ecturel4

CS 420 / CS 620

Pushdown Automata (PDASs)

Wednesday October 22, 2025
UMass Boston Computer Science

?E 10™ ANNUA ?
aEIpOSIUM ON

. (e

")
.,th.q

GRAMMAR!

%)g

lecture14

ﬁ/{/wa/wem/(zf@

e HW 7
 Out: Mon 10/20 12pm (noon)
« Due: Mon 10/27 12pm (noon)

" IOMANOPL

SYMPOSIUM oN
FORMAL

G (gedth

.QZD
KD

7

GRAMMAR!

> A

Last [ine;

Context-Free Grammar (CFG)
Grammar G, =(V, %, R, S)

terminals
Top variable is:
Start variable A S 0A1 R is this set of rules (var-string pairs):
A B Substitution rules

Variables |
(a.ka. non-terminals) =5 — # (aka., productions)

terminals (analogous to DFA’s alphabet)
A context-free grammar is a 4-tuple (V, X, R, S) where

1. V is a finite set called the variables, V =
2. ¥ is a finite set, disjoint from V/, called the terminals,

3. R is a finite set of 7ules;with each rule being a variable and a
string of variables and terminals, and S —

4. S € V is the start variable.

Last [ine;

Generating Strings with a CFG

Grammar G, =(V, %, R, S)

A — 0A1

Strings in CFG's language
A— B = all possible generated / derived strings
B — #

L(Gy) 1s {0"#1"|n > 0}

A CFG generates a string, by repeatedly applying substitution rules:

Example:

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

This sequence of steps is called a derivation

A context-free grammar is a 4-tuple (V, X, R, S), where
/d@ t 7/—/7((75 1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable and a

D e rlvatl O n S F O rm a t ty " string of variables and terminals, and

4. S € V is the start variable.

Let G = (V.X, R, S)
Single-step

aApB = oaﬂ@

G

Where:

sequence of
terminals or variables

Variable

Rule

Last [ine;

Derivations: Formally

Let G = (V.X, R, S)
Single-step

aAB ?g oy 3

Where:
7 * sequence of
Y, /O) < (V U Z) terminals or variables
A - V Variable

A—)’}“’ER Rule

Recursive case:

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of 7ules, with each rule being a variable and a
string of variables and terminals, and

4. S € V is the start variable.

Multi-step (recursively defined)
Base case:

*
o= « (0 steps)
G

(1 or more steps)

Single step

X
o=
G'}/

N\

here: o = (5 and
Where Gﬁ Bzwy

(smaller)
Recursive “call”

A context-free grammar is a 4-tuple (V, X, R, S), where
/d@ t 7/—/” e, 1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

. . . 3. R is a finite set of rules, with each rule being a variable and a
O r I I I a e | n I t I O n O a string of variables and terminals, and

4. S € V is the start variable.

G=(V,X,R,S)

“all possible sequences of

: , ... ‘that can be generated
terminal symbols ...

with rules of grammar G”

“the | f * E
pommeees L(G) = {we T |5 w)

Any language that can be generated by some
context-free grammar is called a context-free language

Alternatively (an easier form to use in a proof is):
IF a language can be generated by some CFG,
THEN that language Is a CFL

Or: IF a CFG describes a language, THEN that language is a CFL

Last [ine;

Designing Grammars : Basics

1. Think about what you want to “link” together

N
. E.g. 0717
e A 0A1

e #0s and # 1s are “linked”

 E.g, HTML —
« ELEMENT = <TAG>CONTENT</TAG>
« Start and end tags are “linked”

2. Start with small srammars (computation) and then combine
* just like with DFAs, NFAs, and programming!

Last [ine;

Designing Grammars: Building Up

e Start with small grammars and then combine (just like programming)

- To create a grammar for the language {0™1"|n>0}U{1"0"|n >0}

* First create grammar for lang {Oﬂ'ln\ n = 0}3

Sl — 0511 ‘ 3
* Then create grammar for lang {10™| n > 0}:
So-—=1550 ‘ g
* Then combine:
- S % S]_ | 82 lll" =ll0r"= union
New start variable and rule (combines 2 rules
combines two smaller with same left side)

grammars

Last [ine;

(Closed) Operations for CFLs?

e Start with small grammars and then combine (just like programming)

4O S S| S
Status check:

- “Concatenate”: § — Sy S oty i e prec
full proof?

e “Star” (repetition): S, — S’ Sl ‘ = “The set of CFLs are closed under ...”

