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CS 420 / CS 620
CFGs vs PDAs

subCFLs and DPDAs
Monday October 27, 2025
UMass Boston Computer Science

(AN UNMATLHED LEFT PPRENTHESIS

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH YoU ALL DAY.
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* HW 7

 Out: Mon 10/20 12pm (noon)
 Due: Mon 10/27 12pm (noon)

* HW notes

« Correct Gradescope page assignment of problems is
now part of the correctness each submission

» Gradescope note
« Regrade requests must address a specific deduction

(AN UNMATHED LEFT PARENTHESIS
CREATES AN UNRESOLVED TENSION
THAT WILL. STRY WITH YoU ALL DAY.
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Regular Language vs CFL Comparison

Regular Languages

thm

def

Regular Expression
describes a Regular Lang

Deterministic Finite-State Automata (DFA)

recognizes a Regular Lang

Proved:

Regular Lang < Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

Must Prove:

CFL < PDA 22?2

def

thm
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A lang Is a CFL iff some PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
« We know: A CFL has a CFG describing it (definition of CFL)
« To prove this part, show: the CFG has an equivalent PDA

< |f a PDA recognizes a language, then it's a CFL
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CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a




Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e, A—w

a,a—€

push start variable onto stack

If: stack top is variable 4, pop and ...

... push rule’s right-sides (nondeterministically)
for rule A= w

for terminal a



Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

Summary: convert every CFG rule to PDA “loop” transition that:

- Pops LHS variable (Stack is “workspace” containing
- /Pushes RHS intermediate string of vars + terminals)

g,e—S$

e, A—=w forrule A—w

a,a—€ for terminal a



Last [ine;

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a

... read matching input

If: stack top is terminal a, pop and ...
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CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e,A—-w forrule A—w

a,a—€ for terminal a

€’$_>€ 0 7] ” on2
Summary: convert every terminal to “loop” transition that:

- Reads input char :
. (Read the terminals as
- Pops matching char on stack| they become known)
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Example CFG>PDA

S — alb|b

T — Ta €

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e, [—a ,~ €,e—T

o/ _l Qotart

1o00p

100p

£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p
b s b—¢ 1o00p
1o00p

qaccept

e,5—b )O€,€—>T)O g,e—a |

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S—-aTb
To$

Tab$ T- Ta
ab$ To¢
b$

$



A lang Is a CFL iff some PDA recognizes it

= |f a language is a CFL, then a PDA recognizes it
* Convert CFG>PDA

& |f a PDA recognizes a language, then it's a CFL
« To prove this part: show PDA has an equivalent CFG




PDA->CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-

Important:
This doesn’t change the language recognized by the PDA




PDA P -> CFG G : Transitions and Variables

= (Q,%,T,6,q0, {qaccepe ;)  Variablesof G are {A,| p,q € Q}
t

- Want: if P goes from state p to q reading input x, then some A, generates x

» So: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by, ” -
* Add rules: 4,, > A A, , for each state r @ *@* @
* These rules allow: grammar to simulate every possible transition

 (We haven't added input read/generated terminals yet)
The Key IDEA

« To add terminals: pair up stack pushes and pops (essence of a CFL)




PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(pia,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G



PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p,a,€) contains (7, u) and (s, b, u) contains (g, €),

put the rule A4,,«=aA,sbin G



PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G



A language Is a CFL <> A PDA recognizes It

= If a language Is a CFL, then a PDA recognizes it
* Convert CFG>PDA

< |If a PDA recognizes a language, then it's a CFL
* Convert PDA>CFG



Regular Language vs

Regular Languages

thm

Regular Expression

describes a Regular Lang

Deterministic Finite-State Automata (DFA)

def

recognizes a Regular Lang

Proved:
Regular Lang < Regular Expr

CFL Comparison

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

Proved:

CFL << PDA ™

def

thm




Regular vs Context-Free Languages
(and others?)

context-free

languages

regular
languages



IS This Diagram “Correct”?

