CS 420 / CS 620
Turing Machines (TMs)

Wed October 29, 2025
UMass Boston Computer Science

lecturel6

ﬁ/{/wa/wem/(zf@

« HW 8
« Out: Mon 10/27 12pm (noon)
 Due: Mon 11/3 12pm (noon)

lecturel6

In-class questions (in Gradescope)

Q1 TM possible results
2 Points

Q1.1 TM number of possible results
1 Point

When a Turing Machine (TM) starts running with an input string, how
many different possible results can there be.

Q1.2 TM computation results
1 Point

What are the possible results when a TM is run with a string input?

tastteek, PUmMpPIng Lemma for Regular Langs

* Pumping Lemma explains how strings repeat

« Regular language strings repeat using Kleene star operation
« Key: 3 substrings xy z|independent!

4 Or “loop” in DFA/NFA
Repeating pattern Ji

| atter repeat
A non-regular language: - Al0)
n4n , ': :‘
{0 1 | n 2z 0} Before repeat T's o]
Kleene star can’t express this pattern:
2nd part depends on (length of) 15t part _____|Independent /

* Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

Repetition [“<_ {0"#1™|n > 0}
A— B
B — # /}‘1\ repetition
~ ‘ ~
A

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

NFA can take loop transition(s)

How Do Strings in CFLs Repeat? = sucicn.

~

e Strings in regular languages repeat states | ~ '@

—{ q1)

_/

« Strings in CFLs repeat subtrees in the parse tree

; One repeated subtree means that it
= can be repeated any number of times

u v x Yy z 5su bstrings

T T

Linked parts

v Yy oz U z

Linked parts repeat together

Repeating Pattern in CFL Strings?

* When are we guaranteed to have a
repeated subtree?

« When height of parse tree > # of rules!

Subtrees!

* Llet k=# of rules
and b = longest rule RHS length

« Then length string where we know
there's a repeated rule Is ... Don't care

e |.e, “pumping length” p = bk?77?

Pumping lemma for context-free languages If A is a context-free language,
then there is a|number p (the pumping length) jwhere, if s is any string in A of
length at least p, then s may be divided into five pieces s = wvryz satisfying the
conditions

H

Don’t care

1. for each i > 0, uv'zyiz € A,
2. |lvy| > 0, and
3. lvzy| < p.

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a|context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least » then < maw he divided into five pieces s = uvzyz satistying the

. s Two pumpable parts.
conditions But they must be pumped together! *‘
1. for each i > 0, wvtzy'z € A, !
2. |vy| > 0, and .
3. U$y| < p. Pumping lemma If A is a|regular ber p (the
pumping length) where if s is any stri ‘ % s may be
divided into three pieces, s = zyz satl 457 ”

L=

1. foreachi > 0, zy'z € A, Two pumpable parts,

2. |y| > 0, and pumped together
3. |zy| < p. | Qnepumpable part Frevinsty

A Non CFL example

language B = {a"b"c"|n > 0} is not context free

Intuition
e Strings In CFLs can have two parts that are “pumped” together

« Language B requires three parts to be “pumped” together
SO It's not a CFL!

Proof?

Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions

1. for each i > 0, uvizyiz € A;

2. |vy| > 0, and
3. ‘Uiyrg D. Reminder: CFL Pumping lemma says:
. - — all strings a"o"c” > length p are splittable
Proof (by contrad ICtIOﬂ): Now we must find a contradiction ... into uvxyz where v and y are pumpable
e Assume: a"b"c"1s a CFL
« So it must satisfy the pumping lemma for CFLs
* |l.e, strings in lang = length p are pumpakl ;. iradiction if
- Astring in the language
» Counterexample =|aPbPcP e o S
- Is not splittable into uvxyz where vand y are pumpabl;”

pas pbs pbs

a..n..c..