“IF L, and L, are CFLs THEN ... is a CFL”

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL
Finite State Automaton (FSM) 2?7

recognizes a Regular Lang recognizes a CFL

Regular Language vs CFL Comparison

Regular Languages

thm

Regular Expression

describes a Regular Lang

Finite State Automaton (FSM)

def

recognizes a Regular Lang

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

def

thm

Regular Language vs CFL Comparison

Regular Languages

thm Regular Expression
describes a Regular Lang
Finite State Automaton (FSM)
def .
: recognizes a Regular Lang
Proved:

Regular Lang < Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

Push-down Automata (PDA)

Must Prove:

describes a CFL

recognizes a CFL

CFL < PDA 22?2

def

thm

Pushdown Automata (PDA)

PDA = NFA + a stack

NFA-like
states

J

stack

%N%ﬂ«—'
W
pJ

Input

What I1s a Stack?

» A restricted kind of (infinite!) memory
« Access to top element only
» 2 Operations only: push, pop

& Last In - First Out /
Push

Pop

Data Element

Data Element Data Element

Stack Stack

Pushdown Automata (PDA)

 PDA = NFA + a stack
* Infinite memory!

« But ... read/write top location only

 Push/pop

NFA-like
states

J

stack

%N%N‘—I
(v
[V

input

{0™1"| n > 0}

An Example PDA

A PDA transition No No
has 3 parts: Read (no) pop | | Push Read 0 || Pop | | Push 0
- Read (input) input

- Pop (stack)

0,€—0 (and repeat)
- Push (stack) E,— $. —
—;- > (/9 (To take this transition:

1 must be next input char AND
$ = special symbol,
indicates empty stack POP 0 | | 0 must be stack top)

Read 1 >1, O) £ < No Push

1,0— &/ (and repeat)
. $ — €

This machme can only pop $ (and
accept) when stack is empty,
l.e., when #0s =# 1s

Formal Definition of PDA

A pushdown automaton is a 6-tuple (Q, 3,1, 9, qo, I'), where Q, %,
I, and F are all finite sets, and

1. @ is the set of states,
2. ¥ is the input alphabet,
3 . F iS the StﬂCk alphabet, Stack alphabet has special stack symbols, e.g., $

4. 6: Q x X. x [.—P(Q x I.) is the transition function,

5' 4o & (Input D Pop ATt state, al‘ld Push
6. F' C (is the set of accept states.

Non-deterministic!
Result of a step is set of (STATE, STACK CHAR) pairs

Let Ml be (Qa 27F:5: ql:F)J Where Q — {q13 QQa qg) Q4}’

PDA F()rm]zé:[{ﬁ]éfini’rinn Fyamnlo

{0, $}, Stack alphabet has special stack symbol $

F = {QI7 qfl}a

Input | Pop | Push
0,€—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€,€ 239 >((2 ', and F are all finite sets, and

1. @ is the set of states,

1,0_> 8 |nput z. Z iS the lnput alphabet, POp PUSh

I is the stack alphabet,
1,0—¢€ 4. 5: Q X X x T P(Q x T¢) is the transition function,
e $¢c q3 Z qo € Q is the start state, and

. F' C Q is the set of accept states.

Let M; be (Q,%,T,0,q1, F), where @ = {q1,92,93,94},
Y = {0,1},
['={0, $},
F ={q1,q4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Let's play @ game: | pu: 0 1 . [input
Stack: [0 | $ € 0 $1|0 $ € I Pop
qi1 1(q2, $)4 Push
q2 {(g2,0)} {(g3,¢)}
e [| ot g3 {(g3,€)} {(qa,€)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

@k
" e, 5—c

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Let M be (Q,X,T,0,¢1, F), where () = {ql, q2, 43, q_..l},

Input | Pop | Push

€,6—%

-

,

€,$—€

¥ ={0,1},
I'={0,$},
F = {Ql ql}a and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: g 0 $(e|0 $ € I Pop
qd1 {(q27 $)} Push
g2 {(q2,0)} {(gs3,€)}
g3 {(Q3=€)} {(q4a€)}

qa

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Let M; be (Q,3,T,4,q1, F), where Q = {q1, 2,43, 04},
> ={0,1},
['={0,$},
F ={q1,q4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: [0 | $ € 0 $1|0 $ € I Pop
q1 {(q27 $)} Push
g2 {(g2,0)} {(g3,€)}
e [| ot g3 {(g3,€)} {(qa,€)}
,E—O0 4 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€,€2% I', and F are all finite sets, and

1. Q is the set of states,

@

1,056 Input | 2. X is the input alphabet, Pop bush
3. T is the stack alphabet,
1,0—¢€ 4. 0: Q X X x T=P(Q x I.) is the transition function,
‘ .5 e 5. qo € @ is the start state, and
6. F' C (@ is the set of accept states.

