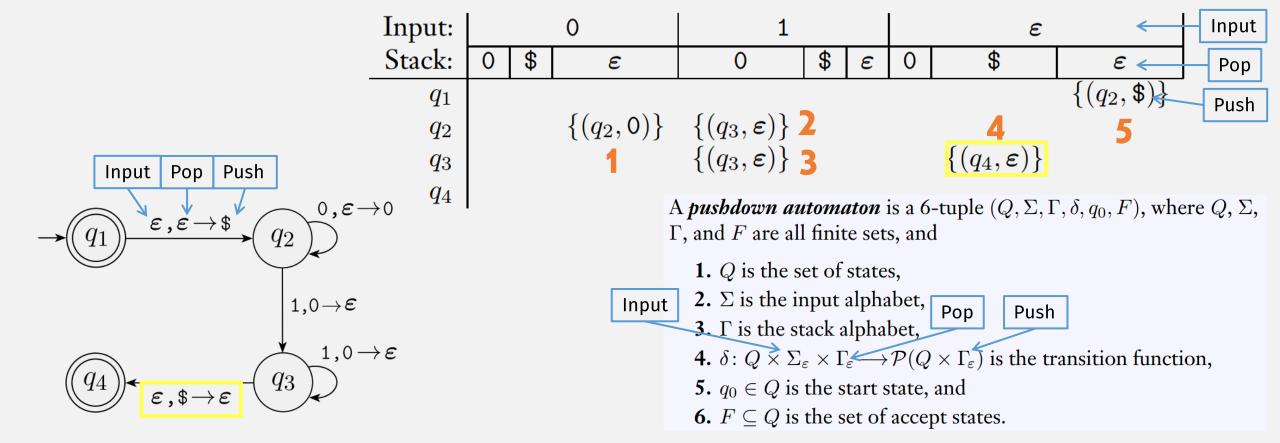
$$F = \{q_1, q_4\}, \text{ and }$$



 $F = \{q_1, q_4\}, \text{ and }$



 $F = \{q_1, q_4\}, \text{ and }$



Let M_3 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where Q =

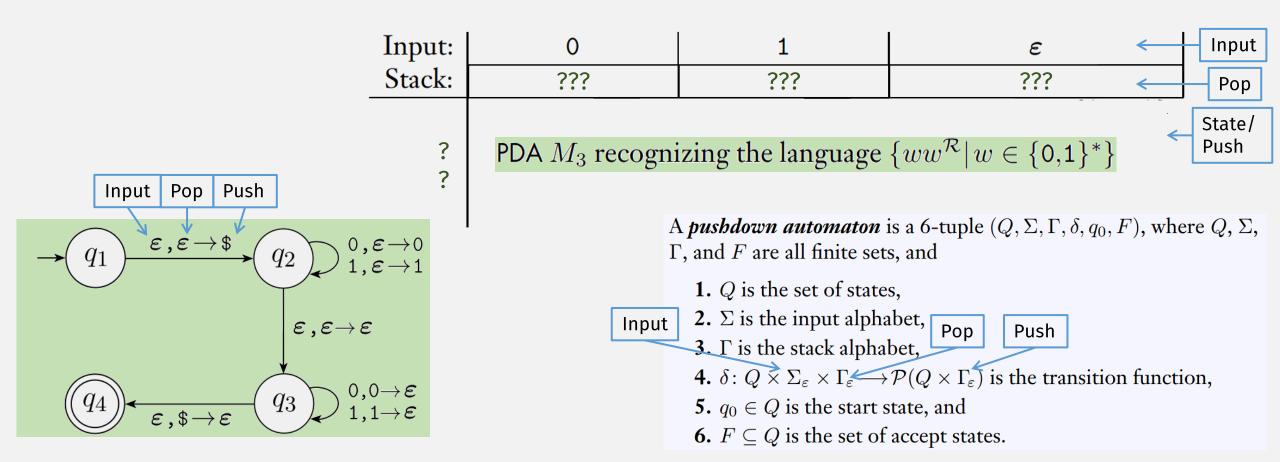
<u>In-class exercise</u>:

Fill in the blanks

$$\Sigma =$$

$$\Gamma =$$

$$F =$$



Let M_3 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where $Q = \{q_1, q_2, q_3, q_4\}$,

