CS 420 / CS 620 CFGs vs PDAs subCFLs and DPDAs

Monday October 27, 2025

UMass Boston Computer Science

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Announcements

• HW 7

- Out: Mon 10/20 12pm (noon)
- Due: Mon 10/27 12pm (noon)

HW notes

 Correct Gradescope page assignment of problems is now part of the correctness each submission

Gradescope note

Regrade requests must address a specific deduction

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY. Last Time:

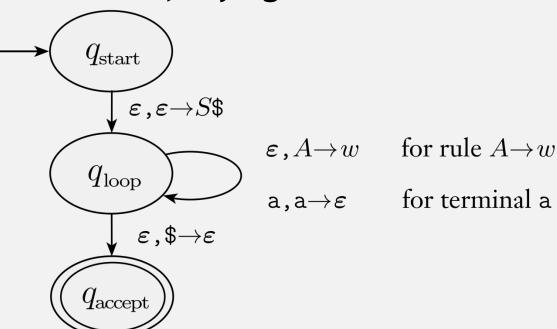
Regular Language vs CFL Comparison

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Deterministic Finite-State Automata (DFA)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	
	Proved:	Must Prove:	
	Regular Lang ⇔Regular Expr ☑	CFL ⇔ PDA ???	

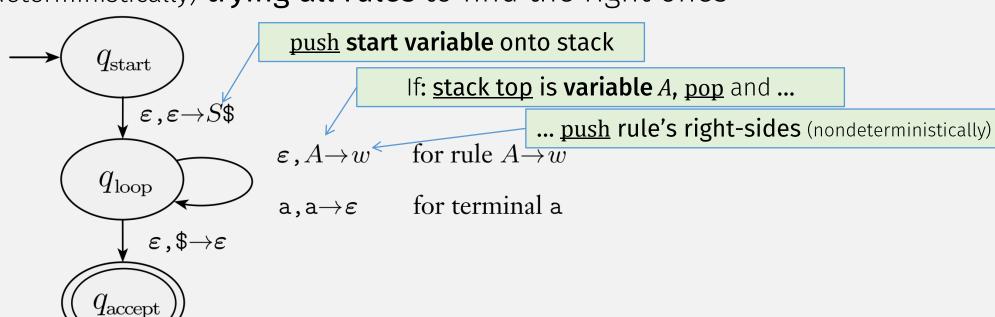
A lang is a CFL iff some PDA recognizes it

- \Rightarrow If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove this part, show: the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

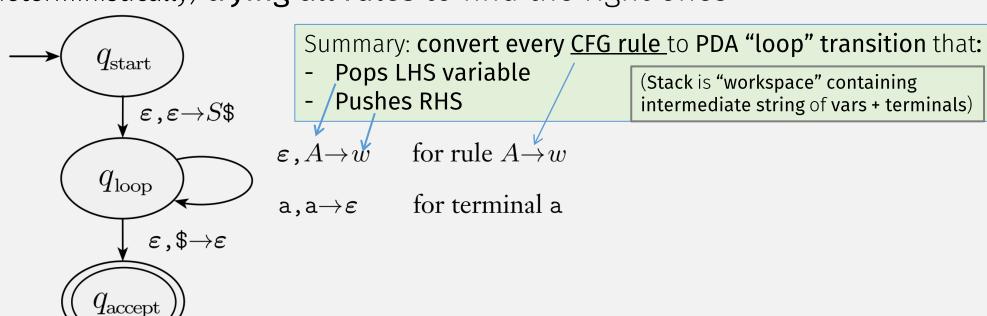
- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones



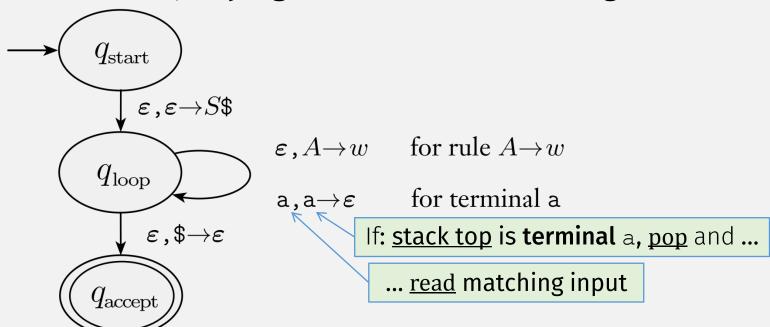
- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones



- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones



- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

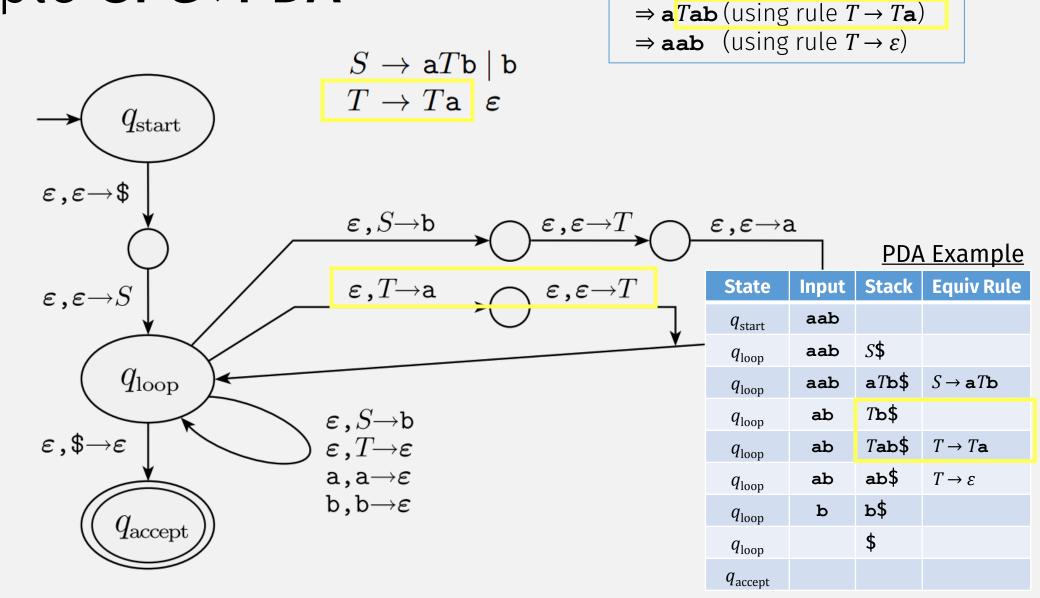


- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones



Last Time:

Example CFG>PDA



Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - To prove this part: show PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- 3. Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

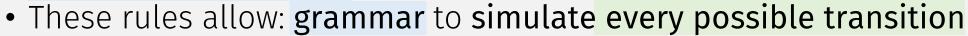
This doesn't change the language recognized by the PDA

PDA P -> CFG G: Transitions and Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• Want: if P goes from state p to q reading input x, then some A_{nq} generates x

- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by, Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r



• (We haven't added input read/generated terminals yet)

The Key IDEA

• To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

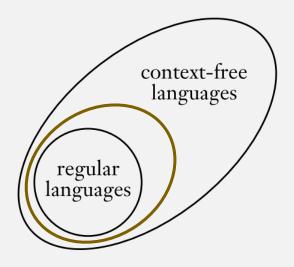
- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Regular Language vs CFL Comparison

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Deterministic Finite-State Automata (DFA)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	
	Proved:	Proved:	
	Regular Lang ⇔Regular Expr ☑	CFL ⇔ PDA ☑	

Regular vs Context-Free Languages (and others?)

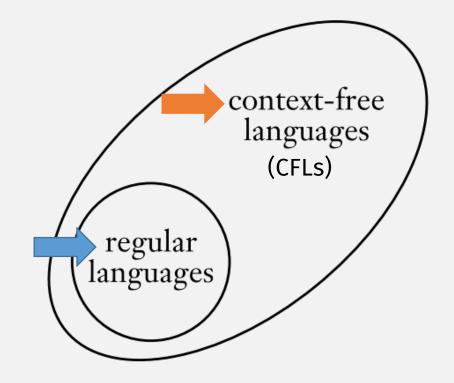


Is This Diagram "Correct"?

(What are the statements implied by this diagram?)

1. Every regular language is a CFL

2. Not every CFL is a regular language



How to Prove This Diagram "Correct"?

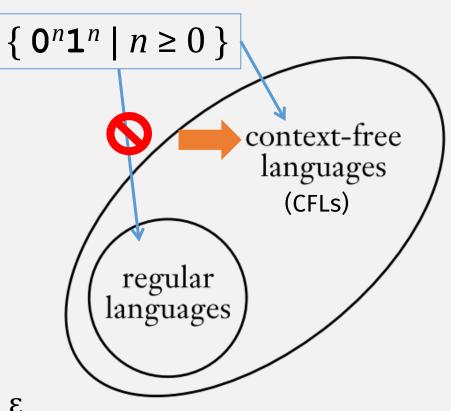
1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a counterexample CFL that is not regular

$$\{ \mathbf{0}^n \mathbf{1}^n \mid n \geq 0 \}$$

- It's a CFL
 - Proof: CFG $S \rightarrow 0S1 \mid \varepsilon$
- It's not regular
 - Proof: by contradiction using the Pumping Lemma



How to Prove This Diagram "Correct"?

1. Every regular language is a CFL

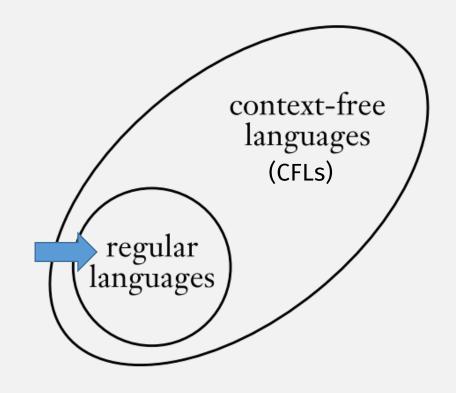
For any regular language A, show ...

... it has a **CFG** or **PDA**

☑ 2. Not every CFL is a regular language

A regular language is represented by a:

- DFA
- NFA
- Regular Expression



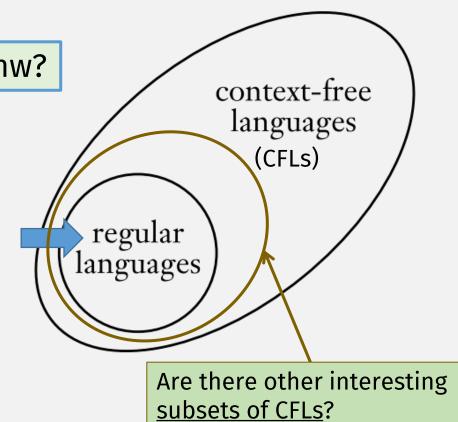
Regular Languages are CFLs: 3 Ways to Prove

• DFA → CFG or PDA

Coming soon to a future hw?

