cturel5

CS 420 / CS 620
CFGs vs PDAs

subCFLs and DPDAs
Monday October 27, 2025
UMass Boston Computer Science

(AN UNMATLHED LEFT PPRENTHESIS

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH YoU ALL DAY.

lecturel5

%/(/wa/(&@/f(e/(lf@

* HW 7

 Out: Mon 10/20 12pm (noon)
 Due: Mon 10/27 12pm (noon)

* HW notes

« Correct Gradescope page assignment of problems is
now part of the correctness each submission

» Gradescope note
« Regrade requests must address a specific deduction

(AN UNMATHED LEFT PARENTHESIS
CREATES AN UNRESOLVED TENSION
THAT WILL. STRY WITH YoU ALL DAY.

Last [ine;

Regular Language vs CFL Comparison

Regular Languages

thm

def

Regular Expression
describes a Regular Lang

Deterministic Finite-State Automata (DFA)

recognizes a Regular Lang

Proved:

Regular Lang < Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

Must Prove:

CFL < PDA 22?2

def

thm

Last [ine;

A lang Is a CFL iff some PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
« We know: A CFL has a CFG describing it (definition of CFL)
« To prove this part, show: the CFG has an equivalent PDA

< |f a PDA recognizes a language, then it's a CFL

Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a

Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e, A—w

a,a—€

push start variable onto stack

If: stack top is variable 4, pop and ...

... push rule’s right-sides (nondeterministically)
for rule A= w

for terminal a

Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

Summary: convert every CFG rule to PDA “loop” transition that:

- Pops LHS variable (Stack is “workspace” containing
- /Pushes RHS intermediate string of vars + terminals)

g,e—S$

e, A—=w forrule A—w

a,a—€ for terminal a

Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a

... read matching input

If: stack top is terminal a, pop and ...

Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a

€’$_>€ 0 7] ” on2
Summary: convert every terminal to “loop” transition that:

- Reads input char :
. (Read the terminals as
- Pops matching char on stack| they become known)

Last [ine;

Example CFG>PDA

S — alb|b

T — Ta €

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e, [—a ,~ €,e—T

o/ _l Qotart

1o00p

100p

£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p
b s b—¢ 1o00p
1o00p

qaccept

e,5—b)O€,€—>T)O g,e—a |

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S—-aTb
To$

Tab$ T- Ta
ab$ To¢
b$

$

A lang Is a CFL iff some PDA recognizes it

= |f a language is a CFL, then a PDA recognizes it
* Convert CFG>PDA

& |f a PDA recognizes a language, then it's a CFL
« To prove this part: show PDA has an equivalent CFG

PDA->CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-

Important:
This doesn’t change the language recognized by the PDA

PDA P -> CFG G : Transitions and Variables

= (Q,%,T,6,q0, {qaccepe ;) Variablesof G are {A,| p,q € Q}
t

- Want: if P goes from state p to q reading input x, then some A, generates x

» So: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by, ” -
* Add rules: 4,, > A A, , for each state r @ *@* @
* These rules allow: grammar to simulate every possible transition

 (We haven't added input read/generated terminals yet)
The Key IDEA

« To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(pia,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p,a,€) contains (7, u) and (s, b, u) contains (g, €),

put the rule A4,,«=aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G

A language Is a CFL <> A PDA recognizes It

= If a language Is a CFL, then a PDA recognizes it
* Convert CFG>PDA

< |If a PDA recognizes a language, then it's a CFL
* Convert PDA>CFG

Regular Language vs

Regular Languages

thm

Regular Expression

describes a Regular Lang

Deterministic Finite-State Automata (DFA)

def

recognizes a Regular Lang

Proved:
Regular Lang < Regular Expr

CFL Comparison

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

Proved:

CFL << PDA ™

def

thm

Regular vs Context-Free Languages
(and others?)

context-free

languages

regular
languages

IS This Diagram “Correct”?

(What are the statements implied by this diagram?)

m=) 1. Every regular language is a CFL

context-free

languages
(CFLs)

2. Not every CFL is a regular language

mi) regular

languages

How to Prove This Diagram “Correct”?

{0"1"|n=20}

G/ontext-free
languages

(CFLs)

1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a counterexample CFL that is not regular

regular

languages

{Onln | HZO} e It'sa CFL
- Proof: CFGS — 051 | €

 It's not regular

« Proof: by contradiction
using the Pumping Lemma

How to Prove This Diagram “Correct”?

m=) 1. Every regular language is a CFL

For any regular language 4, show ... context-free

languages

.. 1t has a CFG or PDA (CFLs)

v]12. Not every\CFL is a regular language

mi) regular
languages

A regular language Is represented by a:
- DFA

- NFA

- Regular Expression

Regular Languages are CFLs: 3 Ways to Prove

- DFA —

Coming soon to a future hw?
context-free

languages

* NFA - (CFLs)

) regular
languages

« Regular expression —

Are there other interesting
subsets of CFLs?