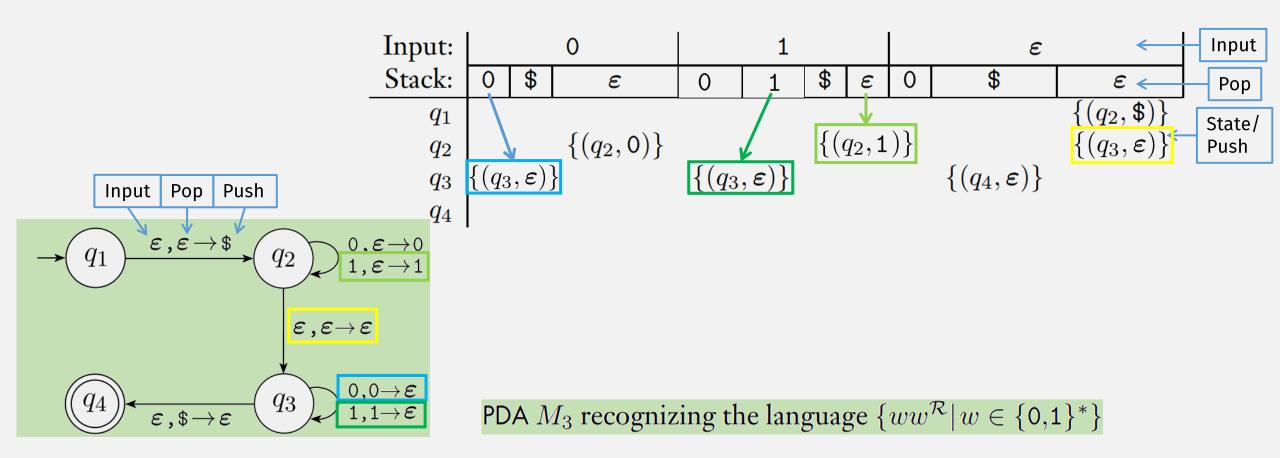
$$Q = \{q_1, q_2, q_3, q_4\},\$$

In-class exercise: Fill in the blanks

$$\Sigma = \{0,1\},\$$

$$\Gamma = \{0,1,\$\},$$

$$F = \{q_4\}$$



DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a **sequence of states:**

• specified by $\hat{\delta}(q_0,w)$ where:

- *M* accepts w if $\hat{\delta}(q_0, w) \in F$
- *M* rejects otherwise

DFA Multi-step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- <u>Domain</u> (inputs):
 - state $q \in Q$
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$

A **DFA computation** is a **sequence of states:**

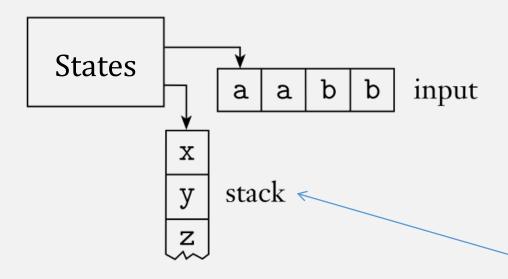
(Defined recursively)

Base case
$$\hat{\delta}(q,arepsilon)=q$$

Recursive Case
$$\hat{\delta}(q,w'w_n)=\delta(\hat{\delta}(q,w'),w_n)$$
 where $w'=w_1\cdots w_{n-1}$

PDA Computation?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only



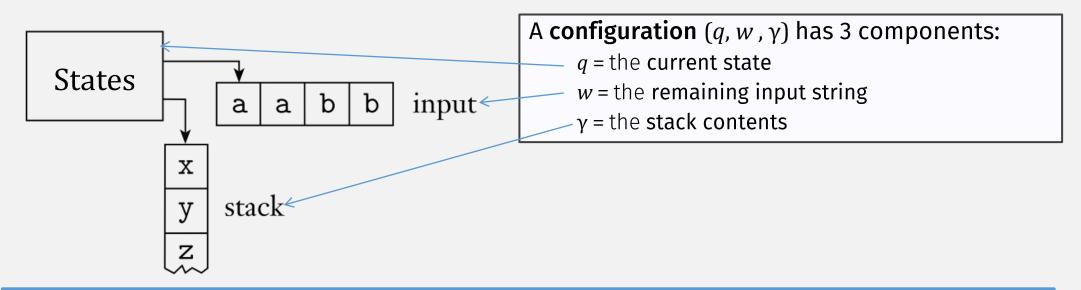
A **DFA computation** is a **sequence of states** ...

A PDA computation is <u>not</u> just a <u>sequence of states</u> ...

... because the **stack contents** can change too!

PDA Configurations (IDs)

A configuration (or ID) is a "snapshot" of a PDA's computation



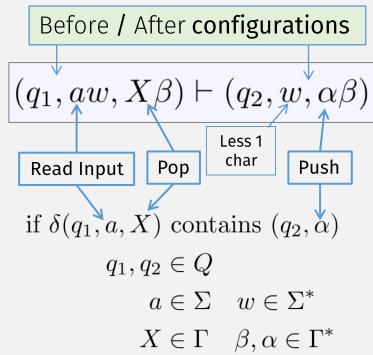
A sequence of configurations represents a PDA computation

PDA Computation, Formally

(one path in computation tree)

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Single-step



Multi-step

Base Case

0 steps

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

1 or more steps

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

Single step Recursive "call"

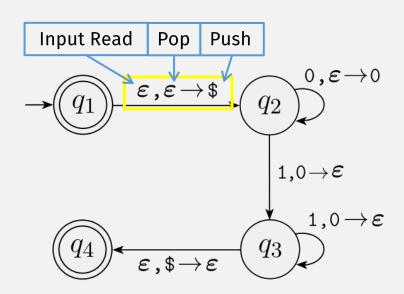
This specifies the **sequence of configurations** for a **PDA** computation