• NFA → CFG or PDA

Regular expression → CFG or PDA



Deterministic CFLs and DPDAs

Previously: Generating Strings

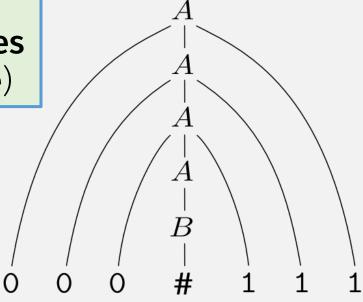
Generating strings:

- 1. Start with start variable,
- 2. Repeatedly apply CFG rules to get string (and parse tree)

$$A \rightarrow 0A1$$

$$A \to B$$

$$B \to \#$$



 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$

Generating vs Parsing

Generating strings:

- 1. Start with start variable,
- 2. Repeatedly apply CFG rules to get string (and parse tree)

 $A \rightarrow 0A1$

 $A \to B$

 $B \rightarrow \#$

In practice, <u>opposite</u> is more interesting:

- 1. Start with string,
- 2. Then parse into parse tree

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Generating vs Parsing

- In practice, parsing a string more important than generating
 - E.g., a compiler (first) parses source code string into a parse tree
 - (Actually, any program with string inputs must first parse it)

Previously: Example CFG>PDA

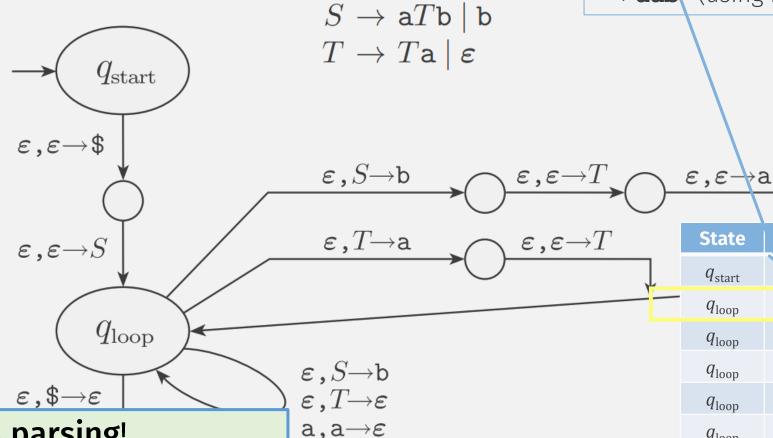
Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \to \mathbf{a} T \mathbf{b}$)

 \Rightarrow **a***T***ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

 $q_{\rm accept}$



b,b $\rightarrow \varepsilon$

PDA Example

Stack | Equiv Rule **State** Input aab $q_{\rm start}$ aab q_{loop} aTb\$ $S \rightarrow aTb$ aab $q_{\rm loop}$ ab *T*b\$ q_{loop} Tab\$ $T \rightarrow T$ a q_{loop} ab\$ $T \rightarrow \varepsilon$ ab q_{loop} b\$ b $q_{\rm loop}$ $q_{\rm loop}$

This Machine is parsing!

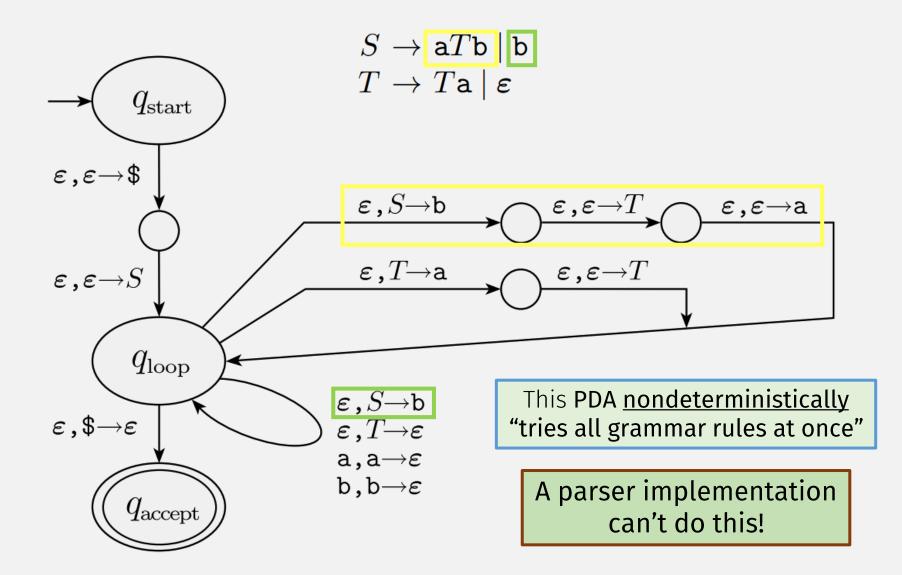
- 1. Start with (input) string,
- 2. Find rules that generate string

Generating vs Parsing

- In practice, parsing a string more important than generating
 - E.g., a compiler (first step) parses source code string into a parse tree
 - (Actually, any program with string inputs must first parse it)

• But: the **PDAs** we've seen are **non-deterministic** (like **NFAs**)

Previously: (Nondeterministic) PDA



Generating vs Parsing

- In practice, parsing a string more important than generating one
 - E.g., a compiler (first step) parses source code into a parse tree
 - (Actually, any program with string inputs must first parse it)
- But: the PDAs we've seen are non-deterministic (like NFAs)

- Compiler's parsing algorithm must be deterministic
- <u>So</u>: to model parsers, we need a **Deterministic PDA (DPDA)**

DPDA: Formal Definition

The language of a DPDA is called a *deterministic context-free language*.