Deterministic CFLs and DPDAs

Frewinsty: GENerating Strings

Generating strings:

1. Start with start variable,

2. Repeatedly apply CFG rules
to get string (and parse tree)

A — 0A1
A— B
B — #

H————

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111

Generating vs Parsing

Generating strings:

1. Start with start variable, A In practice, opposite is more
2. Repeatedly apply CFG rules }‘1 interesting:
to get string (and parse tree) /—'\1 <1, Start with string,
| 2. Then parse into parse tree
A — 0A1 A
|
A— B j_?
B —# O O O # 1 1 1
v

A= 041 = 00411 = 000A111 = 0008111 = 000#111

Generating vs Parsing

* In practice, parsing a string more important than generating

- E.g, a compiler (first) parses source code string into a parse tree
e (Actually, any program with string inputs must first parse it)

Prewinsty: EXample CFG>PDA

S — alb|b
T — Tale

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab, (using rule T- ¢)

e, $—e

This Machine is parsing!

1.

Start with (input) string,

2. Find rules that generate string

e,S5—b
e, T—e
a,a—€
b,b—e

Astart
qloop
qloop
qloop
CIloop
CIloop
CIloop
CIloop

qaccept

aab

aab

aab
ab
ab
ab

PDA Example

5$

aTb$ S—-aTb
To$

Tab$ T- Ta
ab$ To¢
b$

$

Generating vs Parsing

e In practice, parsing a string more important than generating

- E.g., a compiler (first step) parses source code string into a parse tree
e (Actually, any program with string inputs must first parse it)

e But: the PDAs we've seen are non-deterministic (like NFAs)

Fresinsty: (NOndeterministic) PDA

S — alb|b
T — Tale

e,5—b)O€,€—>T)O gy |
g, [—a ’O e, e—1T l

e,5—b This PDA nondeterministically
e, 1—e “tries all grammar rules at once”
a,a—e€

b,b—e A parser implementation
can’'t do this!

Generating vs Parsing

e I[n practice, parsing a string more important than generating one

- E.g., a compiler (first step) parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

« But: the PDAs we've seen are non-deterministic (like NFAs)

« Compiler’s parsing algorithm must be deterministic

» So: to model parsers, we need a Deterministic PDA (DPDA)

DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. QQ is the set of states, 1. @ is the set of states,

2. ¥ is the input alphabet, 2522 .is the input alphabet,

3. I is the stack alphabet, i g y the;kaslphal;jt,’ =

4. 6: Q x X. x I.— (Q x I,) U {0} is the transition function 5: q(; 25 isihz si;taégaide)
5. qo € Q is the start state, and Notpower set 6. F C Q is the set of accept states.
6. F' C @ is the set of accept states.

“do nothing”

Difference: DPDA has only one possible action,
for any given state, input, and stack op
(similar to DFA vs NFA)

Must consider: € reads or stack ops!
E.g, if 8(q, a,X) does “something”,
then 8(q, &, X) must “do nothing”

DPDASs are Not Equivalent to PDAS!

- A PDA can non-deterministically “try all rules”
R — S ‘ T (abandoning failed attempts)

- A DPDA must choose one rule at each step!
S — aSb | ab (cant go back after reading input!)

T — aTbb | abb

Parsing = deriving reversed:

used Srule start with string, end with parse tree
aaa
=
| When parsing this string, when does it
used T rule _ know which rule was used, S or T? . "
| | Choosing “correct
Saa rule depends on rest
— of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLS

Umambiguous CFLs / PDAs

=
Unambiguous Grammars Ambiguous
Grammars
DCFLs < /TN LRK

Programming { L) | LR
language parsers
[compilers are
ideally in here

LALR(1)

SLR

LR(0)

All CFLS

Compiler Stages

DFAs (recognizing
regular languages)
in here!

A program string (chars) (e.g,a : = (5 + 3) ; ..)

Program “words”
(e.g, ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

..)

A Lexer Implementation

DFAs
(represented
as regular
expressions)!

> [a-z] [a-z0-9]*

Q
%1

Remember our analogy:

- DFAs are like programs

- All possible DFA tuples is like
a programming language

/* C Declarations: */
#include "tokens.h"
#include "errormsg.h"
union {int ival; string sval; double fval;} yylval;
int charPos=1;

/* definitions of IF, ID, NUM, ... */

It's more than an analogy!

This DFA is a real program!

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%)

/* Lex Definitions: */

digits [0-9] +

)
GRC)

/* Regular Expressions and Actions: */

if {ADJ; return IF;}

A “lex” tool converts the
program:

- from “DFA Lang” ...