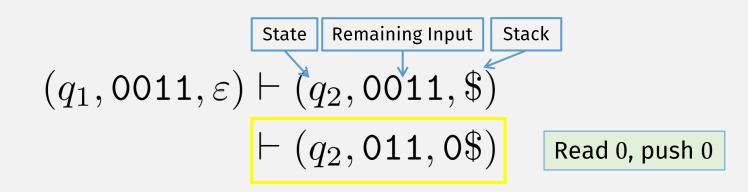
A **configuration** (q, w, γ) has three components

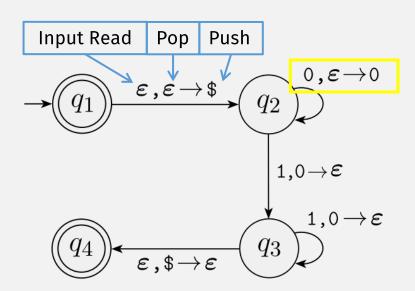
q =the current state

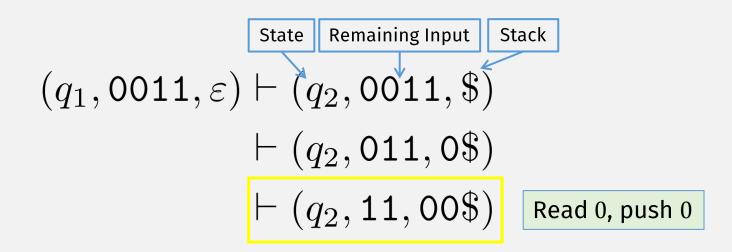
w = the remaining input string

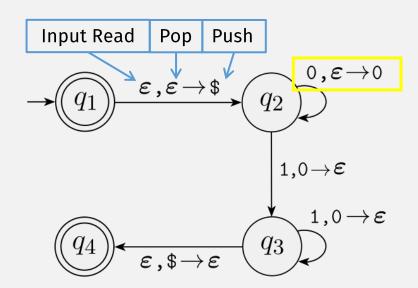
 γ = the stack contents



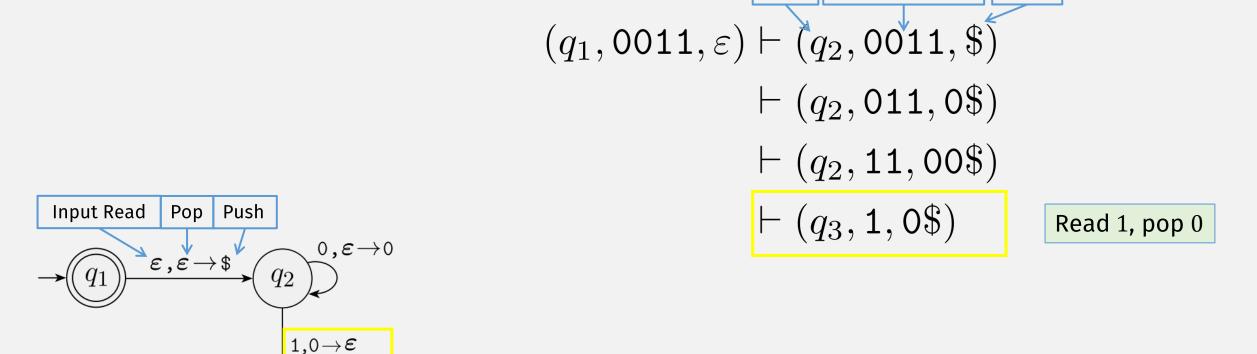








1,0ightarrowarepsilon

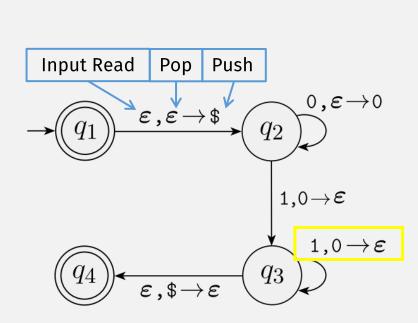


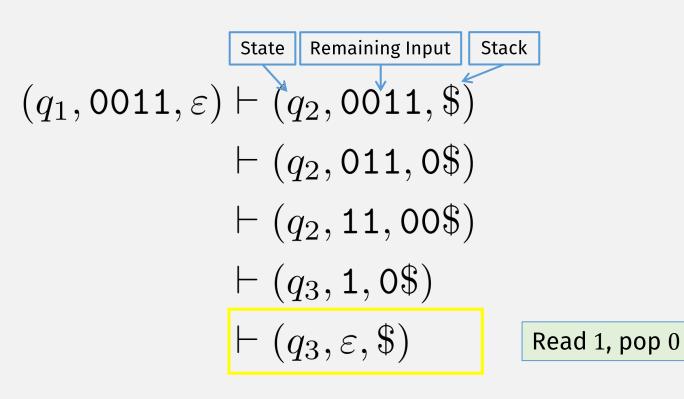
Remaining Input

Stack

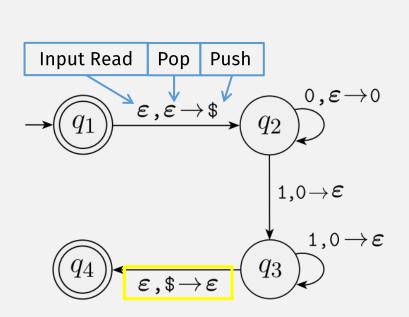
State

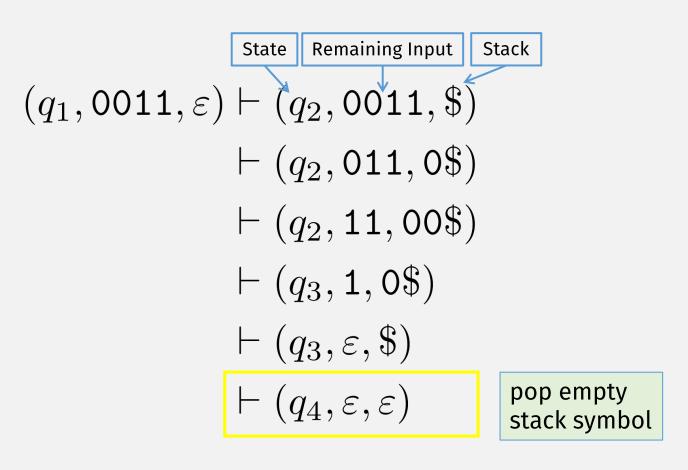
PDA Running Input String Example





PDA Running Input String Example





Flashback: Computation and Languages

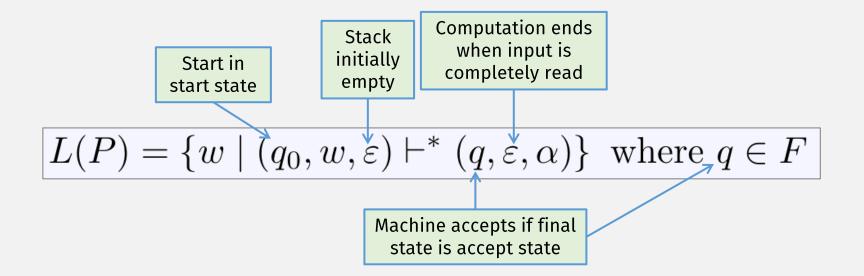
• The language of a machine is the set of all strings that it accepts

• E.g., A DFA M accepts w if $\hat{\delta}(q_0,w) \in F$