(What are the statements implied by this diagram?)

m=) 1. Every regular language is a CFL

context-free

languages
(CFLs)

2. Not every CFL is a regular language

mi) regular

languages



How to Prove This Diagram “Correct”?

{0"1"|n=20}

G/ontext-free
languages

(CFLs)

1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a counterexample CFL that is not regular

regular

languages

{Onln | HZO} e It'sa CFL
- Proof: CFGS — 051 | €

 It's not regular

« Proof: by contradiction
using the Pumping Lemma



How to Prove This Diagram “Correct”?

m=) 1. Every regular language is a CFL

For any regular language 4, show ... context-free

languages

.. 1t has a CFG or PDA (CFLs)

v]12. Not every\CFL is a regular language

mi) regular
languages

A regular language Is represented by a:
- DFA

- NFA

- Regular Expression



Regular Languages are CFLs: 3 Ways to Prove

- DFA —

Coming soon to a future hw?
context-free

languages

* NFA - (CFLs)

) regular
languages

« Regular expression —

Are there other interesting
subsets of CFLs?




Deterministic CFLs and DPDAs



Frewinsty: GENerating Strings

Generating strings:

1. Start with start variable,

2. Repeatedly apply CFG rules
to get string (and parse tree)

A — 0A1
A— B
B — #

H————

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111



Generating vs Parsing

Generating strings:

1. Start with start variable, A In practice, opposite is more
2. Repeatedly apply CFG rules }‘1 interesting:
to get string (and parse tree) /—'\1 <1, Start with string,
| 2. Then parse into parse tree
A — 0A1 A
|
A— B j_?
B —# O O O # 1 1 1
v

A= 041 = 00411 = 000A111 = 0008111 = 000#111



Generating vs Parsing

* In practice, parsing a string more important than generating

- E.g, a compiler (first) parses source code string into a parse tree
e (Actually, any program with string inputs must first parse it)



Prewinsty: EXample CFG>PDA

S — alb|b
T — Tale

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab, (using rule T- ¢)

e, $—e

This Machine is parsing!

1.

Start with (input) string,

2. Find rules that generate string

e,S5—b
e, T—e
a,a—€
b,b—e

Astart
qloop
qloop
qloop
CIloop
CIloop
CIloop
CIloop

qaccept

aab

aab

aab
ab
ab
ab

PDA Example

5$

aTb$ S—-aTb
To$

Tab$ T- Ta
ab$ To¢
b$

$



Generating vs Parsing

e In practice, parsing a string more important than generating

- E.g., a compiler (first step) parses source code string into a parse tree
e (Actually, any program with string inputs must first parse it)

e But: the PDAs we've seen are non-deterministic (like NFAs)




Fresinsty: (NOndeterministic) PDA

S — alb|b
T — Tale

e,5—b )O€,€—>T)O gy |
g, [—a ’O e, e—1T l

e,5—b This PDA nondeterministically
e, 1—e “tries all grammar rules at once”
a,a—e€

b,b—e A parser implementation
can’'t do this!




Generating vs Parsing

e I[n practice, parsing a string more important than generating one

- E.g., a compiler (first step) parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

« But: the PDAs we've seen are non-deterministic (like NFAs)

« Compiler’s parsing algorithm must be deterministic

» So: to model parsers, we need a Deterministic PDA (DPDA)



DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. QQ is the set of states, 1. @ is the set of states,

2. ¥ is the input alphabet, 2522 .is the input alphabet,

3. I is the stack alphabet, i g y the;kaslphal;jt,’ =

4. 6: Q x X. x I.— (Q x I,) U {0} is the transition function 5: q(; 25 isihz si;taégaide)
5. qo € Q is the start state, and  Notpower set 6. F C Q is the set of accept states.
6. F' C @ is the set of accept states.

“do nothing”

Difference: DPDA has only one possible action,
for any given state, input, and stack op
(similar to DFA vs NFA)

Must consider: € reads or stack ops!
E.g, if 8(q, a,X) does “something”,
then 8(q, &, X) must “do nothing”



DPDASs are Not Equivalent to PDAS!