Let M be (Q,X,T,0,¢1, F), where () = {ql, q2, 43, q_..l},

Input | Pop | Push

€,6—%

-

,

€,$—€

¥ ={0,1},
I'={0,$},
F = {Ql ql}a and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: g 0 $(e|0 $ € I Pop
qd1 {(q27 $)} Push
g2 {(g2,0)} {(gs,€)}
g3 {(g3,€)} {(qs,€)}

qa

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Let M be (Q,X,T,0,¢1, F), where () = {ql, q2, 43, q_..l},

Input | Pop | Push

€,6—$
—

¥ ={0,1},
I'={0,$},
F = {Ql ql}a and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: g 0 $(e|0 $ € I Pop
qi {(QQa $)} Push
q2 {(q2,0)} {(g3,€)}
q3 {(g3,€)} {(qa,€)}
0,€—0 4 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and
1. Q is the set of states,
1)0_} 8 |nput 2. Z iS the lnput alphabet, POp PUSh
3. T is the stack alphabet,
1,0—¢

4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6. F' C (@ is the set of accept states.

Let M3 be (Q,E,F,é, qlJF)5 where Q —

In-class exercise:
Fill in the blanks B

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: ?77? ?27? ?77? I Pop
| State/
? | PDA M3 recognizing the language {ww™|w € {0,1}*} Push
?

Input | Pop | Push

£,€—% 0,€—0
_’@ > 42 1,61

E,EE

0,0—¢€
4 s5oe \ B ie

Input

1
2
3

4
5
6

. @ is the set of states,
. X is the input alphabet
I is the stack alphabet,

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

>| Pop Push

. 0:Q X Y. x T P(Q x I.) is the transition function,
. o € @ is the start state, and
. F' C Q is the set of accept states.

Let M3 be (Qa E'}F:é: qlJF)J Where Q — {q13 QQa Q3; Q4}’

. = {0,1},
In-class exercise:

Fillin the blanks I =198}
FZ{C_M}

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: |0 | $ € 0 1 $1e|0 $ E I Pop
q1 / {(q2,$)} State/
92 {(Q%O)} {(g2,1)} {(g3,€)} | Push
Input | Pop | Push g3 [{(g3,€)} {(g3,¢)} {(qs,€)}

_}@ €,€%

PDA M5 recognizing the language {ww”™|w € {0,1}*}

Flashback

DFA Computation Rules

Informally Formally (ie, mathematically)
Glven
 ADFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW3 - Wy
A DFA computation (~ “Program run”): A DFA computation is a
 Start in start state sequence of states:
- Repeat: . X
. Read 1 char from Input, and - specified by §(qo, w) where:

« Change state according to transition rules

Result of computation: N
. Accept if last state is Accept state * Maccepts w if 0(qo,w) € F
* Reject otherwise « M rejects otherwise

Flashback

d: Q X ¥—Q is the transition function

DFA Multi-step Transition Function
0: QXX = Q

« Domain (inputs):

. state ¢ € ()

e string w = wiw2 -+ Wy where w; € X

- Range (output):
. state ¢ € ()

A DFA computation is a
sequence of states:

(Defined recursively)

A

Base case 5((]7 g) = q

Recursive Case

ey e

0(q, w'wn) = 6(0(q, w'), wn)

where w’ = wy -+ - w,_1

PDA Computation?

* PDA = NFA + a stack

* Infinite memory
e Push/pop top location only

States

J

ala|b|b| mnput

%N%N<—I

stack

A DFA computation is a
sequence of states ...

A PDA computation is not just a
sequence of states ...

... because the stack contents
can change too!