• Language of $M = L(M) = \{ w \mid M \text{ accepts } w \}$

Language of a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$



A **configuration** (q, w, γ) has three components

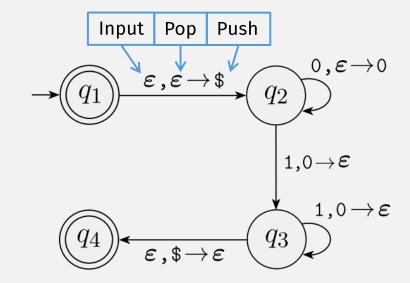
q =the current state

w = the remaining input string

γ = the stack contents

PDAs and CFLs?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only
- Want to prove: PDAs represent CFLs!



- We know: a CFL, by definition, is a language that is generated by a CFG
- Need to show: PDA ⇔ CFG
- Then, to prove that a language is a CFL, we can either:
 - Create a CFG, or
 - Create a PDA

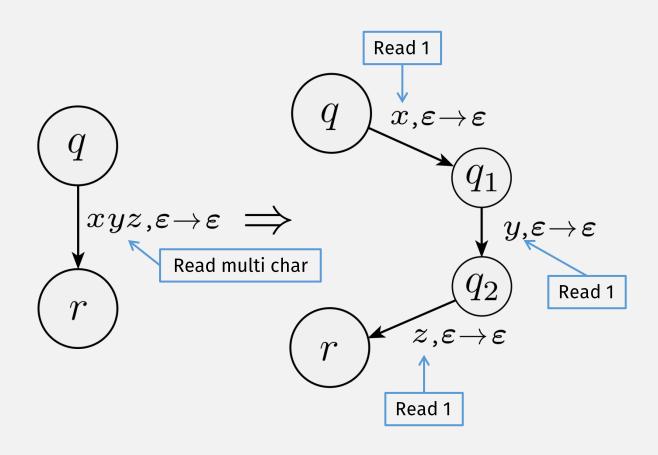
Regular Language vs CFL Comparison

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	
	Proved:	Must Prove:	
	Regular Lang ⇔Regular Expr ☑	CFL ⇔ PDA ???	