- A PDA can non-deterministically “try all rules”
R — S ‘ T (abandoning failed attempts)

- A DPDA must choose one rule at each step!
S — aSb | ab (cant go back after reading input!)

T — aTbb | abb

Parsing = deriving reversed:

used Srule start with string, end with parse tree
aaa
=
| When parsing this string, when does it
used T rule _ know which rule was used, S or T? . "
| | Choosing “correct
Saa rule depends on rest
— of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)



Subclasses of CFLS

Umambiguous CFLs / PDAs

=
Unambiguous Grammars Ambiguous
Grammars
DCFLs < /TN LRK

Programming { L) | LR
language parsers
[ compilers are
ideally in here

LALR(1)

SLR

LR(0)

All CFLS



Compiler Stages

DFAs (recognizing
regular languages)
in here!

A program string (chars) (e.g,a : = (5 + 3 ) ; ..)

Program “words”
(e.g, ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

..)



A Lexer Implementation

DFAs
(represented
as regular
expressions)!

> [a-z] [a-z0-9]*

Q
%1

Remember our analogy:

- DFAs are like programs

- All possible DFA tuples is like
a programming language

/* C Declarations: */
#include "tokens.h"
#include "errormsg.h"
union {int ival; string sval; double fval;} yylval;
int charPos=1;

/* definitions of IF, ID, NUM, ... */

It's more than an analogy!

This DFA is a real program!

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%)

/* Lex Definitions: */

digits [0-9] +

)
GRC)

/* Regular Expressions and Actions: */

if {ADJ; return IF;}

A “lex” tool converts the
program:

- from “DFA Lang” ...

- to an equivalent one in C'!

return ID;}
{digits}
return NUM: }
({digits}"."[0-9]*) | ([0-9]*"."{digits}) {ADJ;
yylval.fval=atof (yytext) ;
return REAL; }

("--"[a-z] *n\nn) | (mom | n\nn | "\t")+ {ADJ'-}

{ADJ; yylval.sval=String(yytext) ;

{ADJ; yylval.ival=atoi (yytext) ;

{ADJ; EM error("illegal character");}




Compiler Stages

A

DFAs (recognizing
regular languages)
in here!

DPDAs (recognizing
DCFLs) in here!

program (chars)(e.g.,a : = (5 + 3 ) ; ..)

Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI

Parser

AssignStm  Abstract Syntax tree (AST), i.e., a parse tree!

a

OpExp

e

NumExp  Plus

|
5

NumExp

|
3

..)



A Parser Implementation

%1{

int yylex(void) ;

void yyerror (char *s) { EM error (EM tokPos, "%s", s); }
%)

*token ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN

$start prog Remember our analogy:
%% CFGs are like programs
prog: stmlist It's more than an analogy!

This CFG is a real program!

Just write | stm : ID ASSIGN ID

the CFG! WHILE ID DO stm

A “yacc” tool converts the

BEGIN stmlist END .
IF ID THEN stm program: )

IF ID THEN stm ELSE stm - from “CFG Lang” ...

- to an equivalent one in C!

stmlist : stm
| stmlist SEMI stm



DPDAs are Not Equivalent to PDAS!

Parsing = generating reversed:
- start with string

R — S | T - end with parse tree
S — aShb | ab - PDA: can non-deterministically “try all rules”

(abandoning failed attempts);
1" — |a’lbb | abb | - DPDA: must choose one rule at each step!

Should use S rule

aaabbb — aaSbb

2b

aaa

Should use T rule To choose “correct” rule,
When parsing reaches 1 v need to “look ahead” at
this position, does it aaabbbbbb — aaTbbbb rest of the input!
know which rule, S or T?

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)




Subclasses of CFLS

DCFLs

f!:ambiguous Grammars
5 LR\ LRK)

Programming
language parsers
[ compilers are
ideally in here

{ —>

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

%

2) choose “look ahead” amount

2 parser design decisions:

1) Parse from left, or from right

All CFLS




LL parsing

Let's play a game: “You're the Parser”:

e | = [eft_to_right Guess which rule applies?
e L = leftmost derivation (and how much did you have to “look ahead”?)