- to an equivalent one in C'!

return ID;}
{digits}
return NUM: }
({digits}"."[0-9]*) | ([0-9]*"."{digits}) {ADJ;
yylval.fval=atof (yytext) ;
return REAL; }

("--"[a-z] *n\nn) | (mom | n\nn | "\t")+ {ADJ'-}

{ADJ; yylval.sval=String(yytext) ;

{ADJ; yylval.ival=atoi (yytext) ;

{ADJ; EM error("illegal character");}

Compiler Stages

A

DFAs (recognizing
regular languages)
in here!

DPDAs (recognizing
DCFLs) in here!

program (chars)(e.g.,a : = (5 + 3) ; ..)

Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

Parser

AssignStm Abstract Syntax tree (AST), i.e., a parse tree!

a

OpExp

e

NumExp Plus

|
5

NumExp

|
3

..)

A Parser Implementation

%1{

int yylex(void) ;

void yyerror (char *s) { EM error (EM tokPos, "%s", s); }
%)

*token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN

$start prog Remember our analogy:
%% CFGs are like programs
prog: stmlist It's more than an analogy!

This CFG is a real program!

Just write | stm : ID ASSIGN ID

the CFG! WHILE ID DO stm

A “yacc” tool converts the

BEGIN stmlist END .
IF ID THEN stm program:)

IF ID THEN stm ELSE stm - from “CFG Lang” ...

- to an equivalent one in C!

stmlist : stm
| stmlist SEMI stm

DPDAs are Not Equivalent to PDAS!

Parsing = generating reversed:
- start with string

R — S | T - end with parse tree
S — aShb | ab - PDA: can non-deterministically “try all rules”

(abandoning failed attempts);
1" — |a’lbb | abb | - DPDA: must choose one rule at each step!

Should use S rule

aaabbb — aaSbb

2b

aaa

Should use T rule To choose “correct” rule,
When parsing reaches 1 v need to “look ahead” at
this position, does it aaabbbbbb — aaTbbbb rest of the input!
know which rule, S or T?

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLS

DCFLs

f!:ambiguous Grammars
5 LR\ LRK)

Programming
language parsers
[compilers are
ideally in here

{ —>

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

%

2) choose “look ahead” amount

2 parser design decisions:

1) Parse from left, or from right

All CFLS

LL parsing

Let's play a game: “You're the Parser”:

e | = [eft_to_right Guess which rule applies?
e L = leftmost derivation (and how much did you have to “look ahead”?)

S — if E then S else S i:?nSdL
S—‘/- beglnSL |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 27= 3 begin print 1; print 2; end else print 0

LL parsing

e L = left-to-right
e L = leftmost derivation

L d
S — if E then S else § e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

e L = left-to-right
e L = leftmost derivation

: . — end
S — 1if E then S else §
. L —: SL
S — begin S L
Int £
S —|prm E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)

LR parsing

S—85:; 8§ E — id
e L = left-to-right S—>1d:=E E — num
* R = rightmost derivation * S > print (L)© E — E + E

a := 7;
B e @ 4 (8 o= B o 6. @

When parse is here, can't determine whether it's an assign (: =) or addition (+)

Need to save input (lookahead) to some memory, like a stack! this is a job for a (D)PDA!

LR parsing

S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation S — print(L) E — E + E

a := 7;
b\:=c¢c + (d :=5 + 6, d)

Stack Input Action
push :
1 a :=7 ; b:=c+ (d:=5+6,d) % shift | = “push”

State ﬁﬁ

name

LR parsing
S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation S —print(L) E — E + E

Stack Input Action
1 a :=7 ; b:=c+ (d:=5+6,d) % shift
1 1d4 =7 ; b:=c+ (d:=5+6,d) $ shift
1 id4 1=6 ﬁ ; b :=c + (d :=5 + 6 d) $ shift

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation S — print(L) E — E + E

Stack Input Action

1 a :=7 ; b :=c+ (d :=5 + 6 d) $ shift

1 1d4 :=7 ; b :=c + (d :=5 + 6 d) $ shift

1 id4 1=6 7 ; b :=c + (d := 5 + 6 d) $ shift

1 1dg4 : =g numqq ; b :=c+ (d :=5 + 6 d) $ reduce E — num

LR parsing

e L = left-to-right
* R = rightmost derivation

Stack

1

1 1d4

11d4 :=¢

1 1dg :=¢ numyg

a := 7

i

; b
Can determine | .
(rightmost) rule | |

; b o

1T TR
Q00 aQ
+ + + +

S—S5: 8§
S—>1d=E

S — print (L)

Q QO

Input

ur o1 o U

+ + + +

O O O O

E — id

E — num

E— FE + E
Action

$ shift

$ shift

$ shift

$ reduce E — num

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L)© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1dg : =4 Candetermine = ¢ + (d :=5 +6 , d) $ shift

1 id4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

1

LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation S — print(L) E — E + E

Stack Input Action

1 a:=7;b:=c+ (d:=5+6,d) $ | shift ||pparsersalso called
1 ld4 := 7 ; Db =c+ (d :=5 + 6 , d) $ Shl:ﬁ‘ “Shift-Reduce” Parsers
1 id4 1=6 7 ; b:=c+ (d:=5+6, d) $ shift

1 1dg4 : =g numyq ; b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

1 S92 ; b :=c+ (d:=5+6, d) § shift

To learn more, take a Compilers Class!