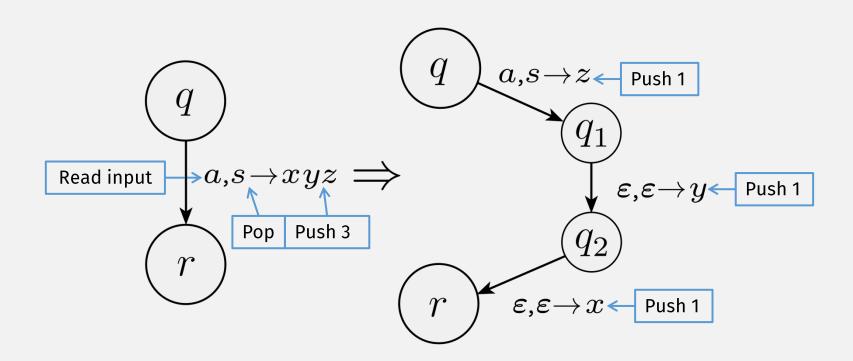
A lang is a CFL iff some PDA recognizes it

- \Rightarrow If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove this part, show: the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition



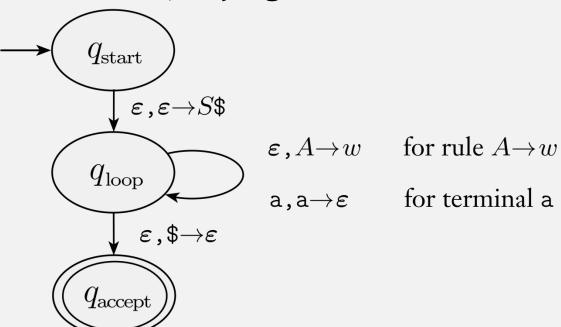
Shorthand: Multi-Stack Push Transition



Note the <u>reverse</u> order of pushes

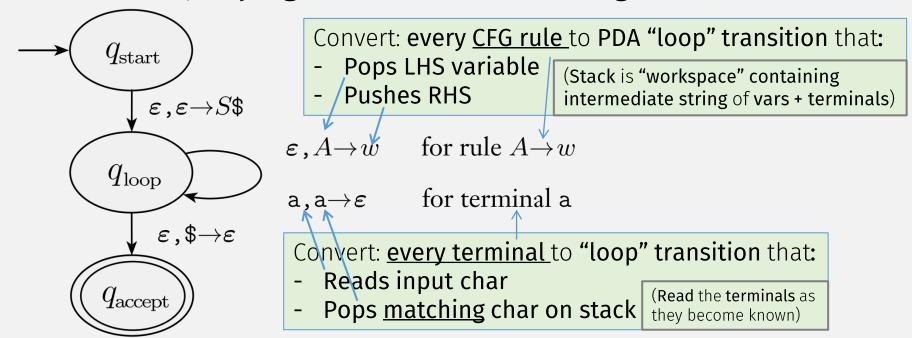
CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones



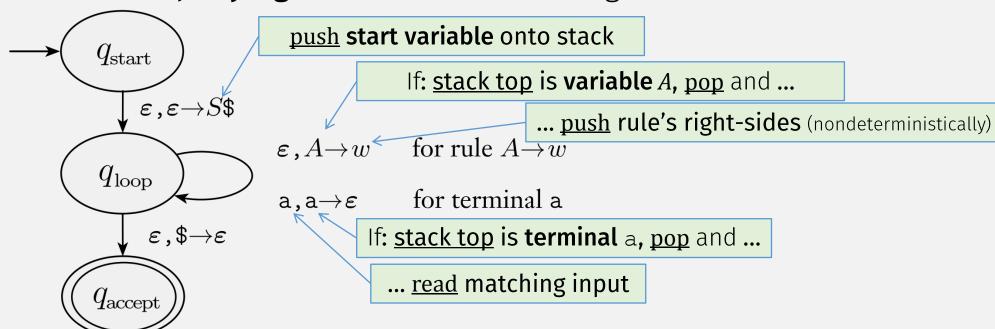
CFG→PDA (sketch)