. Pumping lemma for context-free languages If A is a context-free language,
Wa nt to D rove: a"o"c"i1s not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvayz satisfying the
conditions

* * 1. for each i > 0, uvizyiz € A,
Possible Splits S |
3. |vay| < p. Reminder: CFL Pumping lemma says:
Proof (by contradiction):

all strings a"b"c” > length p are splittable
e Assume: a"b"c" IS a CFL

into uvxyz where v and y are pumpable
« So It must satisfy the pumping lemma for CFLs
 |.e, all strings > length p are pumpable [oniradiction it

* Counterexample =|aPbPcP

§
S
&
@
S
0’Q
(&

- Is not_splittable into uvxyzAvhere v and y are pumpable

* Possible SplItS (using condition # 3: |vxy| < p)

pas pbs pbs

Not
punmpable

X[+ vxyisall as

x|+ vxyis all bs —
X[+ vxyisall cs a..n..cC..
x|« vxy has as and bs J \ ' J

X . K})){(); ?aansnishg\?edassbs il 3 aPbPcP cannot be split into uvxyz DD

where vand y are pumpable VXY oo o

So a"b"c” is not a CFL

Another Non-CFL D = {ww| w € {0,1}*}

Be careful when choosing counterexample s:(0P10P1
This s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

Uu () X Yy e
Pumping v and y (together) produces string still in D! ' |
« CFL Pumping Lemma conditions:/11. for each ¢ > 0, uv'xy’'z € A,

So this attempt to prove that 2. |Uy| > 0, anc —
the language is not a CFL failed. 3. |[vzy| < p. [Nocontradiction:
(It doesn't prove that the language is a CFL!)

Another Non-CFL D = {ww| w € {0,1}*}

« Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

0P1PQP1P

\e— —

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!

A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG Is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

« This means XML is not context-free!
« Note: HTML is context-free because ...
« ... there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...

et A More Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}
M; = “On input string w: Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write from
arbitrary memory locations!

Where We've Been, Where We're Going

* PDAs: recognize context-free languages
A — oa1® Memory: states + infinite stack (push/pop onl
A— B e Can't express: arbitrary dependency,
B = # - eg, {ww| w € {0,1}*}
* DFAs / NFAs: recognize regular langs
« Memory : finite states

e Can't express: dependency
e.g, {0"1"|n > 0}

Start

= = t - +1 = +he = (+thert

context-free

Where We've Been, Where We're Going

* Turing Machines (TMs) g

- Memory : states + infinite tape, (arbitrary read/write)
« Expresses any “computation”

* PDAs: recognize context-free languages
A s o41® Memory: states + infinite stack (push/pop only

A— B Can't express: arbitrary dependency, decidable
B — # ww!| w | *
e.g, {ww| w € {03.1} } textﬁ-ee
* DFAs / NFAs: recognize regular langs AGaaEl

« Memory : finite states regular subset of TMs
« Can't express: dependency
e.g, {0"1"|n > 0}

Start == t == h - e 2 n

Turing-recognizable

Alan Turing

« First to formalize a model of computation
* |.e,, he invented many of the ideas in this course!

* Also studied Artificial Intelligence
* The Turing Test

ChatGPT passes the Turing test

In 1950, Alan Turing proposed the Turing test as a way to measure a machine’s intelligence. The test pits a human against
a machine in a conversation. If the machine can fool the human into thinking it is also human, then it is said to have
passed the Test. In December 2022, ChatGPT, an artificial intelligence chatbot, became the second chatbot to pass the
Turing Test, according to Max Woolf, a data scientist at BuzzFeed

Google’s LaMDA Al in the summer of 2022, demonstrating that it is invalid. For many years, the
Turing test has been used as a standard for sophisticated artificial intelligence models.

6 Max Woolf & L
@minimaxir - Follow

congrats to OpenAl on winning the Turing Test

Finite Automata vs Turing Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape initially contains input string

e Tape IS Infinite input | | Empty tape locations

 To the right -
5 head ababuuué...