A deterministic pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$,

where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow (Q \times \Gamma_{\varepsilon}) \cup \{\emptyset\}$ is the transition function

"do nothing"

- 5. $q_0 \in Q$ is the start state, and Not power set
- **6.** $F \subseteq Q$ is the set of accept states.

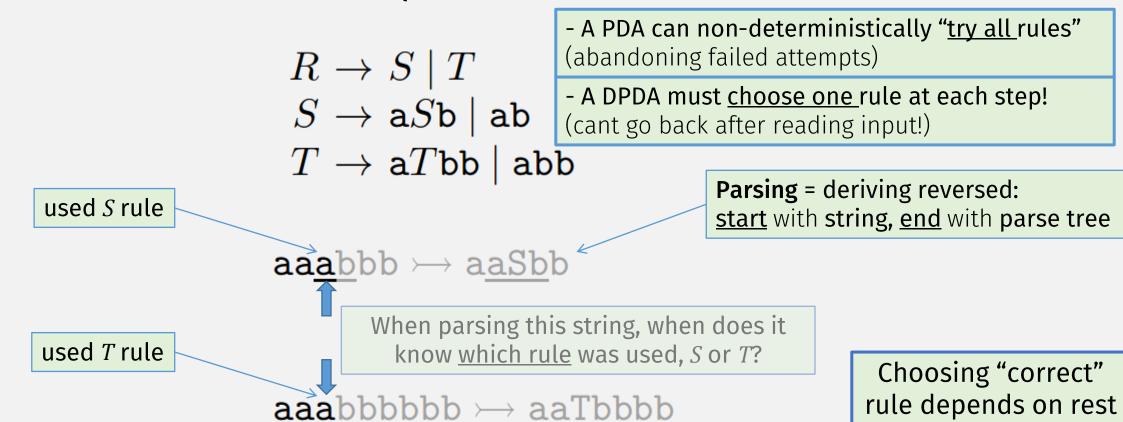
A *pushdown automaton* is a 6-tuple

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta \colon Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

<u>Difference:</u> **DPDA has only <u>one possible action,</u>** for any given <u>state, input,</u> and <u>stack op</u> (similar to **DFA** vs **NFA**)

Must consider: ε reads or stack ops! E.g., if $\delta(q, a, X)$ does "something", then $\delta(q, \varepsilon, X)$ must "do nothing"

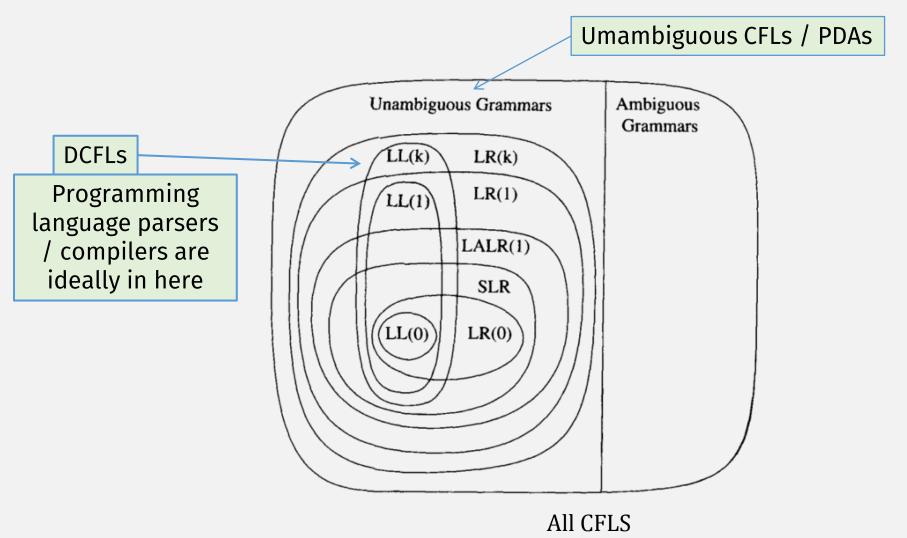
DPDAs are Not Equivalent to PDAs!