A program (string of chars)
Unambiguous Grammars Ambiguous ‘
Grammars
///H#Eum LR(k) ﬂﬁﬁh\\\ Lexer

LLa) | LRO \ (DFAs | NFAs)

l Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs

tistteek, PUumping Lemma for Regular Langs

« Pumping Lemma describes_how strings repeat

« Regular language strings repeat using Kleene star operation
« Key: 3 substrings xy z independent! - N

Repeating pattern Ji

| atter repeat
A non-regular language: - Al0)
n4n , ': :‘
{0 1 | n 2z 0} Before repeat T's o]
Kleene star can’t express this pattern:
2nd part depends on (length of) 15t part _____|Independent /

* Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

Repetition [“<_ {0"#1™|n > 0}
A— B
B — # /}‘1\ repetition
~ ‘ ~
A

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

How Do Strings in CFLs Repeat?

« Strings in regular languages repeat states

« Strings in CFLs repeat subtrees in the parse tree

I
Co Ty

{
e

)
)

NFA can take loop transition
any number of times, to
process repeated y in input

can be repeated any number of times

; One repeated subtree means that it
g
R

U v T Y z

Linked parts repeat together

T

Linked parts

5 substrings

Z

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least » then < maw he divided into five pieces s = uvzyz satistying the

. s Two pumpable parts.
conditions But they must be pumped together! *‘
1. for each i > 0, wvtzy'z € A, !
2. |vy| > 0, and .
3. “U:By| < p. Pumping lemma If A is a regular ber p (the
pumping length) where if s is any stri| % s may be
divided into three pieces, s = zyz sat__ 7 ”

=4

1. foreachi > 0, zy'z € A, Two pumpable parts,

2. |y| > 0, and pumped together
3. |zy| < p. | Qnepumpable part Frevinsty

A Non CFL example

language B = {a"b"c"|n > 0} is not context free

Intuition
e Strings In CFLs can have two parts that are “pumped” together

« Language B requires three parts to be “pumped” together
SO It's not a CFL!

Proof?

Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions

1. for each i > 0, uvizyiz € A;

2. |vy| > 0, and
3. ‘Uiyrg D. Reminder: CFL Pumping lemma says:
. - — all strings a"o"c” > length p are splittable
Proof (by contrad ICtIOﬂ): Now we must find a contradiction ... into uvxyz where v and y are pumpable
* Assume: a"b"c1s a CFL
« So it must satisfy the pumping lemma for CFLs
« |.e,all strings > length p are pumpable [;. iradiction if
- Astring in the language
» Counterexample =|aPbPcP e o S
- Is not_splittable into uvxyz where vand y are pumpabl;”

pas pbs pbs

a..n..c..

. Pumping lemma for context-free languages If A is a context-free language,
Wa nt to D rove: a"o"c"i1s not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvayz satisfying the
conditions

Possible Splits L

3. Jvzy| < p.
Proof (by contradiction):
e Assume: a"b"c" is a CFL

« So It must satisfy the pumping lemma for CFLs
 |.e, all strings > length p are pumpable [oniradiction it

* Counterexample =|aPbPcP

- Is not_splittable into uvxyz where v and y are pumpable

* Possible SplItS (using condition # 3: |vxy| < p)

pas pbs pbs

Es:r‘pable X[+ vxyisall as
x|+ vxyis all bs —
X[+ vxyisall cs a..n..cC..
x| » vxy has as and bs J \ ' J
X| « vxy has bs and cs -
. (wé// cannot have as o 2t o3 aPbPcP cannot be split into uvxyz DD

where vand y are pumpable VXY oo o

So a"b"c” is not a CFL

Another Non-CFL D = {ww| w € {0,1}*}

Be careful when choosing counterexample s:(0P10P1
This s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

Uu () X Yy e
Pumping v and y (together) produces string still in D! ' |
« CFL Pumping Lemma conditions:/11. for each ¢ > 0, uv'xy’'z € A,

So this attempt to prove that 2. |Uy| > 0, and
the language is not a CFL failed. 3. |vzy| < p.
(It doesn't prove that the language is a CFL!)

Another Non-CFL D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

0P1PQP1P

\e— —

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!

A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

« This means XML is not context-free!
« Note: HTML is context-free because ...
« ... there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...

et A More Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}
M; = “On input string w: Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write from
arbitrary memory locations!