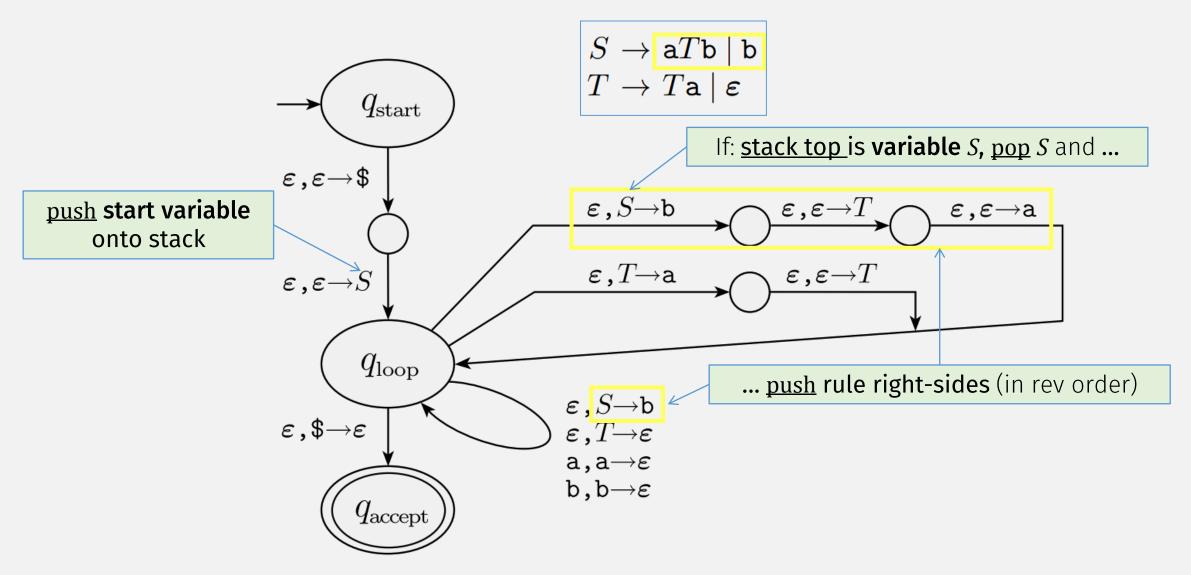
- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

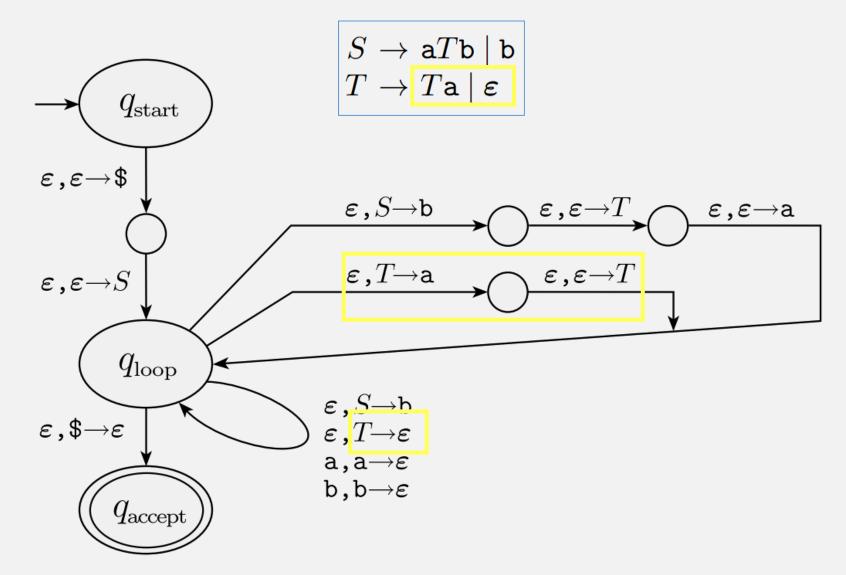


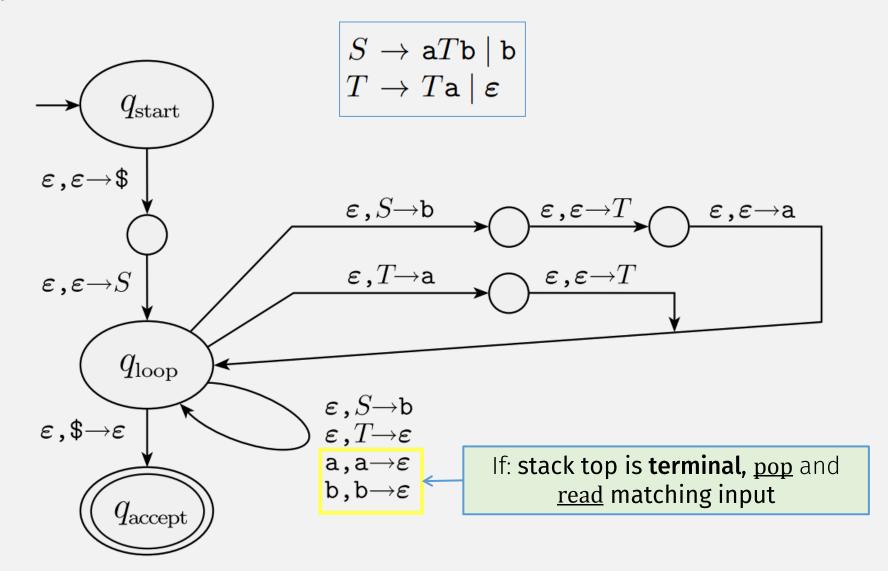
CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones









arepsilon , arepsilon o \$

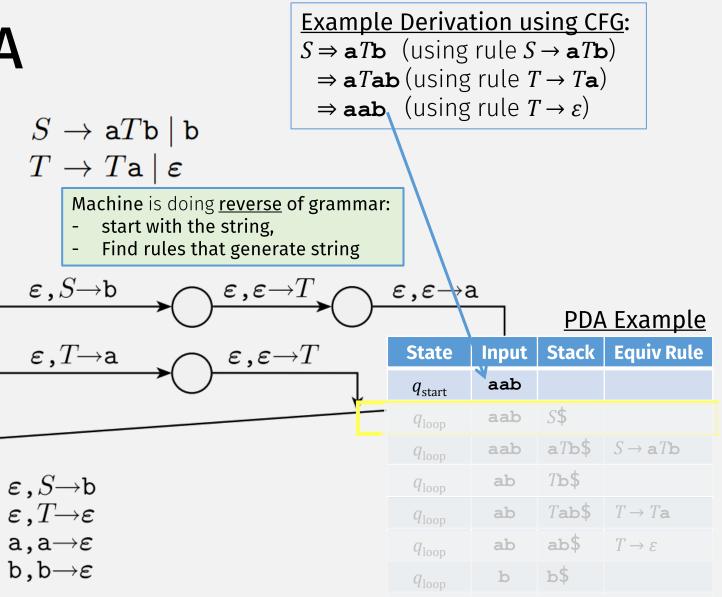
arepsilon , arepsilon o S

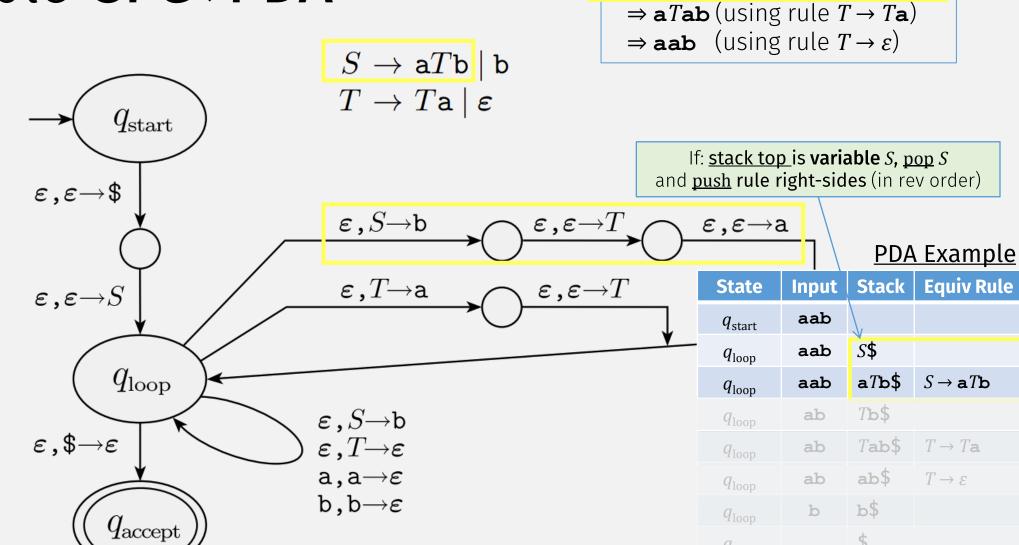
arepsilon,\$ightarrow arepsilon

 q_{start}

 q_{loop}

 $q_{
m accept}$





Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \to \mathbf{a} T \mathbf{b}$)