PDA Configurations (IDs)

« A configuration (or ID) is a “snapshot” of a PDA’s computation

A configuration (g, w, y) has 3 components:
q = the current state
w =the remaining input string
y = the stack contents

J

States

input

stack

%N%N<—I
)
)
-
o

A sequence of configurations represents a PDA computation

PDA Computation, Formally

(one path in computation tree) P = (Q’ >, T, 67 q0, F)
Single-step Multi-step
Before / After configurations Base Case 0 steps
%
(q1,aw, XB) F (g2, w, af) I+ I for any ID [
Less 1
Read Input | | Pop || M || push .
* Recursive Case 1or more steps
if 0(q1, a, X) contains (qo,) =

41,2 € Q I = Jif there exists some ID K

teY we such that I F K and K F J

Xel fael Single step Recursive “call”

A configuration (g, w, y) has three components : .
2 = the current state This specifies the sequence of

w = the remaining input string configurations for a PDA computation

y = the stack contents

PDA Running Input String Example

State || Remaining Input || Stack

(ql, 0011, 5)

Input Read | Pop | Push

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€’€_>$ /\\.-—-_.’

1,05€

@)= (o

1,0—¢€

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
- (g2,011,09)

Read 0, push 0

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€’€_>$ /\\.-—-_.’

1,05€

@)= (o

1,0—¢€

(ql, 0011, 5)

State || Remaining Input || Stack

- (gq2,0011, %)
— (g2,011, 09)

= (g2, 11, 00%)

Read 0, push 0

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (go,0011, $)
- (2,011, 0%)
— (g2,11,009)
Input Read | Pop | Push . L ((]37 1, O$) Read 1, pop 0
_) €,€8% 0 ’
Loose

1,0¢€
" e 5oe \ B

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
— (g2,011,0%)

- (g2,11,00%)
Input Read | Pop | Push . W (q?” 1, O$)
_, €.€729% (g a (QB757$) Read 1, pop 0
1,0>€

1,0—¢€

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) I (g2,0011, $)
- (g2,011, 03)
- (g2, 11, 00%)

Input Read | Pop | Push (C]?n 1 O$)
) - (

- (

_) €,€28% qs,)

4, €, 8) pop empty
* e, 5—e

stack symbol

thshback: COMputation and Languages

« The language of a machine is the set of all strings that it accepts
» E.g., A DFA M accepts w if 0(qy,w) € F

e Language of M=L(M)={w | M accepts w}

Language of a PDA

P (Q?Z?F?(S?qojp)

Startin
start state

Stack
initially
empty

Computation ends
when input is
completely read

~

L(P) = {w | (g0, w,&) F* (¢,€,)} where g€ F

AN
7

A configuration (g, w, y) has three components
q = the current state
w = the remaining input string
y = the stack contents

Machine accepts if final /

state is accept state

PDAs and CFLs?

Input | Pop | Push

* Infinite memory
« Push/pop top location only

Want to prove: PDAs represent CFLs! 4
£,5 e

We know: a CFL, by definition, is a language that is generated by a CFG

Need to show: PDA < CFG

Then, to prove that a language is a CFL, we can either:
 Create a CFG, or
* Create a PDA

PDA = NFA + a stack —» S N q2

0,€—0

1,05€

1,0—¢€
q3

Regular Language vs CFL Comparison

Regular Languages

thm Regular Expression
describes a Regular Lang
Finite State Automaton (FSM)
def .
: recognizes a Regular Lang
Proved:

Regular Lang < Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

Push-down Automata (PDA)

Must Prove:

describes a CFL

recognizes a CFL

CFL < PDA 22?2

def

thm

A lang Is a CFL iff some PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
« We know: A CFL has a CFG describing it (definition of CFL)
« To prove this part, show: the CFG has an equivalent PDA

< |f a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition

Shorthand: Multi-Stack Push Transition

o o a,S—>Z < push 1

Read input a,s—IYz i E,E—Y Push 1

° Pop | Push 3 @

EE—XT Push 1

Note the reverse order of pushes

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
by (nondeterministically) trying all rules to find the right ones

e, A—w forrule A—w

a,a—€ for terminal a

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

Convert: every CFG rule to PDA “loop” transition that:

Pops LHS variable (Stack is “workspace” containing
Pushes RHS intermediate string of vars + terminals)

e, A—=w forrule A—w

a,a—€ for terminal a

Convert: every terminal to “loop” transition that:

Reads input char :
. (Read the terminals as
Pops matching char on stack | they become known)

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

push start variable onto stack

If: stack top is variable 4, pop and ...

... push rule’s right-sides (nondeterministically)
e, A—w" forrule A=w

a,a—¢ for terminal a

If: stack top is terminal a, pop and ...