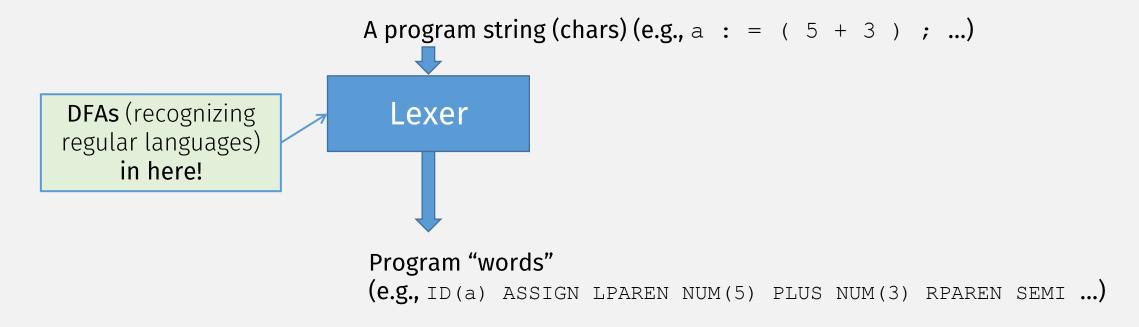
of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs



Compiler Stages



A Lexer Implementation

```
/* C Declarations: */
 #include "tokens.h" /* definitions of IF, ID, NUM, ... */
 #include "errormsq.h"
 union {int ival; string sval; double fval;} yylval;
 int charPos=1;
 #define ADJ (EM tokPos=charPos, charPos+=yyleng)
 /* Lex Definitions: */
 digits [0-9]+
 응응
 /* Regular Expressions and Actions: */
                              {ADJ; return IF;}
<mark>→</mark> [a-z] [a-z0-9]*
                                return ID; }
 {digits}
```

Remember our analogy:

- DFAs are like programs
- All possible DFA tuples is like a programming language

It's more than an analogy!

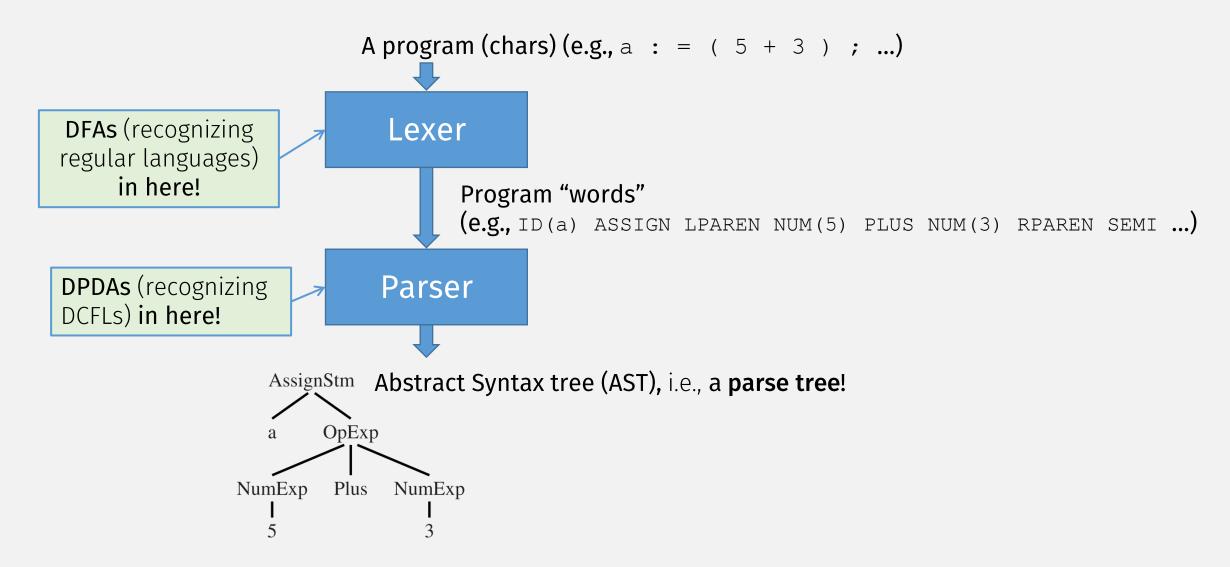
This DFA is a real program!

A "lex" tool converts the program:

- from "DFA Lang" ...
- to an **equivalent** one in \mathbb{C} !

DFAs (represented as regular expressions)!

Compiler Stages



A Parser Implementation

```
int yylex(void);
void yyerror(char *s) { EM_error(EM_tokPos, "%s", s); }
응 }
%token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
%start prog
                                                    Remember our analogy:
응응
                                                    CFGs are like programs
                                                    It's more than an analogy!
prog: stmlist
                                                   This CFG is a real program!
stm : ID ASSIGN ID
      WHILE ID DO stm
```

Just write the CFG!

```
| WHILE ID DO stm
| BEGIN stmlist END
| IF ID THEN stm
| IF ID THEN stm ELSE stm
| stmlist : stm
| stmlist SEMI stm
```

A "yacc" tool converts the program:

- from "CFG Lang" ...
- to an **equivalent** one in \mathbb{C} !

DPDAs are <u>Not</u> Equivalent to PDAs!

 $egin{aligned} R & o S \mid T \ S & o \mathbf{a} S \mathbf{b} \mid \mathbf{a} \mathbf{b} \ T & o \mathbf{a} T \mathbf{b} \mathbf{b} \mid \mathbf{a} \mathbf{b} \end{aligned}$

Parsing = generating reversed:

- start with string
- end with parse tree
- PDA: can non-deterministically "try all rules" (abandoning failed attempts);
- **DPDA**: must <u>choose one</u> rule at each step!