States l

« Fach step: “head” can move left or right

« Turing Machine can accept / reject at any time

Call a language Turing-recognizable if some Turing machine
recognizes it.

Turing Machine Example

Example
™

. _ input

Define: /1 accepts inputs in language B = {w#w| w € {0,1}*} /1.
. . —

M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols/correspond.

High-level: “Cross off” This is a high-level TM description

Low-level &: write "< char ||, equivalent to (but more concise than)

our typical (low-level) tuple descriptions,
l.e., one step = maybe multiple § transitions

Analogy
“High-level”: Python
“Low-level”: assembly language

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Y
x11000#011000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either ~

xI14000#011000uw ...

side of the # symbol to check whether these positions contain

the same symbol. If they do not, or if no # is found, reject. x11000#%x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Head “zags” back to start 011000#011000u ...
1.

Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —
symbols correspond.

Y
x11000#011000uw ...

x11000#x11000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Continue crossing off 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

Y
x11000#011000uw ...

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which AY
symbols correspond.

x 11 000#x11000uw ...

T
xx1000#x11000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

—
011000#0

B
x11000#0

xllOOO#_gc

—)¢(11000#X

}31000#}:

!

X X X XXX #X

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: jOllOOO#OllOOOu...
1. Zlg—zag across the tape to corresponding positions on elth(.er X—i L 000#011000u ..

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —

symbols correspond.

x11000#x11000uw ...

}T}thOO#XllOOOu...
! —
2. When all symbols to the left of the # have been crossed off, XXXXXXHXXXXXXU ...
check for any remaining symbols to the right of the #. If any accept

symbols remain, reject; otherwise, accept.”

Turing Machines: Formal Definition

This is a “low-level” TM
description

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol 1
. I is the tape alphabet, where u = T"and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

go € (1€ | spi Write | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept- . .
Is this machine

deterministic?
Or non-deterministic?

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1.

SN I

@ is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move

Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

o
011000#011000wu

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1.

SN I

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 e+1), cross it off, move head R(ight)

Transitions on
this side:
Crossed off a 0

@ is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move \
Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

011000#011000u

x11000#01100 0w

—

x11000#x11000uw ..

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1.

SN I

@ is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move

Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

~

X—>R

Cross off

(matching) A
N

de 0,1,x—]L,
#— L.
qr 0,1—L

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

011000#011000u

x11000#011000u ... a

x11000#x11000u
Ty

x11000#x11000u ... 0,1%R ;HR 0,1—>R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

2. X is the input alphabet not containing the blank symbol L, “zag” L(eft)

3. I is the tape alphabet, where u € I'and 3 C T, to last x

4. 6: Q xI'—Q xI'" x {L.,R} is the transition function, #—L

5. 90 € read ksl write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L
7.

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

011000#011000u

x11000#01100 0w

x11000#x11000u

?{11000#x11000u...

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

Read char (86 1), cross it off, move head R(ight)

011000#011000Lw
x11000#01100 0w —

- This side:
x11000#x11000u Crossed off a 1
X 11000#%x11000
x x e (6 Dx—R (43] > 01-R
X X¥1000#%x11000u ...

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

1000#01100O0u

b o<
‘I—¥

= -

1000#0110000u ... a

1000#x11000u

leOO#XllOOOu... 0,1HR x—>R 0,1—>R

e
|

sha
—_

1 000 # 11000 .. 5
s HX __u Accept If all
xxxxxx#xxxxxx&.. crossed out

accept x—R ‘@ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

(transitions to) Reject
state not shown
(assume no write, and

head moves right)

go € read es| write | move \
Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

x—R) D o0,1—L

SN I

TM Computation, Formally ...

tastick- PDA Configurations (IDs)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,Y):
g = the current state
w = the remaining input string
y = the stack contents

A sequence of configurations represents a PDA computation

TM Configuration (ID) = 2?7

3) read/write head

1) states

control

—

b

a

b

L

2) Tape contents

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
—
—
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... CQnﬁgafterzstepS
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

qr7
101151111uuu§...
1011¢g701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)