... read matching input

Example CFG>PDA

S —alb|b
T — Tale

If: stack top is variable S, pop S and ...

e,5—b)O€,€—>T)O gy |
g, [—a ’O e, e—1T l

... push rule right-sides (in rev order)

g, e—9%
push start variable
onto stack

e,S—b
g, l—e
a,a—€

Fxample CFG>PDA

S — alb|b
T — Tale

e,S5—b)O€,€—>T)O £,€—a
g, [—a)O 2 e l

e, l—e
a,a—e€

o

Example CFG>PDA

S — alb|b
T — Tale

e,5—b)Os,e—ﬂ")o g,e—a
g, [—a ’O e, e—1T l

g,S5—b
e, T—e
a,a—¢€ If: stack top is terminal, pop and

b,b—e read matching input

l . : :
Example CFG>PDA S ars (ssing role 5 o oTe)
= aTab (using rule T - Ta)

= aab, (using rule T- ¢)

S — alb|b
T — Tale

Machine is doing reverse of grammar:
- start with the string,
- Find rules that generate string

e,5—b g,e—1T g,E—va
)O | PDA Example

‘L Qstart aab

Example Derivation using CFG:

Exam ple CFG%PDA S=aTb (usingrule S— aTb)

= aTab (using rule T— Ta)
= aab (usingrule T- ¢)

S — alb|b
T — Tale

If: stack top is variable S, pop S
and push rule right-sides (in rev order)

e,5—b g,e—1T £,E
=)O = O —] PDA Example
g, [—a e, e—1T
)O l Tetart aab

aab S$

qloop

Qloop aab aTb$ S-aTb
e,S5—b
e, T—e
da,a—€&

o

Example CFG>PDA

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

S — alb|b

T — Tale

e,S5—b
e, T—e
a,a—e€
b,b—e

If: stack top is terminal, pop
and read matching input

Astart
qloop
qloop

qloop

e,5—b)O€,€—>T)O g,e—a |
g, [—a ’O e, e—1T l

PDA Example

aab

aab S$

aab _aTb$ S-aTb
ab To$

Example CFG>PDA

S — alb|b

T — Ta €

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e, [—a , ~ €,e—=T

U/ _l Qitart

1o00p

100p

£, S—b Q100p

e, T—e Qioop
a,a—€
b,b—e

e,5—b)O€,€—>T)O g,e—a |

aab

aab

aab
ab
ab

PDA Example

5$

aTb$ S—-aTb
To$

Tab$ T- Ta

A lang Is a CFL iff some PDA recognizes it

= |f a language is a CFL, then a PDA recognizes it
* Convert CFG>PDA

& |f a PDA recognizes a language, then it's a CFL
« To prove this part: show PDA has an equivalent CFG

PDA->CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-

Important:
This doesn’t change the language recognized by the PDA

PDA P -> CFG G : Transitions and Variables

= (Q,%,T,6,q0, {qaccepe ;) Variablesof G are {A,| p,q € Q}
t

- Want: if P goes from state p to q reading input x, then some A, generates x

» So: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by,

* Add rules: A,, > A,,A,, for each state r
« These rules allow: grammar to simulate every possible transition
 (We haven't added input read/generated terminals yet)

The Key IDEA
« To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(pia,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p,a,€) contains (7, u) and (s, b, u) contains (g, €),

put the rule A4,,«=aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G

A language Is a CFL <> A PDA recognizes It

= If a language Is a CFL, then a PDA recognizes it
* Convert CFG>PDA

< |If a PDA recognizes a language, then it's a CFL
* Convert PDA>CFG

Regular vs Context-Free Languages
(and others?)

context-free

languages

regular
languages

s This Diagram “Correct”?

(What are the statements implied by this diagram?)

m=) 1. Every regular language is a CFL

context-free

languages
(CFLs)

2. Not every CFL is a regular language

mi) regular

languages

How to Prove This Diagram “Correct”?

{0"1"|n=20}

G/ontext-free
languages

(CFLs)

1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a CFL that is not regular

regular
languages
{ Qn1n | n > O} * It'sa CFL

+ Proof: CFGS — 051 | €

 It's not regular

« Proof: by contradiction
using the Pumping Lemma

How to Prove This Diagram “Correct”?

m=) 1. Every regular language is a CFL

For any regular language 4, show ... context-free

languages

... it has a CFG or PDA (CFLs)

v]12. Not every\CFL is a regular language

mi) regular
languages

A regular language is represented by a:
- DFA

- NFA

- Regular Expression

Regular Languages are CFLs: 3 Ways to Prove

- DFA —

Coming soon to a future hw?
context-free

languages

* NFA - (CFLs)

) regular
languages

« Regular expression —

Are there other interesting
subsets of CFLs?