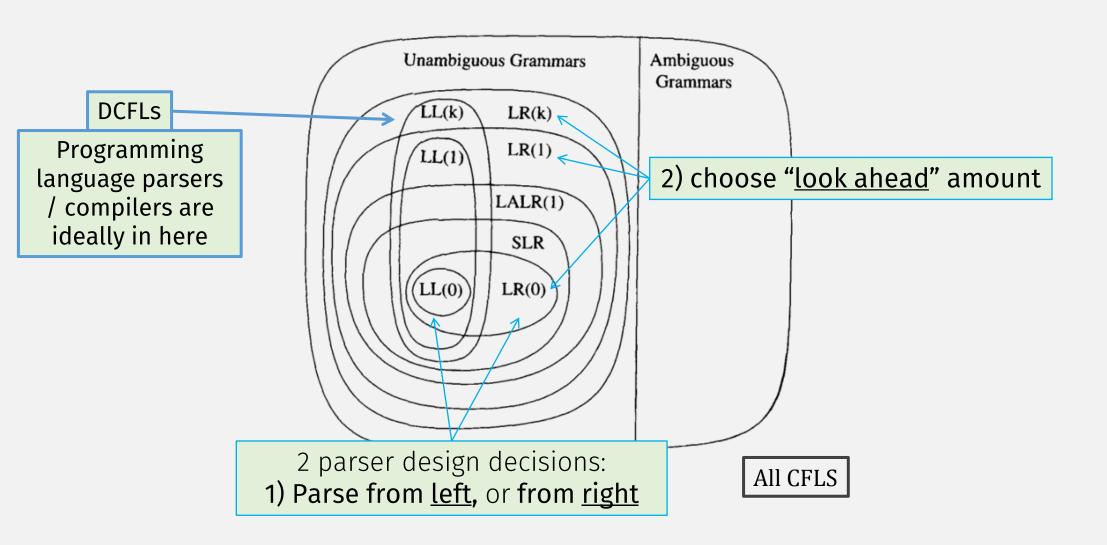
Should use S rule $aa\underline{ab}bb \longrightarrow a\underline{aSb}b$ Should use T rule

When parsing reaches this position, does it know which rule, S or T?

To choose "correct" rule, need to "look ahead" at rest of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs



- L = left-to-right
- L = leftmost derivation

Let's play a game: <u>"You're the Parser"</u>: Guess which rule applies?

(and how much did you have to "look ahead"?)

1
$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

- $\stackrel{2}{\longrightarrow} S \stackrel{}{\longrightarrow} \text{begin } S L$
- $3 S \rightarrow \text{print } E$

$$4 L \rightarrow \text{end}$$

$$5 L \rightarrow ; SL$$

6
 $E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- $1 S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- ${\color{red} 2} S \rightarrow \text{begin } S L$
- $\mathbf{S} S \to \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$
- if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- 1 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $\mathbf{S} S \to \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- $1 S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $S \rightarrow \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- 6 $E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

"Prefix" languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)

1
$$S \rightarrow S$$
; S 4 $E \rightarrow id$
2 $S \rightarrow id := E$ 5 $E \rightarrow num$

- L = left-to-right
- **R** = rightmost derivation $\stackrel{3}{\circ}$ $S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign (:=) or addition (+)

Need to <u>save</u> input (lookahead) to some memory, like a **stack!** this is a job for a (D)PDA!

$$S \to S$$
; S

$$E \rightarrow id$$

$$S \rightarrow S$$
; S $E \rightarrow id$
 $S \rightarrow id := E$ $E \rightarrow num$

$$E \rightarrow \text{num}$$

• **R** = rightmost derivation $S \rightarrow \text{print}(L)$ $E \rightarrow E + E$

$$S \rightarrow \text{print} (L)$$

$$E \rightarrow E + E$$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

State name

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

Stack		Input	Action
1	a := 7 ; b	:= c + (d := 5 + 6),	d) \$ shift
1 id4		:= c + (d := 5 + 6),	
$_{1} id_{4} :=_{6}$	7 ; b	:= c + (d := 5 + 6),	d) \$ shift

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
      Stack
      Input
      Action

      1
      a := 7 ; b := c + ( d := 5 + 6 , d ) $
      shift

      1 id<sub>4</sub> := 6
      7 ; b := c + ( d := 5 + 6 , d ) $
      shift

      1 id<sub>4</sub> := 6 num<sub>10</sub>
      ; b := c + ( d := 5 + 6 , d ) $
      reduce E \rightarrow num
```

- $1 S \rightarrow S ; S \qquad 4 E \rightarrow id$
- L = left-to-right $2S \rightarrow id := E$ $5E \rightarrow num$
- R = rightmost derivation $\stackrel{3}{\circ} S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

- L = left-to-right
- L tert-to-right

- $1 S \to S ; S \qquad 4 E \to id$
- $S \rightarrow id := E$ $S \rightarrow num$
- **R** = rightmost derivation $\stackrel{3}{\circ}$ $S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