TM Computation, Formall

Next config

Sipser says:
“For completeness, we say that the head moves
Right in ... transitions to the reject state”

M = (Q, E; F; 5; q05 Qaccept QTejGCt)

(head moved past
written char)

head

Single-step
(Right) aqiaB F axqgsf

. write
if q1,q2 € Q
5((]1 ; a) — (q2: X, R)

axel apel”
read

abgial - agebx s

(wrote x and)
head if 5(ql,a) = (QQ,X,L) head moved left

(Left)

Multi-step
 Base Case

IF IforanyID I

e Recursive Case

X

I = Jif there exists some ID K
such that I F K and K F J

|
Edge cases: gqiafB F.gox8

Head stays at leftmost cell

aqr - aogo

Add blank symbol to config

if 5((]1: a) - (QQ: X, L)

(L move, when already at leftmost cell)

if (S(QI: “) - (q?a =g R\

(R move, when at rightmost filled cell)

TMs: High-level vs Low-level?

M; = “On input string w:

1. Zig-zag across the tape
side of the # symbol to
the same symbol. If tl
Cross off symbols as tk
symbols correspond.

2. When all symbols to t
check for any remainir
symbols remain, reject;

Turing Machine: High-level Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Aons oot is found, reject.
Cross off symbols as thew/ We Will (mostly) \q track of which

bol d. stick to high-level
RO TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining & like thisone At of the #. If any
symbols remain, reject; otherwise;—.ccept.”

TM High-level Description Tips

Analogy:
 High-level TM description ~ function definition in “high level” language, e.g. Python
« Low-level TM tuple ~ function definition in bytecode or assembly

TM high-level descriptions are not a “do whatever” card, some rules:
1. TMs and input strings must be named (like function definitions) M; = “On input string w:
2. Steps must be numbered

3. TMs can “call” or “simulate” other TMs (if they pass appropriate arguments!)
« eg, step foraTM M can say: “call TM M, with argument string w, if M, accepts w then ..., else ...”

« Can split input into substrings and pass to different TMs M = “On input w
. . u S 1. Simulate B on input w.
4. FO“'OW typlcal pr,ogram mi ng S,Copl ng _ rlﬂ leS . . , 2. If simulation ends in accept state,
« can assume functions already defined are in “global” scope, “CONVERT" ..
5. Other variables must also be defined before use 0 L a2 e 2 o T N N L e
« e.g,can define a TM inside another TM 1. Convert NFA B to an equivalent DFA C, using the procedur
’ . this conversion given in Theorem 1.39.
6. must be equivalent to a low-level formal tuple 2. Run TM M from Theorem 4.1 on input (C, s).

* high-level “step” represents a finite # of low-level & transitions § — “On input 1

5 = = w
* Soone ?tep CennOt run fo reve"r “ " 1. Construct the following TM M.
« E.g,can’t say “try all numbers” as a “step M,y —

= “On input x:

Non-halting Turing Machines (TMs) <®

So: TM computation has
3 possible results:

* A Turing Machine can run forever : ﬁ‘éj?gftt
« £.g, head can move back and forth in a loop - Loop forever

« We will work with two classes of Turing Machines:

A recognizer is a Turing Machine that may run forever (all possible TMs)
« A decider is a Turing Machine that always halts.

Call a language Turing-recognizable if some Turing machine (Call a language Turing-decidable or simply decidable if some

recognizes it. : : Turing machine decides it. . .
(3 possible computation results) (2 possible computation results)

Formal Definition of an “Algorithm”

 An algorithm is equivalent to a Turing-decidable Language
(always halts)

Turing-recognizable

(3 possible
. computation
decidable results)
(2 possible

computation
context-free results)

Many functions we have defined
this semester are algorithms!
e.g., all our conversion functions
are decider TMs!!

- CONVERT ¢ p_yra

- STARyp4

- PDA-CFG