S — if E then S else S i:?nSdL
S—‘/- beglnSL |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1



LL parsing

e L = left-to-right
e L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 27= 3 begin print 1; print 2; end else print 0



LL parsing

e L = left-to-right
e L = leftmost derivation

L d
S — if E then S else § e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1



LL parsing

e L = left-to-right
e L = leftmost derivation

: . — end
S — 1if E then S else §
. L —: SL
S — begin S L
Int £
S —|prm E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)



LR parsing

S—85:; 8§ E — id
e L = left-to-right S—>1d:=E E — num
* R = rightmost derivation * S > print (L )© E — E + E

a := 7;
B e @ 4 (8 o= B o 6. @

When parse is here, can't determine whether it's an assign (: =) or addition (+)

Need to save input (lookahead) to some memory, like a stack! this is a job for a (D)PDA!



LR parsing

S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation S — print(L) E — E + E

a := 7;
b\:=c¢c + (d :=5 + 6, d)

Stack Input Action
push :
1 a :=7 ; b:=c+ (d:=5+6,d) % shift | = “push”

State ﬁﬁ

name



LR parsing
S—>S§5: S E — id
o L = [eft-to-right S—i1d:= E E — num
* R = rightmost derivation S —print(L) E — E + E

Stack Input Action
1 a :=7 ; b:=c+ (d:=5+6,d) % shift
1 1d4 =7 ; b:=c+ (d:=5+6,d) $ shift
1 id4 1=6 ﬁ ; b :=c + (d :=5 + 6 d) $ shift



LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation S — print(L) E — E + E

Stack Input Action

1 a :=7 ; b :=c+ (d :=5 + 6 d) $ shift

1 1d4 :=7 ; b :=c + (d :=5 + 6 d) $ shift

1 id4 1=6 7 ; b :=c + (d := 5 + 6 d) $ shift

1 1dg4 : =g numqq ; b :=c+ (d :=5 + 6 d) $ reduce E — num



LR parsing

e L = left-to-right
* R = rightmost derivation

Stack

1

1 1d4

11d4 :=¢

1 1dg :=¢ numyg

a := 7

i

; b
Can determine | .
(rightmost) rule | |

; b o

1T TR
Q00 aQ
+ + + +

S—S5: 8§
S—>1d=E

S — print ( L)

Q QO

Input

ur o1 o U

+ + + +

O O O O

E — id

E — num

E— FE + E
Action

$ shift

$ shift

$ shift

$ reduce E — num




LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation * S > print (L )© E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) % shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1dg : =4 Candetermine = ¢ + (d :=5 +6 , d) $ shift

1 id4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

1



LR parsing
S—>8§5; 8 E — id
o L = [eft-t()-right S—i1d:= E E — num

* R = rightmost derivation S — print(L) E — E + E

Stack Input Action

1 a:=7;b:=c+ (d:=5+6,d) $ | shift ||pparsersalso called
1 ld4 := 7 ; Db =c+ (d :=5 + 6 , d) $ Shl:ﬁ‘ “Shift-Reduce” Parsers
1 id4 1=6 7 ; b:=c+ (d:=5+6, d) $ shift

1 1dg4 : =g numyq ; b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ;i b :=c+ (d :=5+6 , d) $ reduce S — 1d:=E

1 S92 ; b :=c+ (d:=5+6, d) § shift




To learn more, take a Compilers Class!

A program (string of chars)
Unambiguous Grammars Ambiguous ‘
Grammars
///H#Eum LR(k) ﬂﬁﬁh\\\ Lexer

LLa) | LRO \ (DFAs | NFAs)

l Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

This phase needs computation that goes beyond CFLs




tistteek, PUumping Lemma for Regular Langs

« Pumping Lemma describes_how strings repeat

« Regular language strings repeat using Kleene star operation
« Key: 3 substrings xy z independent! - N

Repeating pattern Ji

| atter repeat
A non-regular language: - Al0)
n4n , ': :‘
{0 1 | n 2z 0} Before repeat T's o ]
Kleene star can’t express this pattern:
2nd part depends on (length of) 15t part \_____|Independent /

* Q: How do CFLs repeat?



Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

Repetition [“<_ {0"#1™|n > 0}
A— B
B — # /}‘1\ repetition
~ ‘ ~
A

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111



How Do Strings in CFLs Repeat?

« Strings in regular languages repeat states

« Strings in CFLs repeat subtrees in the parse tree

I
Co Ty

{
e

)
)

NFA can take loop transition
any number of times, to
process repeated y in input

can be repeated any number of times

; One repeated subtree means that it
g
R

U v T Y z

Linked parts repeat together

T

Linked parts

5 substrings

Z



Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least » then < maw he divided into five pieces s = uvzyz satistying the

. s Two pumpable parts.
conditions But they must be pumped together! *‘
1. for each i > 0, wvtzy'z € A, !
2. |vy| > 0, and .
3. “U:By| < p. Pumping lemma If A is a regular ber p (the
pumping length) where if s is any stri| % s may be
divided into three pieces, s = zyz sat__ 7 ”

=4

1. foreachi > 0, zy'z € A, Two pumpable parts,

2. |y| > 0, and pumped together
3. |zy| < p. | Qnepumpable part Frevinsty




A Non CFL example

language B = {a"b"c"|n > 0} is not context free

Intuition
e Strings In CFLs can have two parts that are “pumped” together

« Language B requires three parts to be “pumped” together
SO It's not a CFL!

Proof?




Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions

1. for each i > 0, uvizyiz € A;

2. |vy| > 0, and
3. ‘Uiyrg D. Reminder: CFL Pumping lemma says:
. - — all strings a"o"c” > length p are splittable
Proof (by contrad ICtIOﬂ): Now we must find a contradiction ... into uvxyz where v and y are pumpable
* Assume: a"b"c1s a CFL
« So it must satisfy the pumping lemma for CFLs
« |.e,all strings > length p are pumpable [ ;. iradiction if
- Astring in the language
» Counterexample =|aPbPcP e o S
- Is not_splittable into uvxyz where vand y are pumpabl;”

pas pbs pbs

a..n..c..



. Pumping lemma for context-free languages If A is a context-free language,
Wa nt to D rove: a"o"c"i1s not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvayz satisfying the
conditions

Possible Splits L

3. Jvzy| < p.
Proof (by contradiction):
e Assume: a"b"c" is a CFL

« So It must satisfy the pumping lemma for CFLs
 |.e, all strings > length p are pumpable [ oniradiction it

* Counterexample =|aPbPcP

- Is not_splittable into uvxyz where v and y are pumpable

* Possible SplItS (using condition # 3: |vxy| < p)

pas pbs pbs

Es:r‘pable X[+ vxyisall as
x|+ vxyis all bs —
X[+ vxyisall cs a..n..cC..
x| » vxy has as and bs J \ ' J
X| « vxy has bs and cs -
. (wé// cannot have as o 2t o3 aPbPcP cannot be split into uvxyz DD

where vand y are pumpable VXY oo o

So a"b"c” is not a CFL




Another Non-CFL D = {ww| w € {0,1}*}

Be careful when choosing counterexample s:(0P10P1
This s can be pumped according to CFL pumping lemma:
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Pumping v and y (together) produces string still in D! ' |
« CFL Pumping Lemma conditions:/11. for each ¢ > 0, uv'xy’'z € A,

So this attempt to prove that 2. |Uy| > 0, and
the language is not a CFL failed. 3. |vzy| < p.
(It doesn't prove that the language is a CFL!)




Another Non-CFL D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match
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0P1PQP1P
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So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!




A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

« This means XML is not context-free!
« Note: HTML is context-free because ...
« ... there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...




et A More Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}
M; = “On input string w: Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write from
arbitrary memory locations!