```
Stack
                                              Input
                                                                         Action
                   a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                         shift
                      := 7 ; b := c + (d := 5 + 6 , d) $
                                                                         shift
1 id4
_1 id_4 :=_6
                      Can determine = c + (d := 5 + 6, d)
                                                                        shift
                     (rightmost) rule = c + (d := 5 + 6, d) $
                                                                       reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
_{1} id_{4} :=_{6} E_{11} \checkmark
                             ; b := c + (d := 5 + 6, d) $
                                                                        reduce S \rightarrow id := E
```

- L = left-to-right
- R = rightmost derivation

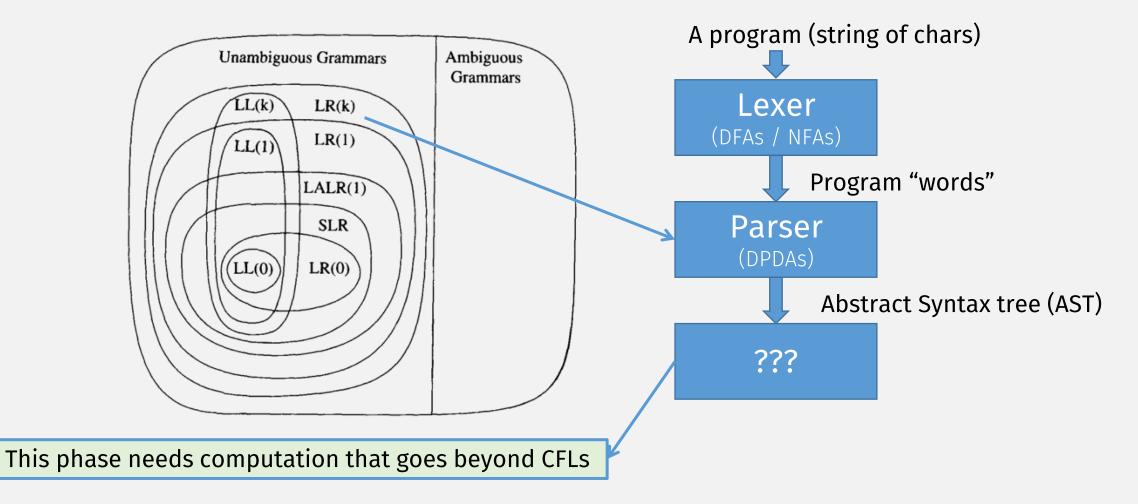
```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
Stack
                                                                        Action
                                             Input
                   a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                        shift
                                                                              LR Parsers also called
                     := 7 ; b := c + (d := 5 + 6 , d) $
1 id4
                                                                        shift
                                                                              "Shift-Reduce" Parsers
_1 id_4 :=_6
                         7; b := c + (d := 5 + 6, d)$
                                                                        shift
                            ; b := c + (d := 5 + 6, d) $
_{1} id_{4} :=_{6} num_{10}
                                                                      reduce E \rightarrow num
_{1} id<sub>4</sub> :=<sub>6</sub> E_{11}
                                                                      reduce S \rightarrow id := E
                            ; b := c + (d := 5 + 6, d)
_1 S_2
                              b := c + (d := 5 + 6, d)
                                                                        shift
```

To learn more, take a Compilers Class!



Flashback: Pumping Lemma for Regular Langs

• Pumping Lemma describes how strings repeat

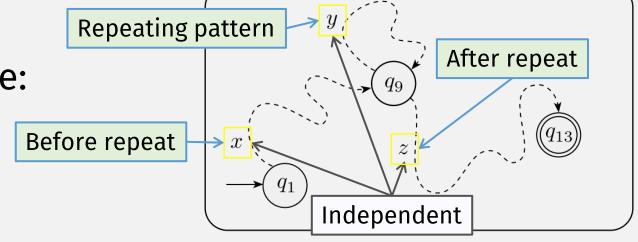
Regular language strings repeat using Kleene star operation

Key: 3 substrings x y z independent!

A non-regular language:

$$\{\mathbf{0}^n_{\wedge}\mathbf{1}^n_{\wedge}|\ n\geq 0\}$$

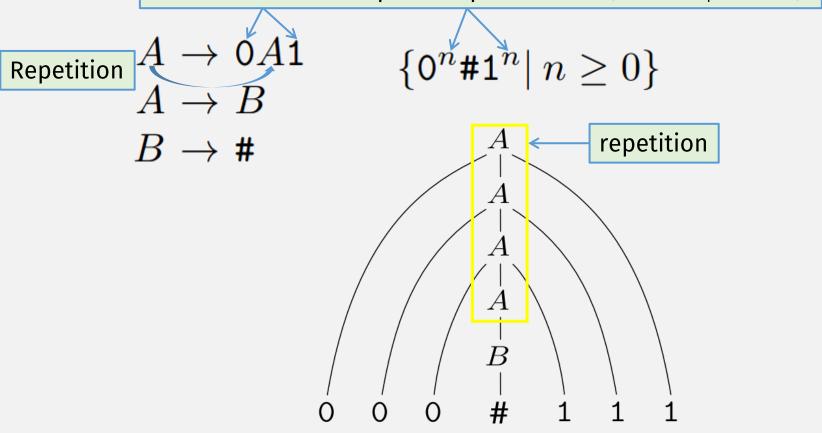
Kleene star can't express this pattern: 2nd part depends on (length of) 1st part



• Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)



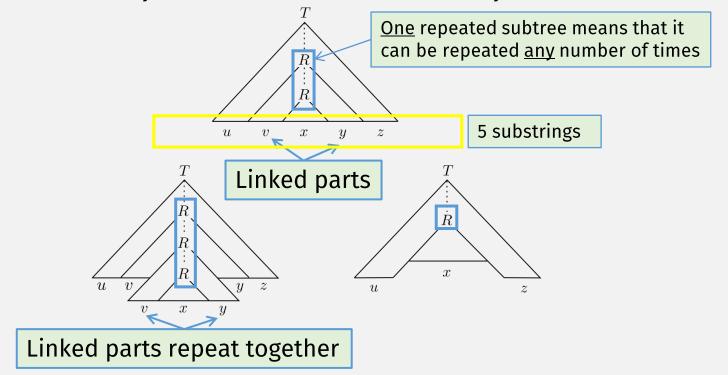
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

How Do Strings in CFLs Repeat?

NFA can take loop transition any number of times, to process repeated y in input

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree



Pumping Lemma for CFLS

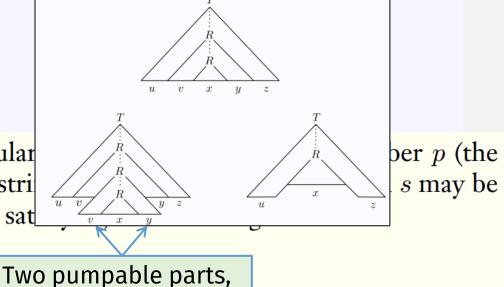
Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

But they must be pumped together!

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If A is a regular pumping length) where if s is any stridivided into three pieces, s = xyz sat