arepsilon , arepsilon o \$

arepsilon , $arepsilon{ o}S$

arepsilon,\$ightarrow arepsilon

 q_{start}

 q_{loop}

 $q_{
m accept}$

 $S o \mathtt{a} T\mathtt{b} \mid \mathtt{b}$

 $T o T\mathtt{a}\,|\,oldsymbolarepsilon$

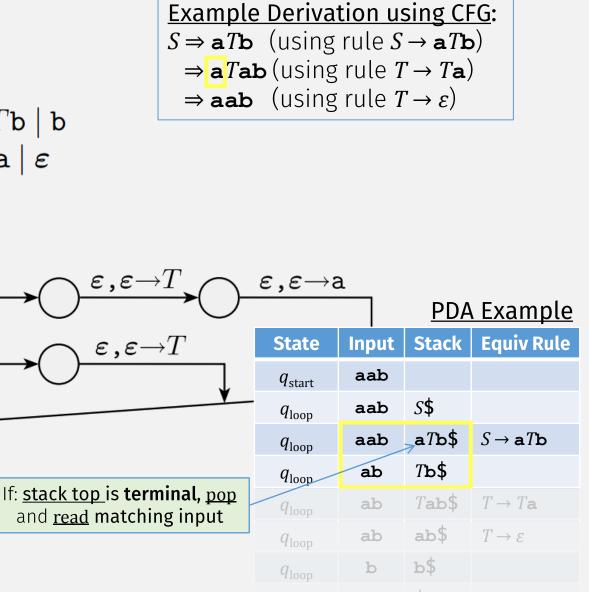
 ε , $S{
ightarrow}$ b

arepsilon, $T{
ightarrow}$ a

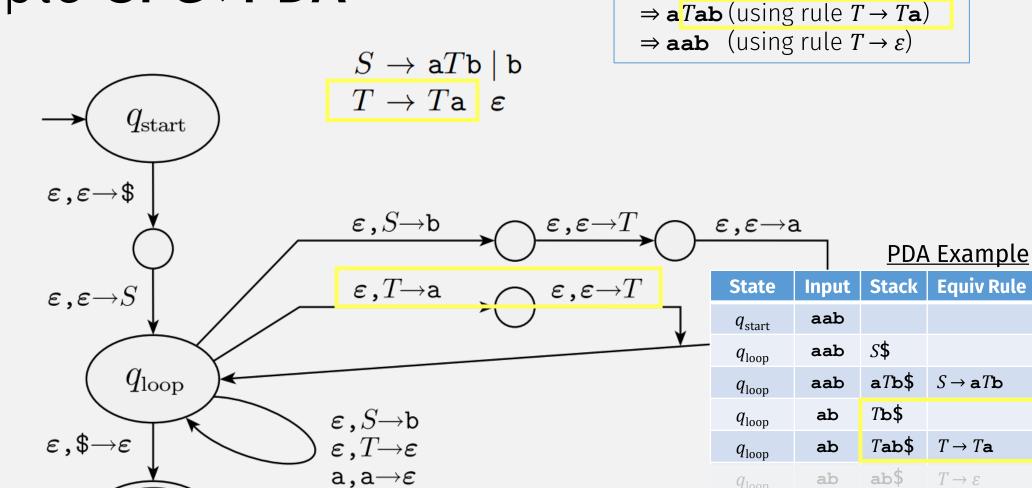
 $egin{aligned} arepsilon &, S & \to \mathbf{b} \\ arepsilon &, T & \to arepsilon \end{aligned}$

a,aightarrowarepsilon

b,bightarrowarepsilon



 $q_{
m accept}$



b,b $\rightarrow \varepsilon$

Example Derivation using CFG:

b\$

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - To prove this part: show PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- 3. Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA

PDA P -> CFG G: Transitions and Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• Want: if P goes from state p to q reading input x, then some A_{pq} generates x

- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow: grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)

The Key IDEA

• To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

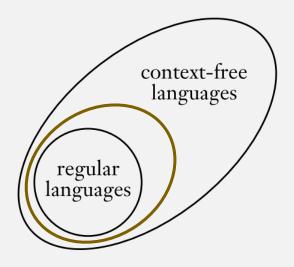
put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Regular vs Context-Free Languages (and others?)

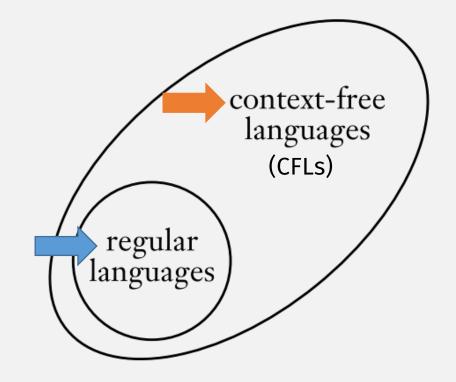


Is This Diagram "Correct"?

(What are the statements implied by this diagram?)

1. Every regular language is a CFL

2. Not every CFL is a regular language



How to Prove This Diagram "Correct"?

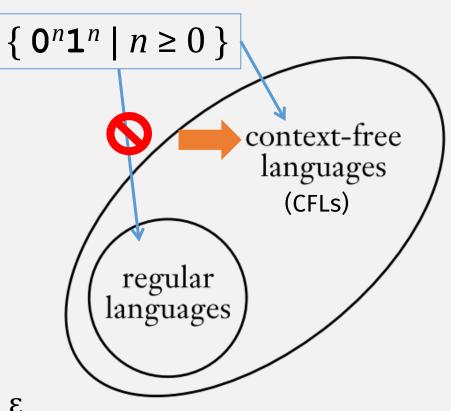
1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a CFL that is not regular

$$\{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

- It's a CFL
 - Proof: CFG $S \rightarrow 0S1 \mid \varepsilon$
- It's not regular
 - Proof: by contradiction using the Pumping Lemma



How to Prove This Diagram "Correct"?

1. Every regular language is a CFL

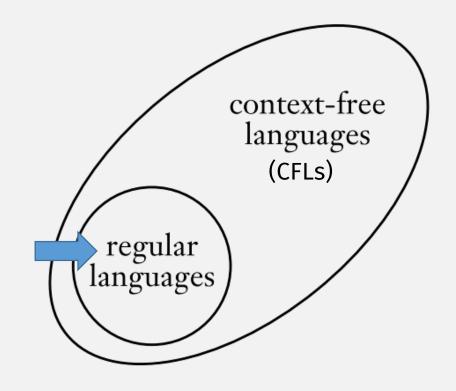
For any regular language A, show ...

... it has a CFG or PDA

✓ 2. Not every CFL is a regular language

A regular language is represented by a:

- DFA
- NFA
- Regular Expression



Regular Languages are CFLs: 3 Ways to Prove

• DFA → CFG or PDA

Coming soon to a future hw?

• NFA → CFG or PDA

Regular expression → CFG or PDA