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$. One pumpable part



pumped together

Previously

A Non CFL example

language $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$ is not context free

Intuition

- Strings in CFLs can have two parts that are "pumped" together
- Language B requires three parts to be "pumped" together
- So it's not a CFL!

Proof?

Want to prove: $a^nb^nc^n$ is not a CFL

Proof (by contradiction):

Now we must find a contradiction ...

- Assume: $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$
- **2.** |vy| > 0, and
- **3.** $|vxy| \le p$.

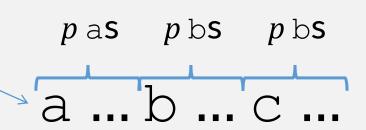
Reminder: CFL Pumping lemma says: all strings $a^nb^nc^n \ge length p$ are splittable into uvxyz where v and y are pumpable

Pumping lemma for context-free languages If *A* is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the

Contradiction if:

- A string in the language 🗹
- \geq length $p \mid \nabla$
- Is **not_splittable** into *uvxyz* where *v* and *y* are pumpable



Want to prove: $a^nb^nc^n$ is not a CFL

Possible Splits

Proof (by contradiction):

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if:

- A string in the language
- $\ge \text{length } p$
- Is **not_splittable** into *uvxyz* where *v* and *y* are pumpable

Not pumpable

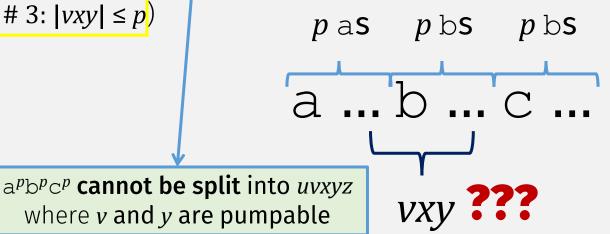
Contradiction

- Possible Splits (using condition # 3: $|vxy| \le p$)
- vxy is all as
- vxy is all bs
- 🗷 vxy is all cs
- vxy has as and bs
- vxy has bs and cs
 - (vxy cannot have a**s**, b**s**, and c**s**)

So $a^nb^nc^n$ is not a CFL

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

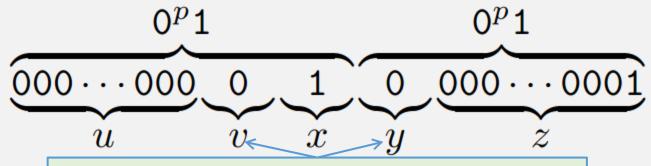
- 1. for each $i \geq 0$, $uv^i x y^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.



Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample s: $0^p 10^p 1$

This s can be pumped according to CFL pumping lemma:



Pumping v and y (together) produces string still in D!

• CFL Pumping Lemma conditions: $\ \blacksquare 1$. for each $i \ge 0$, $uv^i xy^i z \in A$,

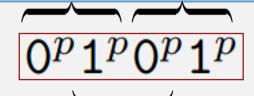
So <u>this attempt</u> to <u>prove</u> that the <u>language</u> is <u>not</u> a <u>CFL failed</u>. (It <u>doesn't prove</u> that the language <u>is a CFL!</u>)

2.
$$|vy| > 0$$
, and

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Need another counterexample string s:

If *vyx* is contained in first or second half, then any pumping will break the match



So vyx must straddle the middle

But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions: 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

 - **2.** |vy| > 0, and
 - **3.** $|vxy| \leq p$.

Now we have proven that this language is **not a CFL!**

A Practical Non-CFL

- XML
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string
- XML also looks like this <u>non-CFL</u>: $D = \{ww | w \in \{0,1\}^*\}$
- This means XML is <u>not context-free!</u>
 - Note: HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:

- XML is <u>parsed</u> as a CFL, with a CFG
- Then matching tags checked in a 2nd pass with a more powerful machine ...

Next: A More Powerful Machine ...

 M_1 accepts its input if it is in language: $B = \{w \# w | w \in \{0,1\}^*\}$

 $M_1 =$ "On input string w:

Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from arbitrary memory locations!